The Generals’ Scuttlebutt: Byzantine-Resilient Gossip Protocols

Sandro Coretti
IJOG
Zurich, Switzerland
sandro.coretti@iohk.io

Alexander Russell
University of Connecticut
IJOG
Storrs, USA
acr@uconn.edu

Aggelos Kiayias
University of Edinburgh
IJOG
Edinburgh, UK
Aggelos.Kiayias@ed.ac.uk

Cristopher Moore
Santa Fe Institute
Santa Fe, USA
moore@santafe.edu

ABSTRACT
One of the most successful applications of peer-to-peer communication networks is in the context of blockchain protocols, which—in Satoshi Nakamoto’s own words—rely on the “nature of information being easy to spread and hard to stifle.” Significant efforts were invested in the last decade into analyzing the security of these protocols, and invariably the security arguments known for longest-chain Nakamoto-style consensus use an idealization of this tenet. Unfortunately, the real-world implementations of peer-to-peer gossip-style networks used by blockchain protocols rely on a number of ad-hoc attack mitigation strategies that leave a glaring gap between the idealized communication layer assumed in formal security arguments for blockchains and the real world, where a wide array of attacks have been showcased.

In this work we bridge this gap by presenting a Byzantine-resilient network layer for blockchain protocols. For the first time we quantify the problem of network-layer attacks in the context of blockchain security models, and we develop a design that thwarts resource-restricted adversaries. Importantly, we focus on the proof-of-stake setting due to its vulnerability to Denial-of-Service (DoS) attacks stemming from the well-known deficiency (compared to the proof-of-work setting) known as nothing at stake.

We present a Byzantine-resilient gossip protocol, and we analyze it in the Universal Composition framework. In order to prove security, we show novel results on expander properties of random graphs. Importantly, our gossip protocol can be based on any given bilateral functionality that determines a desired interaction between two “adjacent” peers in the networking layer and demonstrates how it is possible to use application-layer information to make the networking-layer resilient to attacks. Despite the seeming circularity, we demonstrate how to prove the security of a Nakamoto-style longest-chain protocol given our gossip networking functionality, and hence, we demonstrate constructively how it is possible to obtain provable security across protocol layers, given only bare-bone point-to-point networking, majority of honest stake, and a verifiable random function.

CCS CONCEPTS
• Security and privacy → Cryptography; Distributed systems

KEYWORDS
proof of stake, gossiping, Byzantine-resilience

ACM Reference Format:

1 INTRODUCTION

1.1 Gossip Protocols and Byzantine Attackers
Gossip protocols. Gossip protocols [12, 16] provide an efficient mechanism to distribute information to a large set of parties. The key feature of such algorithms is their peer-to-peer operation that load balances the effort of information propagation in a way that individual nodes are only investing a modicum of effort when contributing to the delivery of a message network-wide.

As communication infrastructure for multiparty cryptography, gossip protocols have recently found wide-spread application in the context of blockchain protocols, notably with the introduction of the Bitcoin blockchain [22]. Among other things, gossip protocols are used by blockchain participants to diffuse newly found blocks. In the words of Nakamoto, blockchain protocols rely on the “nature of information being easy to spread and hard to stifle,” underscoring the relevance of gossip as the underlying communication layer.1

The “security” of gossip protocols. Deploying gossip protocols as the communication layer of blockchain protocols adds a crucial new dimension to their design: their “security.”

1Note that the security guarantees of gossip protocols are weaker than Byzantine-resilient Broadcast aka the Byzantine Generals problem [19] because they do not guarantee any kind of agreement on or consistent ordering of messages gossiped among parties.
At the very least, gossip protocols underlying blockchains must deal with the fact that the resources (e.g., network bandwidth, computation time and space) of each peer are limited, and exhausting them will lead to denial-of-service (DoS) attacks. As such, the aforementioned consideration of keeping the complexity for each peer small (sublinear, preferably constant, in the number of total participants) is therefore not only relevant for efficiency but also essential for security.

For this reason, gossip protocols currently used in practice incorporate an array of (typically ad-hoc) measures to protect information propagation against DoS attacks. In the setting of blockchain protocols in particular, the most salient feature of such DoS mitigations is the fact that the adversary is resource-bounded (e.g., has limited hashing power, in the context of the Bitcoin protocol, or stake, in the context of proof-of-stake protocols), and peers can exploit this to manage network-wide message propagation. Techniques include rejecting previously seen proof-of-work messages and skipping content downloads that will not result in a local state update (such as skipping the download of a block’s contents when the block header indicates that it cannot be adopted based on the local state of the client).

It should be stressed that such measures are far from perfect, as exemplified by a number of attacks that have been described, including eclipse attacks [15] and routing attacks [2]. Moreover, the proof-of-stake setting poses additional difficulties stemming from the possibility of reusing keys to issue numerous conflicting messages [23] and the fact that the whole stakeholder set should be at hand for proof-of-stake verification to work, in sharp contrast to proof of work, which only needs the current difficulty level.

However, the security issues extend far beyond just the per-peer complexity. Most crucially, the design, setup, and maintenance of the overlay used for gossiping must be such that it resists Byzantine attackers—who make participants actively and maliciously deviate from the prescribed protocol—that command a large number of peers in the network. Despite all of the above shortcomings, in practice the information-propagation guarantees of the deployed networking layers of blockchain protocols are generally postulated to be sufficient for the higher-level protocol to maintain its security and correctness.

On the theory side, blockchain consensus protocols—be they Nakamoto-style (e.g., [11, 22]) or inspired by Byzantine fault-tolerant computing (e.g., [6]), based on proof of work (PoW) or proof of stake (PoS)—all crucially rely on the reliable and timely delivery of protocol messages (blocks, votes, etc.) to achieve liveness and many also to be safe. However, while the consensus layers of all these protocols have received considerable attention, with a number of them achieving provable security against Byzantine attackers, the design and security of the network layer are usually an afterthought at best.

Specifically, all previous formal security analyses of PoS protocols (e.g., [6, 10, 11]) use (over-)idealized message-passing abstractions that essentially promise that honest messages are distributed undisturbed to all honest parties within a reasonable delay window and ignore the fact that these abstractions must be implemented in the real world.

More broadly, there exists surprisingly little published work that considers the problem of extending Byzantine resilience to the communication layer of blockchains or gossip protocols in general.

The above state of affairs highlights serious shortcomings of the approaches taken both in theory and in practice and also suggests a significant gap between the two. Given that gossip is a critical piece of the protocol stack for any permissionless distributed-ledger protocol, the lack of a thorough, formal security treatment of its properties is a critical deficiency in the understanding of the security of these protocols. This the main motivation behind the present paper.

1.2 Our Results

This work takes a systematic and principled approach to alleviating the issues explained above and provides a novel design for Byzantine-resilient gossiping in the context of PoS blockchain protocols. The results are presented in the Universal Composability framework [4].

A Byzantine-resilient network layer for blockchains. The first main contribution of this work is a protocol for “synchronizing chains” globally among participants of PoS blockchain consensus.2 The protocol is designed to work over a standard, Internet-like network with (bounded-delay) message passing.

Crucially, the security of the network layer is based on the same assumption as that of the consensus layer, namely that the majority of stake in the system is controlled by honest parties. This may seem circular at first, as the proper operation of the network layer is conditioned on agreement on the stake distribution. The way to break this “cycle” is as follows: Commonly, Nakamoto-style PoS blockchains anyway split the execution of the consensus protocol into epochs and use the stake distribution SD_{i-1} at the end of an epoch $i-1$ as a basis for consensus in epoch $i+1$ (under the assumption of bounded stake drift during epochs). The same approach can be taken for the network layer, i.e., SD_{i-1} underpins the execution of the network layer in epoch $i+1$. Specifically, in the new protocol parties use a verifiable random function (VRF) to, based on SD_{i-1}, create a stake-weighted random-graph overlay in which the degree of each party is constant in the number of participants. The use of VRFs allows parties to reject connection requests from participants that are not supposed to be in their neighbor set.3

Because the node degrees in the network protocol are constant, it is easy for an (adaptive) attacker to isolate a (bounded) fraction of the stake by corrupting all neighbors of parties making up said stake. To that end, edges in the graph have an expiration time, at which point replacements are sampled. In addition to helping parties recover from eclipses, this also allows the overlay to gradually adapt to changing stake distributions.

It may seem tempting to now simply perform run-of-the-mill block gossiping over the above overlay. Such an approach, however,

2This work focuses on synchronizing chains; similar approaches can be taken to synchronize other protocol messages, such as votes, transactions, etc.

3Non-Nakamoto blockchains sometimes do not have the notion of an epoch built into the consensus protocol, e.g., because they finalize blocks and use the stake distribution of the finalized block as a basis for agreeing on the next block. However, for the purpose of equipping them with the network design presented here, such a notion can easily be added to them. Moreover, note that it seems that any reasonable design of a network layer for PoS protocols needs to assume bounded stake drift.
seems to be unsuitable (at least) for Nakamoto blockchains: For example, it is an impractical and insecure design to ask parties to keep all received blocks around, as many of them could be adversarial in the PoS setting (an attacker may—in principle—generate as many blocks as they like, in particular as slot leader). Therefore, with block gossip, a party should delete blocks unless they extend its current local chain. During a fork event, however, the party may require previously deleted blocks for which the gossip is “over.” Similar issues apply if a party misses blocks, e.g., due to an eclipse. In general, which blocks are needed by a particular party to synchronize with the system is highly dependent on the party’s local state.

Therefore, stateless solutions, i.e., solutions in which neighbors do not share state, do not appear to be a good fit and will not yield DoS-resistant and scalable blockchain protocols in practice. A more suitable approach is to have each pair of neighbors run a bilateral chain synchronization (chain sync) protocol, which allows them to keep each other informed about their locally preferred chains. When a party discovers a better chain in one of these chain-sync instances or when it produces a better one, it informs all of its current chain-sync instances of the new chain.

This work abstracts this bilateral chain sync as a functionality $F_{\text{bilateral}}$. The actual implementation of such a protocol is outside the scope of and irrelevant for this work. It is merely important to note that chain sync is stateful and instances thereof take time to set up in the real world (establishing the connection, initial synchronization of blocks, etc.). Hence, bilateral chain sync is intended to run between two parties for an extended (albeit bounded) amount of time. These facts are captured by $F_{\text{bilateral}}$ in that there is an initial synchronization delay δ_{init}, which may be much larger than the delay δ_{sync} occurring once a chain sync instance has been set up.

Finally, observe that in the blockchain context particularly (but also in general), the attacker must be prevented from interrupting the propagation of any specific message; otherwise, the attacker can, e.g., prevent honest chain updates from spreading through the network. Unfortunately, with an efficient gossip protocol, in which nodes have constant degrees, the (adaptive) attacker can simply corrupt all neighbors of a block leader and thereby halt propagation. It is therefore unavoidable to consider a model in which corruption requests by the attacker only take effect after a certain amount of time.

The ideal global chain-sync functionality: The security guarantees of the protocol above are captured by a functionality F_{sync}, the second main contribution of this work. Similarly to the network functionalities assumed in prior work, F_{sync} provides global chain “propagation” within some time bound Δ_{sync}. However, there are several important differences stemming from the fact F_{sync} is implemented and not assumed. The two most crucial ones are the following:

- F_{sync} allows the attacker to “eclipse” parties and exclude them from the provided guarantees, as long as the fraction of eclipsed stake does not exceed a certain bound. Note that the adversary is allowed to be “mobile” w.r.t. which parties are eclipsed, i.e., every party can potentially be eclipsed at some point during the execution of the protocol. Note that there is an eclipse delay $\varepsilon_{\text{ecl}} \geq \Delta_{\text{sync}}$ in F_{sync}. This ensures that the attacker cannot stop the propagation of specific chains.
- Due to the use of chain sync, F_{sync}‘s guarantees are slightly weaker than those offered by the assumed network functionalities in prior work: instead of a particular chain C “propagating” through the network within Δ, F_{sync} may also instead deliver different chains C' that are not worse (i.e., equal length or longer) than C.

Security proof. In order to show that the new network protocol securely realizes ideal functionality F_{sync}, this work derives a new result on expander graphs: Consider the stake-weighted random graph formed by parties in the protocol. Then, even after removing all corrupted nodes form the graph, leaving behind some fraction a of honest stake, there exists a subgraph of honest parties, the backbone, corresponding to at least an $(\alpha - \beta)$-fraction of the total stake, for some β, and this backbone is an expander graph (with overwhelming probability). Most importantly, the result holds even if the attacker chooses which nodes to remove with full knowledge of the entire graph. The expander property guarantees that the diameter in the backbone is small, and therefore timely chain “propagation” is possible therein.

Full Byzantine-resilient PoS. As a final contribution, this work demonstrates how to utilize the synchronization functionality in the context of a proof-of-stake protocol. Specifically, [11] is used to illustrate the result. First, note that the original analysis is insufficient: despite the fact that the networking model of [11] allows a Byzantine adversary controlling a minority of stake, F_{sync} permits a “mobile” eclipsing strategy that would deplete the adversarial budget of any straightforward reduction to the adversary of [11]. To circumvent this issue, a revamped analysis is presented showing that adaptive eclipsing does not disturb the forkable-string analysis of [11], which can be recovered to demonstrate that the protocol remains secure even against an adversary that exploits the enhanced capabilities of the adversarial interface of F_{sync}. This gives rise to a new analysis of [11] in an adversarial setting where in addition to party corruption, some degree of message suppression is also permitted.

1.3 Related Work

The use of gossip or epidemic algorithms in the context of distributed systems was put forth in [13] and explored at length both in networking systems [18] but also from theoretical angles [17]. The study of Byzantine fault tolerance in a network of a bounded degree was initiated in [14] and further refined in [25], where it is shown that if the adversary is bounded by $O(n \log n)$ or $O(n)$, respectively, there exist graphs of bounded degree that facilitate broadcast.

In terms of total communication, it is known that the communication complexity of Byzantine broadcast is $O(n^2)$, and assuming some type of delay in the corruption model is necessary to break the communication complexity barrier to sublinear [1].
In the context of peer-to-peer networking for blockchains, a “structured” approach in the organization of the peer-to-peer network can be used to reduce communication complexity further, but at the expense of adaptive security [24].

Our protocols, viewed from the lens of multiparty computation, exhibit a “communication locality,” which has also been studied more broadly in the context of general secure multiparty computation [5]. We also remark that message suppression as an enhanced adversarial capability was also studied in the general secure MPC setting in the context of “omission corruptions” [26].

Finally, concurrently and independently of our work, [20, 21] studied the related problem of stateless flooding amongst a set of participants, also motivated in part by the blockchain setting. Their flooding protocol has peers connecting to a bounded-size, randomly chosen neighborhood for each message transmission. This can be seen as creating a separate random graph for every message. However, as mentioned above, stateless flooding is unsuitable in practice for blockchain protocols. Moreover, their protocol does not use any mechanism to resource bound the adversary (e.g., as a VRF) and hence there is no mitigation that can prevent honest parties from being flooded with messages by the adversary.

2 PRELIMINARIES AND NOTATION

UC security. Protocols are described and proven secure in the Universal Composability (UC) framework [4]. In UC, the security of a particular protocol is captured by comparing a real-world execution of the protocol to an ideal-world execution in which the protocol is replaced by an ideal functionality. In rough terms, a protocol \(\pi \) securely realizes a functionality \(F \), if for every real-world attacker \(\mathcal{A} \) attacking \(\pi \), there exists an ideal-world simulator \(\mathcal{S} \) attacking \(F \) such that the real and ideal experiments become indistinguishable to all environments \(\mathcal{Z} \).

A protocol (in the real world) may itself make calls to so-called hybrid functionalities. These hybrid functionalities may serve to either model assumptions (e.g., \(F_{\text{net}} \) below) or are themselves realized by protocols. The UC framework guarantees that the security of a protocol is maintained when hybrids are replaced by the protocols that realize them.

Round structure. All functionalities/protocols proceed in rounds (not made explicit) and are assumed to have access to the current time, denoted \(T \). Generally, the round structure is such that parties first use a fetch-type command to retrieve information, followed by a send/set-type command to distribute information.

Attacker and corruption delay. The attacker considered is polynomially bounded and may corrupt parties, thereby learning their internal state, and make them deviate from the prescribed protocol arbitrarily. The attacker is adaptive, i.e., it may choose whom to corrupt on the fly during the execution of the protocol and based on all the information observed. However, there is a corruption delay of \(\xi_{\text{corr}} \), i.e., a corruption request issued by the attacker takes effect after a delay of \(\xi_{\text{corr}} \) rounds only.

The environment both acts as distinguisher and controls the attacker/simulator as well as the inputs to the parties.

Functionality \(F_{\text{net}} \)

Parameters: \(\delta_{\text{net}} \): maximum delay.

Variables: The functionality keeps track of the following variables, initialized to the following values: array \(\text{IPs}[P] := \emptyset \) of set of IPs owned by parties \(P \); array \(M[\text{mid}] \): message records, indexed by message IDs (MIDs) mid.

IP addresses: Upon (getIP) from \(P \) output (getIP, \(P \)) to \(S \) and ask \(S \) for a unique address IP. Add IP to IPs[\(P \)] and output (getIP, IP) to \(P \).

Malicious IPs Registration: Upon (regIP, IP) from \(S \): if IP is unique, add it to IPs[\(S \)].

Message send: Upon (send, IP, IP’, m) from \(P \) with IP \(\in \) IPs[\(P \)]:

1. Store \(M[\text{mid}] := \text{(mid, IP, IP’, } T, m) \).
2. Output (send, mid, IP, IP’, m) to \(S \).

Malicious message send: Upon (send, IP, IP’, m) from \(S \) where IP \(\in \) IPs[\(S \)] or IP with IP \(\in \) IPs[\(P \)] is corrupted: Pick a unique mid and store \(M[\text{mid}] := \text{(mid, IP, IP’, } \infty, m) \). Output (send, mid) to \(S \).

Fetching: Upon (fetch, IP) from \(P \) with IP \(\in \) IPs[\(P \)]:

1. Output (fetch, P, IP) to \(S \) and ask \(S \) for a set \(M \) of MIDs.
2. Let \(M’ \) be the set of MIDs corresponding to records \((\cdot, \cdot, \cdot, \cdot, T)\) with \(T - t \geq \delta_{\text{net}} \).
3. Let \(M = M[M \cup M’] \) and set \(M[M \cup M’] := \perp \).
4. Output (fetch, \(M’ \)) to \(P \), where \(M’ \) is the set \(M \) with MID and time stamp removed in each tuple.

Figure 1: Network/Internet functionality \(F_{\text{net}} \).

Underlying network. This work considers parties \(P \) with so-called relays, identified by their IP addresses IP. Having the actual node—holding the key material—firewalled by relays is common practice as a first line of defense against intrusion attacks.\(^5\)

Communication between relays is modeled by functionality \(F_{\text{net}} \) (cf. Figure 1), which captures a simple, Internet-like network. Parties can obtain (unique) IP addresses for their relays. \(F_{\text{net}} \) guarantees bounded-delay message transmission between any two relays. The attacker sees all messages sent and may send messages on behalf of any relay IP owned by a corrupted party; it is, however, not permitted to interfere with message transmission between honest relays (beyond inducing a bounded delay).

Master index. A master index \(\text{MI} \) is made up of:

- the network directory ND, which consists of tuples \((P, IP, v)\), where \(P \) is a party ID, IP is an IP address, and \(v \) is a VRF public key (see below);
- the stake distribution SD, which consists of tuples \((P, \alpha)\), where \(\alpha \in [0, 1] \) denotes \(P \)’s stake fraction; and
- a seed value \(R \).

A master index is valid if (a) the same parties appear in ND and SD, and each party appears at most once, (b) values IP and \(v \) appear only once in ND, and (c) the values \(\alpha \) in SD sum up to 1. All master indices appearing in this work are tacitly assumed to be valid.

\(^5\)Note, however, that for the purposes of this work, the attacker corrupts parties, at which point it gains control over (all of) their relays.
Observe that the MI format defined above restricts each party to having only one IP address. This choice was made for simplicity; the definition of master indices as well as all protocols and functionalities can easily be adapted to allow multiple IP addresses per party, thereby modeling the fact that in practice parties often have multiple relays.

Verifiable random functions. A verifiable random function (VRF) is a cryptographic primitive that allows a party P to create key pair consisting of a secret evaluation key and a public verification key such that: (a) with the secret key, P can evaluate the VRF at any input x, obtaining a random-looking output y and a proof π; (b) given the public key of P, anyone is able to verify, using π, that y is indeed the output corresponding to x. Importantly, even a malicious P cannot bias the output of the VRF on any particular input x (for any fixed public key).

The above guarantees are abstracted by an idealized functionality F_{vrf} (cf. Figure 2). The main commands offered by F_{vrf} are (i) (getKey), answered by (getKey, v) for an (adversarially chosen) idealized public key v, (ii) $(\text{Eval}, v, x, y, \pi)$, answered by (Eval, v, y, π), and (iii) $(\text{Verify}, v, x, y, \pi)$, answered by (Verify, π) with $\phi \in \{0, 1\}$ indicating whether π is a valid proof for the input/output pair (x, y) under public key v.

3 BYZANTINE-RESILIENT NETWORKING

3.1 Overview

One of the main contributions of this work is to define and realize a **synchronization functionality** F_{sync} that can be used by participants of proof-of-stake (PoS) consensus layers to globally synchronize their blockchains. A most crucial feature of F_{sync} is that it is realizable **under the same assumptions** as the consensus protocol that builds on top of it.

In rough terms, the idea underpinning the protocol realizing F_{sync} is as follows: Each consensus participant P samples Θ_P neighbors in a stake-based fashion based on the output of a verifiable random function (VRF); d is a small constant, and Θ_P is a multiplier that depends on the amount of stake of P itself. The use of a VRF guarantees that parties can verify whether they were indeed supposed to be chosen as neighbors by other participants.

Once the neighbors are sampled, chains are synchronized globally by each party engaging in bilateral chain synchronization with all its neighbors. Due to the fact that the resulting communication overlay is essentially a random graph, using expander theory, one can show that even with all adversarial nodes removed, there remains a large connected backbone with small diameter. This enables **timely synchronization (TS)**, which is crucial to the security of many consensus protocols.

Of course, with a constant number of neighbors, it is unavoidable that some parties end up being connected solely to corrupted parties, which means that they are **eclipsed**. Consequently, F_{sync} will have to grant eclipsing power to the adversary and can only guarantee TS to non-eclipsed parties.

Functionality F_{sync} will be realized (cf. Section 3.4) from a functionality $F_{\text{bilateral}}$ (cf. Section 3.2), which models bilateral chain synchronization, as well as from network functionality F_{net} (cf. Section 2) and (standard) functionality F_{vrf} (cf. Section 2).

Figure 2: VRF functionality F_{vrf}.

3.2 Bilateral Chain Synchronization

Functionality $F_{\text{bilateral}}$ (cf. Figure 3) models bilateral chain synchronization between two parties A and B. In $F_{\text{bilateral}}$, each party has a local chain, and the functionality allows them to learn their counterparty’s chain as it evolves. A party’s local chain evolves by use of the SETC command, under the restriction that local chains are only replaced by “better” chains as determined by a strict partial order $\text{prefer}(\cdot, \cdot)$, where $\text{prefer}(C, C')$ (also denoted by $C > C'$) if
3.3 Synchronization Functionality

Functionality F_{sync}, whose realization is the main focus of this work, allows parties to synchronize their chains with the rest of the participants. It is parametrized by an initial delay Δ_{init}, a synchronization delay Δ_{sync}, an eclipse delay $\xi_{\text{ecl}} \geq \Delta_{\text{sync}}$, a “lookback” parameter $\mu \geq \Delta_{\text{sync}}$, as well as an upper bound A on the amount of eclipsed honest stake.

Note that parties have to agree on the round number in which they start using F_{sync}. For convenience, in this section, initialization of F_{sync} begins in round $-\Delta_{\text{init}}$, and parties actually start using F_{sync} in round 0.

IP and key management. Since F_{sync} is realized from F_{net} and F_{vrf}, interfaces for IP and key registration are also provided by F_{sync}. The reason these are not abstracted away is that IPs and VRF keys must be known by the (higher-level) consensus protocol (e.g., to generate the genesis block).\(^\text{10}\)

Master index and setup. As previously mentioned, in the synchronization protocol parties will sample neighbors based on their stake. The stake distribution, however, is an object that emanates from the consensus layer, which itself relies on the synchronization functionality. This apparent cycle is broken as follows: F_{sync} expects each party to input its view on the master index (cf. Section 2) in the beginning via command \text{setup}, and F_{sync} only provides guarantees if (a) all honest parties (i) agree on the master index and (ii) input chains originating from the same genesis block, and (b) all honest parties are \textit{represented} in the master index $MI = (ND, SD, R)$ they input; a party is represented in MI if one of its IP addresses IP and one of its keys v appear in ND, i.e., $(P, IP, v) \in ND$.

When all of the above conditions are satisfied, F_{sync} has \textit{valid setup}. If the setup is not valid, F_{sync} shuts down. Note that it is the responsibility of the consensus protocol (i.e., the environment in the diffusion context) to ensure that the setup is valid. This is commonly achieved via the genesis block (which is assumed to be available to all parties) initially and later on based on the epoch-wise consensus properties of the protocol. More details on this relationship are provided in Section 5.

Eclipsing. Due to the fact that in practically feasible and scalable protocols for realizing F_{sync}, each party is connected only to a small subset of all participants, it is unavoidable that the adversary may eclipse certain honest parties by (adaptively) corrupting all of their neighbors. Consequently, F_{sync} offers an \textit{eclipse} command by which the attacker can exclude any honest party from the TS guarantees (see below).

There are two limitations on the attacker’s use of the \textit{eclipse} command. The first one is that eclipse commands only take effect after a delay of ξ_{ecl}. The second limitation is based on the following notion of t-free party:

\begin{definition} \label{def:t-free}
A t-free party is an honest party that was not eclipsed during rounds $t - 1, t - 2, \ldots, t - \mu$.
\end{definition}

\(^\text{10}\)Observe that the keys in the networking layer need not necessarily be VRF keys: any type of “public key” could potentially be used as an ID instead. F_{sync} is sufficiently general to support any such use case since the keys are only used to determine “valid setup” (see below).

\(^7\)Commonly, C is strictly preferable to C' if it is longer.

\(^8\)For the sake of offering a concrete description: In order to figure out the common prefix, party A sends block hashes of suffixes of length 1, 2, 4, 8, \ldots to party B until B finds that one of these hashes corresponds to a block on their chain. Thereafter, the exact point of divergence is located by binary search. In the worst case, this takes $O(\Delta_{\text{init}} \log k)$, where k is the common prefix parameter. Note that this is independent of the length of the parties’ chains. Furthermore, on average, in a longest chain protocol, due to the exponential decay in the probability of divergence (as a function of the size of the divergence), synchronization time is much shorter (typically a small constant) between up-to-date peers.

\(^9\)In a BFT-style blockchain like Algorand [6], one local chain is normally a prefix of the other, which simplifies this step.
The eclipse restriction is that at any time \(t \), the fraction of the party corresponding to \(t \)-non-free honest parties may not exceed parameter \(\lambda \).

Formulating an eclipse restriction in this way prevents the attacker from eclipsing a completely different subset of parties in each round since a party eclipsed in round \(t \) essentially blocks a fraction corresponding to its stale in the attacker’s eclipse budget \(\lambda \) for \(\mu \) slots. Note, however, that it is absolutely possible for the adversary to eclipse a particular party for an unlimited amount of time. This must be dealt with by the higher-level consensus protocol using \(F_{\text{sync}} \).

Main operation and timely synchronization (TS). Similarly to \(F_{\text{bilateral}} \), a party uses \(\text{setC} \) to switch their local chain to a strictly better one according to a predicate prefer (cf. Section 3.2). Moreover, parties use \(\text{fetch} \) in order to receive information about chains of other parties.

The TS guarantee offered by \(F_{\text{sync}} \) is based on the following notion of \(t \)-core:

Definition 3.2. A \(t \)-core party is an honest party that was not eclipsed during rounds \(t - 1, t - 2, \ldots, t - \Delta_{\text{sync}} \).

Thus, the \(t \)-core notion is very similar to that of \(t \)-free parties, except with less “lookback” (as \(\Delta_{\text{sync}} \leq \mu \)).

The TS guarantee is now the following: Suppose an honest party \(P \) sets its local chain to some chain \(C \) at time \(t \). Then, by time \(t + \Delta_{\text{sync}} \), provided \(P \) is in the \((t + \Delta_{\text{sync}}) \)-core, the following holds for all \((t + \Delta_{\text{sync}}) \)-core parties \(P' \):

- either \(P' \) has already switched their local chain to \(C' \), or
- the \(\text{fetch} \) command returns \(C' \).

where \(C' \) is a chain with \(-\)prefer\((C', C)\), i.e., incomparable to or better than \(C \).\(^{11}\)

3.4 Synchronization Protocol

Overview. Protocol \(\pi_{\text{sync}} \) (cf. Figure 5), realizing \(F_{\text{sync}} \) in the hybrid model with \(F_{\text{net}}, F_{\text{env}}, \) and \(F_{\text{bilateral}} \), follows the stake-weighted random-graph approach outlined in Section 3.1. The protocol uses a VRF to determine the random graph and to ensure that honest parties only accept connections from parties they are neighbors of in the graph. A party runs instances of \(F_{\text{bilateral}} \) with each neighbor in order to keep track of their local chain. Whenever a party learns of a valid chain \(C' \) better than their current local one, the idea is that they switch to \(C' \). However, as elaborated below, validity checks and the decision to switch occur in the environment; therefore, \(\pi_{\text{sync}} \) will only realize \(F_{\text{sync}} \) w.r.t. to a (very reasonably) restricted class of environments.

\(^{11}\)The reason for having two parameters \(\Delta_{\text{sync}} \) and \(\mu \) here is that \(F_{\text{sync}} \) is more “useful” the smaller \(\Delta_{\text{sync}} \) is and the larger \(\mu \) is.

\(^{12}\)Note that since prefer is a strict partial order, \(C' = C \) is also possible.
Protocol π_{sync}

Parameters: d: degree parameter; r: refresh parameter; α_{min}: minimum core-party stake; prefer(\cdot, \cdot): strict partial order.

Hybrids: F_{net}: network functionality; F_{vrf}: VRF functionality; $F_{bilateral}$: functionality for bilateral chain synchronization.

Admin

Variables: The protocol is described from the point of view of a party P; it keeps track of the following items, initialized to the values below:

1. **IPs**: set of IPs owned by P.
2. **Keys**: set of keys owned by P.
3. **C_{local}**: local chain of P.
4. **Ml**: master index; recall that $Ml = (ND, SD, R)$ (cf. Section 2).
5. (implicitly) instances of $F_{bilateral}$ involving P.

Setup: Upon $(setup, MI', C)$ from P (before round 0); set $C_{local} := C$ and $Ml := Ml'$. Moreover, let IP and v be P's IP and VRF keys in ND, i.e., $(P, IP, v) \in ND$.

IP addresses: Upon $(getIP)$ from Z: Output $(getIP, P)$ to F_{net}, receive $(getIP, IP)$ from F_{net}, add IP to IPs, and output $(getIP, IP)$ to Z.

Keys: Upon $(getKey)$ from P: Output $(getKey, P)$ to F_{net}, receive $(getKey, v)$ from F_{net}, add v to Keys, and output $(getKey, v)$ to Z.

Fetch & Set

Fetch chains: Upon $(fetch)$ from Z:

1. Let $D := \emptyset$. For all instances of $F_{bilateral}$, output $(fetch)$ to $F_{bilateral}$ and receive $(fetch', D')$ from $F_{bilateral}$ and add D' to D.
2. Let D_{pref} be all $C \in D$ with prefer(C, C_{local}). Output $(fetch, D_{pref})$ to Z.

Set local chain: Upon $(setC, C)$ from Z: If prefer(C, C_{local}), set $C_{local} := C$. For all instances of $F_{bilateral}$, output $(setC, C)$ to $F_{bilateral}$.

Refresh Operation: (Run as part of the fetch command.) When T is a positive multiple of r:

(a) Check that T has not expired (i.e., $T < dr$) and is not from the future or non-positive (i.e., $T \leq T \land T \leq 0$).

(b) Check j in $[1, \ldots, |\Theta_P|]$.

(c) Output $(verify, v', R | || | j, y, x)$ to F_{ref}, where $(P', v', y', x') \in ND$, and check that F_{ref} answers with $(verify, 1)$.

Procedure $\text{SamCon}(t, j)$: Proceed as follows:

1. Output $(eval, v, R | || | j, y, x)$ from F_{ref}.

Chain management: Upon receiving $(setC, C)$ from the environment, if C is better than P's current local chain, P updates the corresponding variable and inputs $(setC, C)$ to all running $F_{bilateral}$ instances.

Upon receiving $(fetch)$ from the environment, P sends $(fetch)$ to all running $F_{bilateral}$ instances and collects the answer chains in a set D; all chains in D preferable to P's current local chain are returned to the environment.

Figure 5: Protocol π_{sync}, implementing functionality F_{sync}.
Chain validity and switching. With the application of blockchain consensus in mind, observe that in the context of π_{sync} (or, in the ideal world, of F_{sync}) there is no notion of "chain validity." This is a concept from the higher-level consensus layer. Consequently, π_{sync} (or F_{sync}) cannot possibly check a chain for its validity and "automatically" switch to the best valid chain. This task therefore falls upon the environment.

At this point it is also important to observe that successful chain "propagation" through the network crucially depends on the environment—in each round—using setC to make each party switch to the best valid chain received so far. In order to circumvent the application-specific notion of "validity," the following proxy for it is used:

Definition 3.3. In an execution of π_{sync} (or F_{sync}), a chain C is **endorsed** if the environment at some point inputs (setC, C) on behalf of an honest party P.

The notion of endorsed chains allows to define the class of environments \mathcal{Z} w.r.t. which π_{sync} must realize F_{sync}:

Definition 3.4. An environment \mathcal{Z} is H-improving if in each round t, every honest party P inputs (setC, C) for a chain C which is maximal w.r.t. prefer among all endorsed chains received by P via fetch in rounds up to t.

The above finally leads to the following main theorem:

Theorem 3.5. Let

- $n \in \mathbb{N}$,
- $0 < \alpha \leq \beta < 0$, $\delta > 0$, c_{\min}, and c_{\max} be constants satisfying $0 < c_{\min} < c_{\max} = (\alpha - \beta)/2 + 2\delta + \min(n, \delta)$, and
- $r \in \mathbb{N}$.

Then, for all sufficiently large d, there exists a constant $\gamma > 0$ such that protocol $\pi_{\text{sync}}[d + 1, r, c_{\min}/n]$ ϵ-securely realizes $F_{\text{sync}}[\Delta_{\text{init}}, \Delta_{\text{sync}}, \mu, \xi, \ell, \lambda]$ in the $(\text{setC}, \text{Fnet}$, $\text{Fbilateral}[\text{init}, \text{sync}])$-hybrid model w.r.t. H-improving environments that (1) input an M with n parties in which no party owns more than a_{\max}/n fraction of stake, (2) corrupt at most an α-fraction of stake, (3) run for at most L rounds, where

- $\Delta_{\text{init}} = \delta_{\text{net}} + \delta_{\text{init}}$,
- $\Delta_{\text{sync}} = 8\ell$ for $\ell := \lceil -\log_{g+\gamma} (2c_{\min}/n) + 1 \rceil$,
- $\Delta_{\text{sync}} \leq \xi_{\text{sec}} \leq \min(\xi_{\text{cor}}, \ell)$,
- $\mu = r$,
- $\delta_{\text{init}} \leq r$.
- $\lambda = 2(\beta + c_{\min})$, and
- $\epsilon = L/r - e^{-3\beta}$.

Remarks. A simple Chernoff bound can be used to show that if there are no small-stake nodes (with less than c_{\min}/n stake), the degrees of all parties are constant. In case there are many small-stake nodes, the degrees of large nodes are beyond constant. However, one can show that by having small-stake node pick their peers uniformly (instead of based on stake), all node degrees go back to constant again.

The security error ϵ is exponentially small in the number of parties n. It is, of course, important in practice to ensure by suitable means that there are sufficiently many parties participating. One possible way to achieve this by having so-called stake-pool operators (SPOs), to which parties can delegate stake, run the blockchain and use incentive mechanisms to control the total number of SPOs.

Furthermore, there are also several ways of enforcing the maximum-stake restriction in Theorem 3.5. In a system with SPOs, one may restrict the maximum delegated stake on the consensus level. Alternatively, one can again set incentives in such a way that SPOs do not attract more than a certain amount of stake. For more information, see [3].

4 SECURITY PROOF

This section presents the security proof of the synchronization protocol π_{sync} (cf. Section 3.4).

The most crucial part of the security argument is a new result on stake-based expander graphs. Specifically, given a graph G wherein each vertex v has assigned to it some stake $\alpha_v \in [0,1]$, where $\sum_v \alpha_v = 1$, and each vertex chooses its neighbors in the stake-based fashion adopted by protocol π_{sync}, the results in Section 4.1 show that even after removing all adversarial nodes from G, leaving behind at least some α-fraction of honest stake, there exists an honest "backbone" holding at least $\alpha - \beta$ for some β, such that the backbone is an expander graph.

As shown in Section 4.2, the above translates to π_{sync} realizing F_{sync} with roughly a β-fraction of honest stake being eclipsed, while due to the expander property of the backbone, the remaining "core" of honest parties are at most $O(\log n)$ hops apart from each other, where n is the total number of parties. It should be noted that the this core only approximately corresponds to the backbone above, the reason for this being that (a) the backbone cannot be efficiently computed (and thus, an approximation has to be used), and (b) backbone nodes with less than c_{\min}/n stake need to be excluded from the core (because the expander property cannot be used to bound their distance from other nodes in the backbone).

4.1 Expanders Resisting Vertex Deletion

It is a well-known fact that random graphs—with a wide variety of edge distributions—form expanders with high probability and hence have small diameter and other desirable properties. This section shows that the random graphs produced by the protocol possess such strong properties even if an adversary with full knowledge of the graph is permitted to remove a constant fraction of the nodes.

As outlined above, we show that for any two constants $\alpha > \beta > 0$, there is a degree parameter d for which the following holds: so long as an α fraction of nodes remain after adversarial deletion, there is a subset (the "backbone") consisting of an $\alpha - \beta$ fraction of the nodes that is a strong expander. Typically, one would choose $\beta < \alpha$ so that the backbone consists of almost all of the remaining vertices.

These results are motivated by a classical theorem of Upfal [25], which uses different methods to establish a similar property of Ramanujan graphs (which achieved fixed constants α and β). Thus, our results expand on this theory by (i) handling random graphs, and (ii) establishing that any constants can be achieved by appropriate choice of d. A final remark before transitioning to the technical

13More precisely, the non-free parameter λ is roughly β (cf. Section 3.3).
survey: we also work directly with weighted graphs (with a weight
Corresponding to stake to stake) so that we can define and treat a natural
notion of “stake-weighted” expansion.

Our protocol directly motivates the following family of distribu-
tions of random directed graphs.

Definition 4.1. Let \(\bar{d} \) and \(n \) be positive integers and let \(\mathcal{D} \) be a probability distribution on \([n] \) with the property that \(d_v = n\bar{d}\mathcal{D}(v) \) is an integer for every vertex \(v \). We let \(\mathcal{G}_{n,\bar{d},\mathcal{D}} \) denote the probability law on directed multigraphs with \(V = [n] \) obtained by selecting, for each \(v \), \(d_v \) outgoing neighbors \(w_1, \ldots, w_{d_v} \) independently according to \(\mathcal{D} \) and defining the multiset of directed edges to be
\[
E = \bigcup_{v \in V} \left(\{(v, w_i) \mid i \in [d_v]\} \right). \tag{14}
\]
We let \(\mathcal{G}_{n,d} \) denote the special case when \(\mathcal{D} \) is the uniform distribution, in which case \(d_v = d \) for all \(v \).

We wish to show that \(\mathcal{G}_{n,\bar{d},\mathcal{D}} \) is typically a “stake expander”; that is, that sets \(S \subset V \) have a number of neighbors outside them, or edges leaving them, proportional to their total stake.

Definition 4.2. Let \(G = (V, E) \) be a directed graph. For a subset \(S \subset V \), we define the (outer) boundary of \(S \) as
\[
\partial(S) = \{ w \notin S \mid \exists s \in S : (s, w) \in E \text{ or } (w, s) \in E \}.
\]
Let \(D \) be a distribution on the set \(V \) and \(\gamma \geq 0 \). We say that \(G \) is a \((D, \gamma) \)-expander if for every subset of vertices \(S \subset V \) for which \(D(S) \leq 1/2 \),
\[
D(\partial(S)) \geq \gamma D(S),
\]
where we use the notation \(D(S) \) to denote \(\sum_{v \in S} D(v) \).

Theorem 4.3. Let \(\alpha > \beta > 0 \) and \(\delta > 0 \) be positive constants, and let \(c_{\min} \) and \(c_{\max} \) be positive constants satisfying \(c_{\min} < 1 < c_{\max} \). For sufficiently large \(d \) there is a constant \(\gamma > 0 \) for which the following holds: Let \(D \) be a distribution on \(V = [n] \) for which \(c_{\min}/n \leq \mathcal{D}(v) \leq c_{\max}/n \) and \(d_v \leq n\bar{d}\mathcal{D}(v) \) is an integer for each \(v \). Consider \(G = (V, E) \) drawn according to \(\mathcal{G}_{n,\bar{d},\mathcal{D}} \). Then, except with probability \(\text{fail} \leq e^{-\Omega(n)} \), for every subset \(H \subset V \) for which \(D(H) \geq \alpha \), there is a subset \(H' \subset H \) for which \(D(H') \geq \alpha - \beta \) and the subgraph induced by \(H' \) is a \((D', \gamma) \)-expander, where \(D' \) is the distribution \(D \) scaled by \(1/D(H) \).

The proof is provided in the full version of this paper [7].

Remark. The condition in Definition 4.1 and Theorem 4.3 that \(nd\mathcal{D}(v) \) is an integer for all \(v \) is a mere convenience so that the out-degree of each vertex will be an integer \(d_v \). We can also define \(d_v = \lceil nd\mathcal{D}(v) \rceil \). This changes the effective stake of each player by a factor of \(1 + O(1/d) \). In fact we only need an upper bound on the stake each vertex has, as we can hand over all the vertices with very low stake to the adversary.

4.2 Security of the Synchronization Protocol

This section uses the results from Section 4.1 to finally prove the security of protocol \(\pi_{\text{sync}} \).

Simulation basics. Simulator \(S \) internally simulates instances of the protocol and of hybrids \(F_{\text{net}}, F_{\text{rel}}, \) and \(F_{\text{bilateral}} \) as well as the adversary \(A \) (which acts as the interface to the environment); in the following, this ensemble is referred to as the \textit{simulated real world} (SRW). Specifically, \(S \) reacts as follows when receiving messages from \(F_{\text{sync}}):

- Upon \((\text{setup}, P, \text{MI}, C)\): in the SRW, input \((\text{setup}, \text{MI}, C)\) on behalf of \(P \).
- Upon \((\text{getIP}, P)\): in the SRW, input \((\text{getIP})\) on behalf of \(P \); wait to receive \((\text{getIP}, IP)\) on behalf of \(P \); return \(IP \) to \(F_{\text{sync}} \).
- Upon \((\text{getKey}, P)\): in the SRW, input \((\text{getKey})\) on behalf of \(P \); wait to receive \((\text{getKey}, v)\) on behalf of \(P \); return \(v \) to \(F_{\text{sync}} \).
- Upon \((\text{fetch}, P)\): in the SRW, input \((\text{fetch})\) on behalf of \(P \); wait to receive \((\text{fetch}, D)\); return \(D \) to \(F_{\text{sync}} \).
- Upon \((\text{setC}, P, C)\): in the SRW, input \((\text{setC}, C)\) on behalf of \(P \).

Messages from \(A \) are handled as follows:

- Upon \((\text{regIP}, IP)\): input \((\text{regIP}, IP)\) to \(F_{\text{sync}} \).
- Upon \((\text{regKey}, v)\): input \((\text{regKey}, v)\) to \(F_{\text{sync}} \).

Notation. Fix the master index \(\text{MI} = (\text{ND}, \text{SD}, \text{R}) \) input by the honest parties at the beginning; recall that \(n \) denotes the number of parties in \(\text{MI} \). In the following, for a subset \(S \) of the parties in \(\text{MI} \), denote by \(a_S := \text{SD}(S) \) the amount of stake held by parties in \(S \).

Determining whom to eclipse. A crucial part of \(S \) is to ensure that when handling \(\text{fetch} \) commands, \(F_{\text{sync}} \) does not enforce delivery guarantees that contradict the SRW. To that end, \(S \) determines which honest parties are “eclipsed” and relays this information to \(F_{\text{sync}} \). Recall that \(F_{\text{sync}} \) will not offer any guarantees to non-core parties, where a party is in the core in round \(t \) if and only if it has not been eclipsed in rounds \(t-1, t-2, \ldots, t - \Delta_{\text{sync}} \).

Towards understanding which parties to eclipse at a particular time \(t \), consider the graph \(G \) formed by all parties in \(\text{MI} \) and the connections implied by the use of the VRF at time \(t \), but ignore the edges added to it during the latest refresh (i.e., in the largest round \(t' \leq t \) that is a multiple of \(r \)). This graph follows the distribution \(\mathcal{G}_{n,\bar{d},\text{SD}} \).

Let \(H \) denote the set of honest parties in at time \(t \). By Theorem 4.3, there exists a set \(H' \subset H \) with \(a_{H'} \geq a_H - \beta \), such that the subgraph of \(G \) induced by \(H' \) is an \((\text{SD}', \gamma) \)-expander, where \(\text{SD}' \) is \(\text{SD} \) scaled by \(1/\text{SD} \). This expander property allows to bound the diameter between parties in \(H' \) with a certain minimum amount of stake, a fact used to show:

Claim 4.4. From each party in \(H' \) with stake at least \(c_{\min}/n \) in \(\text{SD} \), one can reach more than \((a_H - \beta)/2 \) of honest stake in at most \(t \) steps.

Proof. Consider a party \(P \in H' \) with stake \(a_P \geq c_{\min}/n \). Its stake according to \(\text{SD}' \) is equal to
\[
a_P/\text{SD}' \geq c_{\min}/a_H n.
\]

By the expander property on \(H' \), one can reach more than 1/2 of the stake in \(H' \) from \(P \) (according to \(\text{SD}' \)) in \(t' \) steps if
\[
\frac{c_{\min}}{a_H n} (1 + \gamma)^{t'} > \frac{1}{2}.
\]
This is satisfied for
$$\ell' := \left\lceil \log_{1+\frac{\alpha H}{2c_{\text{min}}} + 1} \frac{\alpha H n}{2c_{\text{min}}} \right\rceil \leq \left\lceil \log_{1+\frac{\alpha H}{2c_{\text{min}}} + 1} \frac{n}{2c_{\text{min}}} \right\rceil = \ell.$$

Reaching half of the stake in H' according to SD' translates to reaching
$$\frac{\alpha H}{2} \geq \frac{\alpha H - \beta}{2}$$

of stake according to SD.

Since the security argument in Theorem 4.3 is non-constructive, it is unclear whether set H' can be efficiently determined. Instead, consider the set
$$I_t := \{ h \in H | \text{can reach } \beta + c_{\text{min}}/n \text{ HS in } \ell' \text{ steps from } h \},$$
where HS stands for "honest stake." The subscript is dropped from I whenever clear from the context.

Claim 4.5. $\alpha_I \geq \alpha_H - \beta - c_{\text{min}}$.

Proof. First, observe that $(\alpha_H - \beta)/2 \geq (\alpha - \beta)/2 \geq \beta + c_{\text{min}}/n$, where the last inequality is by assumption. By Claim 4.4, all parties in H' with stake at least c_{min}/n are therefore in I. The claim follows by observing that at most c_{min} of the total stake is held by parties with more than c_{min}/n stake.

As the subgraph induced by H', that induced by I also has bounded diameter.

Claim 4.6. There is a path of length at most $4\ell'$ between any two parties in I.

Proof. By definition of I, from any node in I, one can reach at least $\beta + c_{\text{min}}/n$ stake in H in ℓ' steps, and, therefore, c_{min}/n stake in H'. The argument in the proof of Claim 4.4 suggests there is a path of length at most $2\ell'$ between any two nodes with stake at least c_{min}/n in H'. One concludes that there must be a path of length at most $4\ell'$ between any two nodes in I.

Given the above, the eclipse strategy of S is to, in each round t, use (ECLIPSE, P) to eclipse all parties $P \notin I_t$. However, due to the eclipse-delay property of F_{sync}, S is forced to set eclipsed status based on I_t at or before time $t - \xi_{\text{ecl}}$. This is, however, possible:
- Since $\xi_{\text{ecl}} \leq \tau$ and the edges added during the latest round $t' \leq t$ that was a multiple of τ are ignored, the topology of G in round t is known by round $t - \xi_{\text{ecl}}$.
- Since $\xi_{\text{corr}} \geq \xi_{\text{ecl}}$, which parties are honest/corrupted is also known by round $t - \xi_{\text{ecl}}$.

Bounding synchronization time. The next step in the proof consists of arguing that F_{sync} never has to add any chain C to set D' during a FETCH call by party P in some round t.

To that end, assume first that there is no multiple of τ in $\{t - 4\ell', \ldots, t - 1\}$, i.e., the underlying graph G does not change in this period. Consequently, $I_t - 4\ell' \supseteq I_t - (4\ell' - 1) \supseteq \ldots \supseteq I_{t - 1}$, where the only reason elements are dropped from I over time is corruption.

Consider now the FETCH command by P in round t. Recall that a chain C is added to D' only if
- C was held by some honest party P' in round $t - \Delta_{\text{sync}}$.
- neither P nor P' were eclipsed in rounds $t - 1, \ldots, t - \Delta_{\text{sync}}$.

(iii) C is preferable to the chain held by P' in round $t - 1$ and to all chains in set D (during the FETCH call).

Observe that $\Delta_{\text{sync}} \geq 4\ell'$; thus, that the fact that (ii) holds (i.e., $\Delta_{\text{sync}} = 4\ell'$) did not issue, in advance, eclipse commands for P or P' for rounds $t - 1, \ldots, t - \Delta_{\text{sync}}$ means that both parties P and P' were in sets I during rounds $t - 1, \ldots, t - 4\ell'$.

Therefore, by the monotonicity of the sets I, there has been a path of length at most $4\ell'$ between P' and P, which, combined with the facts that Z is H-improving and (again) $\Delta_{\text{sync}} \geq 4\ell_{\text{sync}}$, means that by time t, either P''s local chain will already be set to a chain $C' \notin C$ or a chain $C' \notin C$ is in set D at time t. In either case, C is not added to D'.

Finally, for intervals including changes to G, observe that since $\Delta_{\text{sync}} = 8\ell'$, there are at least 4ℓ rounds either before or after the change to G.

Amount of non-free stake. The fact that the amount of non-free stake remains below $\lambda = 2(\beta + c_{\text{min}})$ follows from Claim 4.5, noting that the extra factor of 2 is required for Δ_{sync}-sized intervals containing a multiple of r.

Proof (of Theorem 3.5). In order to complete the proof based on the above, note that it remains merely to apply a union bound over all refresh periods (which are of length r).

5 Fully Secure PoS Consensus

This section discusses the application of running a PoS consensus protocol on top of the chain synchronization functionality F_{sync}. For concreteness, the protocol considered here is Ouroboros Praos [11] which is a longest chain Nakamoto-style blockchain PoS protocol and is described first. This is followed by a comparison of the “diffusion” functionality F_{diff} used in [11] and F_{sync}. Based on this comparison, the changes to Ouroboros Praos’ security proof are presented and discussed; in particular, as a contribution of possibly independent interest, a generalized version of the so-called forkable-string analysis is provided.

5.1 Ouroboros Praos

Ouroboros Praos (or, simply, Praos) proceeds in so-called slots. In each slot, each party P first checks whether it has “received” valid chains that are longer than its current local chain; if so, it switches to a longest one among those. Subsequently, based on the stake distribution used in the current epoch, P checks whether it is the slot leader. This determination is made based on the output y of a VRF evaluated on (in addition to P’s key) the slot number and the so-called epoch randomness; if y ends up below a certain threshold, which is a monotonically increasing function of P’s stake, P is a slot leader. As such, it creates a new block extending its current local chain C; the block consists of the hash of the last block of C, the slot number, P’s identity, the VRF output and VRF proof, a data payload, as well as a signature. The resulting chain C' is then “sent to everyone.”

5.2 Diffusion vs. Synchronization

In [11], parties share a diffusion functionality F_{diff}, parametrized by a value Δ, with the simple intuitive property that any chain
Figure 6: Protocol \(\pi_{\text{praos}} \).

5.3 Updated Proofs for Praos

5.3.1 Characteristic Strings and Forks. At the heart of the Praos security proof (with functionality \(F_{\text{diff}} \)) [11] are the notions of characteristic strings, forks, and margin, which capture the security-relevant information about events in an execution of Praos. Characteristic strings indicate the relevant information about the sequence of elected leaders in an execution of the protocol. The analysis shows that consistency violations can be controlled by (i) distilling the family of possible blocktrees that can arise for a given sequence of leader elections (as determined by a characteristic string) into a single numeric metric of interest called margin and (ii) an analysis of the stochastic process that governs generation of characteristic strings and the resulting behavior of margin. The final result is articulated as a large-deviation bound for margin, which establishes consistency with high probability. In this section, we discuss how that analysis can be adapted to our setting with a finer-grained view of networking and block delivery.

Characteristic strings in Praos have the form \(w = w_1w_2 \ldots \) and record information about slot leadership in an execution. Each character in the string is a symbol \(w_i \in \{A,H,\perp\} \), where

\[
\begin{align*}
&w = w_1w_2 \ldots \\
&w_i = \begin{cases} A & \text{if slot } i \text{ has an adversarial or multiple leaders,} \\
H & \text{if slot } i \text{ has a single honest leader,} \\
\perp & \text{if slot } i \text{ has no leader.}
\end{cases}
\end{align*}
\]

An \(\Delta \)-fork for a characteristic string \(w \) is a directed, rooted tree, intended to represent the topology of all chains observed during an execution of Praos: Each vertex \(v \) of \(F \) corresponds to a block in a particular chain and has a label \(\ell(v) \in \mathbb{N} \), which records the block’s slot number. The genesis block is represented by the root.
of the tree. The edges of a fork are directed “away from” the root so that there is a unique directed path from the root to any vertex. Based on the description of Praos, it is easy to see that a fork satisfies the following properties:

(i) The root \(r \in V \) has label \(\ell(r) = 0 \) and is considered honest by fiat.
(ii) The sequence of labels \(\ell(\cdot) \) along any directed path is strictly increasing. Reason: this is enforced by the protocol.
(iii) If \(\ell_i = H \), there is a unique vertex \(v \) for which \(\ell(v) = i \). Reason: honest parties do not create multiple blocks.
(iv) For any pair of honest vertices \(v, v' \) (i.e., \(\ell(v) = \ell(v') = H \)) with \(\ell(v) + \Delta \leq \ell(v') \), their lengths (i.e., distance from root) \(\ell(v) \) and \(\ell(v') \) must satisfy \(\ell(v) < \ell(v') \). Reason: As per the guarantees of \(\ell(\cdot) \), during the creation of the block corresponding to vertex \(v' \) in slot \(\ell(v') \), the block corresponding to \(v \) was available to build on since it was created in slot \(\ell(v) \), which was at least \(\Delta \) slots before \(v' \); hence, \(\ell(v') \) must be strictly larger than \(\ell(v) \).

The analysis proceeds by defining a notion of margin for a fork, which reflects the presence of pairs of paths (chains) in the fork that diverge prior to a particular slot and exceed the length of the deepest honest block. Intuitively, such pairs of paths correspond to a consistency failure and, indeed, the precise definition of margin ensures that the quantity is positive exactly when such a consistency failure exists. This notion is extended to characteristic strings by minimizing over all forks consistent with the string. The analysis then shows that margin satisfies a recurrence relation in terms of the characteristic string (corresponding to an execution of the protocol) and, finally, that the probability of observing a positive margin is small.

5.3.2 Accounting for Eclipsed Parties. Clearly, the \(\Delta \)-fork formalism above does not consider cases where (a) the leader is out of sync and potentially fails to build on some longest chain \(C \) whose last block is more than \(\Delta \) slots old or (b) the leader’s block takes longer than \(\Delta \) to reach the next slot leader; naturally, an eclipse event can cause both (a) and (b). In the following, an honest leader \(\text{not} \) suffering from (a) is called current, and an honest leader \(\text{not} \) suffering from (b) is called relaxed. An honest leader that is both current and relaxed is called synchronized.

In order to update the forkable-string analysis to account for non-relayed parties, the following changes are introduced to it. First, the characteristic string is now over an alphabet \(w_i \in \{A, G_R, C, R, \perp\} \), where

\[
\begin{align*}
A & \text{ if slot } i \text{ has an adversarial or multiple leaders,} \\
G_R & \text{ if slot } i \text{ has a single synchronized leader,} \\
C & \text{ if slot } i \text{ has a single current leader,} \\
R & \text{ if slot } i \text{ has a single relayed leader,} \\
\perp & \text{ if slot } i \text{ has no leader.}
\end{align*}
\]

Second, condition (iv) for forks is amended as follows:

(iv) For any pair \(v, v' \) with \(\ell(v) \in \{R, G_R\} \) and \(\ell(v') \in \{C, G_R\} \) and where \(\ell(v) + \Delta \leq \ell(v') \), their lengths (i.e., distance from root) \(\ell(v) \) and \(\ell(v') \) satisfy \(\ell(v) < \ell(v') \).

The definition of margin is essentially unchanged with this new definition of fork. However, the recursive behavior depends on the new semantics of these richer characteristic string symbols and exhibits some rather interesting properties: in particular, the effect of the \(C \) and \(R \) symbols depends on whether the worst-case margin is currently negative or positive. This is discussed in detail in the full version of this paper [7].

5.3.3 Alternative chains and \(H \)-improving. It is easy to see that (1) condition (iv) of the forks is not violated if instead of a chain \(C \) non-worse chains \(C' \) are delivered after \(\Delta_{\text{sync}} \) slots and (2) Praos is an \(H \)-improving environment for \(F_{\text{sync}} \).

5.4 Multi-Epoch Praos

There are two approaches to running Praos with \(F_{\text{sync}} \) in a multi-epoch setting with an evolving stake distribution: (a) use a different instance of \(F_{\text{sync}} \) in every epoch or (b) define a version of \(F_{\text{sync}} \) that allows for changing stake distributions.

The conceptually simpler approach is, of course, (a). The idea is to, \(\Delta_{\text{init}} \) before the end of each epoch, begin a new instance of \(F_{\text{sync}} \). At that point, the master index (including the network directory, the stake distribution, and the randomness) to be used in the new epoch is determined. Taking approach (a) would mean that the random overlay is completely re-sampled for each new epoch. In practice, this may constitute an unacceptable overhead. Using approach (b) avoids this issue, but makes the definition, realization, and proofs of \(F_{\text{sync}} \) somewhat more cumbersome.

Observe that in either case it is important to properly deal with honest parties that have been eclipsed for more than an epoch. The issue with these parties is that once they have been eclipsed long enough for their master index to be out of date, they will face difficulties ever reconnecting to the network since the choice of neighbors via the VRF is based on an up-to-date stake distribution.

While in practice such a scenario is unlikely to occur due to the evolving nature of the random-graph overlay, in theory the adaptive attacker can keep corrupting a party’s neighbors until it exhausts its corruption budget, thereby keeping it eclipsed for a long period of time. This issue can be mitigated by assuming a checkpointing functionality (realized, e.g., via some light-client infrastructure) that supplies parties, sufficiently in advance of an epoch’s beginning, with the relevant master index.

6 ACKNOWLEDGEMENTS

Cristopher Moore was partially supported by National Science Foundation grant 1838251. Alexander Russell was partially supported by National Science Foundation grant 1801487.

REFERENCES

\footnote{Note that there are implementations of the network layer in which the connections to peers are unidirectional. In such cases, it is possible that due to an eclipse event (a) occurs but (b) does not (or vice versa).

\footnote{Of course, parameters such as epoch length, common prefix, etc. need to be suitably chosen for this to be the case.}