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Abstract

Weighted model counting (WMC) has recently emerged as
an effective and general approach to probabilistic inference,
offering a computational framework for encoding a variety
of formalisms, such as factor graphs and Bayesian networks.
The advent of large-scale probabilistic knowledge bases has
generated further interest in relational probabilistic represen-
tations, obtained by according weights to first-order formu-
las, whose semantics is given in terms of the ground theory,
and solved by WMC. A fundamental limitation is that the
domain of quantification, by construction and design, is as-
sumed to be finite, which is at odds with areas such as vision
and language understanding, where the existence of objects
must be inferred from raw data. Dropping the finite-domain
assumption has been known to improve the expressiveness of
a first-order language for open-universe purposes, but these
languages, so far, have eluded WMC approaches. In this pa-
per, we revisit relational probabilistic models over an infi-
nite domain, and establish a number of results that permit
effective algorithms. We demonstrate this language on a num-
ber of examples, including a parameterized version of Pearl’s
Burglary-Earthquake-Alarm Bayesian network.

Introduction

Weighted model counting (WMC) has recently emerged as
an effective and general approach to probabilistic inference,
offering a computational framework for encoding a variety
of formalisms, including factor graphs and Bayesian net-
works (Choi, Kisa, and Darwiche 2013; Chavira and Dar-
wiche 2008). WMC generalizes #SAT, where we are to
count the models of a propositional formula, in that models
can be additionally accorded numeric weights, whose sum
we are to compute. In particular, the encoding of graphi-
cal models to a propositional theory allows us to leverage
context-specific dependencies, express hard constraints, and
reason about logical equivalence. Exact solvers are based on
knowledge compilation (Chavira and Darwiche 2008) or ex-
haustive DPLL search (Sang, Beame, and Kautz 2005); ap-
proximate ones use local search (Wei and Selman 2005) or
sampling (Ermon et al. 2013; Chakraborty et al. 2014).

*This research was supported in part by the Research
Foundation-Flanders (FWO-Vlaanderen).
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The advent of large-scale probabilistic knowledge bases,
such as Google’s Knowledge Vault (Dong et al. 2014) and
Microsoft’s Probase (Wu et al. 2012), often containing bil-
lions of tuples and structured data extracted from the Web
and other text corpora has generated enormous interest in
relational probabilistic representations (Getoor and Taskar
2007). In Markov logic networks (Richardson and Domin-
gos 2006), for example, the weighted formula:

1.2 Vx,y Smoker(x) A Friends(x,y) D Smoker(y)

is indicative of a fairly involved Markov network ob-
tained by grounding the formula wrt all possible values
for {x,y} and assigning a potential of 1.2 to the edges of
the network. Such template models can be seen as modest
relatives of general-purpose probabilistic logics (Bacchus
1990; Halpern 1990) in succinctly characterizing large fi-
nite graphical models, making them appropriate for reason-
ing and learning with big uncertain data. In practice, the se-
mantics of template models is given in terms of the ground
(propositional) theory, for which WMC and its extensions
(Gogate and Domingos 2011; Van den Broeck 2013) suffice.

By construction, and indeed by design, a fundamental
limitation of these template models is its finite domain clo-
sure assumption: the range of the quantifiers is assumed to
be finite, typically the set of constants appearing in the logi-
cal theory. As argued in (Russell 2015), such a closed-world
system is at odds with areas such as vision, language under-
standing, and Web mining, where the existence of objects
must be inferred from raw data. Various syntactic and se-
mantic devices have been proposed to address this, including
probabilistic programming and infinite-state Bayesian net-
works (Milch et al. 2005a; 2005b). While the progress has
been significant, we lack a complete picture of the expected
properties from a logical perspective.

In this paper, we revisit open-universe (OU) template
models, and develop an account of probabilistic inference
by weighted model counting. Formally, our proposal will al-
low quantifiers to range over an infinitary set of rigid desig-
nators — constants that exist in all possible worlds — a com-
mon technical device from modal logic, also used elsewhere
in OU applications (Srivastava et al. 2014). Such languages
have eluded WMC approaches so far. As an extension, it is
powerful, and can be used for features such as:

o unknown atoms: {¥Vx (x # john O Smoker(x))} says that in-



finitely many individuals other than John are smokers,
while also leaving open whether John is a smoker;

o unknown values: {VYx(Canary(x) D —Color(x,black))}
says the color of canaries is anything but black;

e varying sets of objects: {¥x(Thing(x) D ¢(x))} says that
property ¢ is true of all things, but the set of (possibly
infinite) things can vary depending on the world;

e closed-world assumption: Yx((x = john) D Smoker(x)) A
Vx((x # john) D —~Smoker(x)) says that John is the only
one in the universe who smokes.

In general, such a first-order logical language is undecid-
able. However, we show that when restricted to universally
quantified clauses, as is usual in the literature on template
models, a finite version of the ground knowledge base suf-
fices for reasoning purposes.

When probabilities are further accorded to infinitely many
atoms, the natural question is in which sense are condi-
tional probabilities correct? Prior work has focused on vari-
ous semantics with infinitely many random variables (Singla
and Domingos 2007; Doshi et al. 2011; Kersting and Raedt
2000), based on topological orderings and locality proper-
ties. In this work, we contribute a definition of conditional
probabilities that is coherent wrt first-order logical entail-
ment: this has the benefit that no syntactical constraints
on the encoding are necessary. We show its application in
a number of examples, including a parametrized version
Pearl’s (1988) Alarm Bayesian network discussed in (Rus-
sell 2015).

Overall, the main contributions are: results on satisfiabil-
ity and validity for first-order clauses over an infinite uni-
verse, a coherent account of weighted model counting in
an OU setting, the leveraging of existing algorithms for the
clausal representation, and finally, numerous examples that
have been verified using existing WMC solvers.

Proof sketches for all the main claims are found in the
appendix.

Preliminaries
Logical Background

Language: We let £ be a first-order language with equality,
relational symbols {P(x), Q(x,y), R(x,y,2),..., P (x),...} of
every arity, variables {x, y,z, ...}, and a countably infinite set
of rigid designators or names, say, the set of natural numbers
N, serving as the domain of discourse for quantification. But
for presentation purposes, we often use identifiers such as
Latin alphabets (a, b, . . .) and proper names (john, jane, . ..).
Together with equality, names essentially realize an infini-
tary version of the unique-name assumption.!
The set of (ground) atoms is obtained as:?

VARS = {P(ay,...,a;) | Pis a predicate, a; a name} .

'In general, this does not rule out capturing uncertainty about
the identity of objects; see (Giacomo, Lespérance, and Levesque
2011; Srivastava et al. 2014), for example.

2Because equality is treated separately, atoms and clauses do
not include equalities.

Semantics: A L-model M is a {0, 1} assignment to the el-
ements of VARS. Using | to denote satisfaction, the se-
mantics for ¢ € L is defined as usual inductively, but with
equality as identity: M = (a = b) iff a and b are the same
names, and quantification understood substitutionally over
all names in N: M E Vx¢(x) iff M | ¢(a) for all a € N. We
say that ¢ is valid iff for every L-model M, M = ¢.

We will refer to atoms also as propositions, and a ground
formula also as a propositional formula. We will use p, g, e
to refer to atoms, @, ¢ to refer to ground formulas, and A to
refer to closed formulas with quantifiers.

Remark: It is worth noting that the compactness property
that holds for classical first-order logic does not hold in gen-
eral when the domain is fixed and infinite (Levesque 1998):

{AxP(x), ~P(1),=P(2), ...}

is an unsatisfiable theory whose every finite subset is indeed
satisfiable.

Propositional Fragments: While £ and its models are in-
finitary, satisfiability checkers and model counters work with
a finite language, built from a finite set of symbols. To en-
able this, if ¢ is a propositional formula, we use VARS(¢) to
refer to the propositions in ¢, and L(¢) to refer to the finite
propositional language built from VARS(¢) and connectives
{=, V, A}. The understanding here is that a £(¢)-model M is
a {0, 1} assignment to the elements of VARS(¢).

Examplel: If ¢ = P(a) V P(b), then VARS(¢) =
{P(a), P(b)}, L(¢) = {P(a), P(b),~P(a),...}, and there are
4 L(¢)-models, 3 of which satisfy ¢.

Weighted Model Counting

In a nutshell, WMC extends #SAT in summing the weights
of the models of a propositional formula ¢:

WMC(¢, w) = Z w(M)
ME¢

where M is an L(¢)-model, and w is a weight function.
Usually, the weight function is factorized. For example,
in classical WMC (Chavira and Darwiche 2008), suppose
v, v : VARS(¢) — R* map atoms to positive reals, then:

wi) = [ [vp) x [ [ #p)

PEM PEM

where p € M are those atoms that are true at M, and p ¢
M are those that are false. A relational extension of WMC
(Van den Broeck 2013), dubbed WFOMC, assumes v, v map
predicate symbols from ¢ to R*. Then:

w(M) = [_] V(PRED(p)) X ]_[ #(PRED(p))

PEM PEM

where PRED maps an atom to its predicate.

WMC has emerged as a basic computational framework
for encoding many formalisms. For example, Markov logic
networks (Richardson and Domingos 2006), typically de-
fined as a set of weighted (finite domain) first-order for-
mulas, e.g., {(w, a(x,...,y))} can be cast a WFOMC prob-
lem (Van den Broeck 2013) by introducing a new predicate



P(x,...,y), letting the theory be the sentence P(x,...,y) =
a(x,...,y), and defining v(P) = ¢ and v(P) = 1, and letting
v(Q) = v(Q) = 1 for all predicates Q in .

Finally, given a query Q and evidence E, both of which
are propositional formulas, we define the probability of O
given E wrt (¢, w) as:

Pr(Q | E, ¢, w) = WMC(¢ A Q A E,w)/WMC(¢ A E, w).

Logical Entailment

Before addressing model counting, we first turn to the basic
question of logical entailment.

Representation

Unfortunately, reasoning in the full language is undecidable
(Levesque 1998), but fortunately, when the logical encoding
(of a probabilistic formalism) is given as a set of clauses,
as is usual in template models, we will be able to establish
some results on logical entailment. We begin as follows:

Definition 2: An acceptable equality is of the form x = q,
where x is any variable and a any name. Let e range over
formulas built from acceptable equalities and connectives
{—,V,A}. Let ¢ range over quantifier-free disjunctions of
(possibly non-ground) atoms. Let V¢ mean the universal clo-
sure of ¢. A formula of the form V(e D c) is called a V-
clause. A knowledge base (KB) A is acceptable if it is a
finite non-empty set of V-clauses. The rank of A is the max-
imum number of variables mentioned in any V-clause in A.

To that end, an encoding is taken to be of the form (A, w)
where A is an acceptable KB, and w is a weight function.

Example 3: For example, Y((x # john A x # jane) D
Smoker(x) V Alcoholic(x)) is a V-clause with rank 1 and says
that everybody other than John and Jane are either smokers
or alcoholics. (The first section mentioned a few examples
of first-order formulas that are also definable as Y-clauses.)

Note that V-clauses are logically equivalent to a possibly
infinite set of ground clauses, e.g., Y(P(x) V Q(x)) is
equivalent to {P(1) v (1), P(2) vV Q(2),...}.

Grounding: A ground theory is obtained from A by substi-
tuting variables with names. Suppose 6 denotes a substitu-
tion. For any set of names C C N, we write 6 € C to mean
substitutions are only allowed wrt the names in C. Finally,
we define the following terms:

e GND(A) ={cO|VY(eDc) € Aand E eb};

e Fork > 0, GND(A,k) = {cO | Y(e Dc) € A E €6,0 € K},
where K is the set of names mentioned in A plus k (arbi-
trary) new ones;

e DC(A) = GND(A, 0);
e OU(A) = GND(A, k) where k is the rank of A.

Example 4: Recall that because equality is understood as
identity for names, formula john # jane is valid, and for-
mulas john = jane and john # john are unsatisfiable. So,
given A = Y(x # john D Smoker(x)), we have GND(¢) =
{Smoker(jane), Smoker(bob), . . .}.

Example 5: Suppose A = {V(P(x)), O(a)}. Then DC(A)
GND(A,0) = {P(a),Q(a)}, and OU(A) = GND(¢, 1)
{P(a), P(D), OQ(a)}. (Here, b is picked arbitrarily.)

Proposition 6: For any acceptable KB A, OU(A) is finite.

The understanding here is that DC(A) represents the do-
main closure assumption built into template models. The do-
mains in Markov logic networks and WFOMC, for exam-
ple, are defined in terms of the Herbrand universe: basically,
the constants mentioned in a (function-free) KB (Richardson
and Domingos 2006; Van den Broeck 2013). Going further,
OU(A) will play an important role in realizing logical prop-
erties in an OU setting. It should be clear that it represents
a relatively small blowup to DC(A) by including a few extra
constants (= A’s rank). In the worst-case, we have:

Proposition 7: Suppose A mentions ¢ names, has n V-
clauses, each mentioning at most m predicates, and with
rank k. Then, the total number of atoms mentioned in DC(A)
is O(n - m - c*), and the total in OU(A) is O(n - m - (¢ + k)¥).

Results

The first hurdle is addressing the compactness property, or
the lack thereof. Such a property is useful to draw conclu-
sions about a possibly infinite theory in terms of its finite
subsets. As mentioned, £ does not enjoy this property, but
fortunately, acceptable KBs do. For our first result, we have:

Theorem 8: Suppose A is acceptable. Then S = GND(A) is
satisfiable iff every finite subset of S is satisfiable.

This is because GND(A) is a (possibly infinite) proposi-
tional theory, and we can lift compactness from proposi-
tional logic.

Next, for our main result, we establish that entailment can
eschew the need to appeal to an infinitary theory:

Theorem 9: Suppose A is as above, and « is any proposi-
tional formula. Then

EADa iff OU(A A —a) is unsatisfiable.

The proof is long, but can be approached using 2 lemmas:

Lemma 10: Suppose A’s rank is k. If GND(A, k) A « is sat-
isfiable, then so is GND(A, j) A a for all j > k.

Lemma 11: A E « iff OU(A) E «a.

The first argues that grounding A wrt additional names does
not affect satisfiability. The crux of the argument lies in
showing that names not mentioned in A A @ behave iden-
tically (in a suitable formal sense). The second argues that
for entailment OU(A) suffices, which is then used for a
refutation-based claim in Theorem 9.

Putting Theorem 9 and Proposition 6 together, we have:

Corollary 12: Suppose A and « are as above, then A E «
can be verified in classical (finitary) propositional logic.

Example 13: Let A be the union of:
o Y (Smoker(x) A Friends(x,y) D Smoker(y))

o Smoker(john)
o Vy(Friends(john,y))



Let the query be @ = Smoker(jane). Since everybody is
friends with John, a smoker, we have £ A D a.

To see Theorem 9 in action, consider OU(A A —a@) =
GND(A A —a,2). On applying all possible substitutions
wrt the names mentioned and 2 new ones, OU(A A —a)
would include: (Smoker(john) A Friends(john,jane)) D
Smoker(jane), Smoker(john), Friends(john,jane) but also
—a = =~Smoker(jane). Indeed OU(A A —a) is unsatisfiable.

In the above example, when grounding, the new names were
not needed. To see why names from outside the KB and the
query may be essential, consider:

Example 14: Let a be as above, but A be the union of:

o Y(x # jane D Smoker(x))
o Y(Friends(x,y))
o Y(Smoker(x) A Friends(x,y) D Smoker(y))

Here = A D a. Argument: because someone other than Jane,
say John, is declared to be a smoker and since he is Jane’s
friend, she must also be a smoker. However, DC(A A —a)
is satisfiable: only using the names mentioned in A A - is
insufficient. In contrast, OU(A A —a) is indeed unsatisfiable.

Weighted Model Counting

We now develop an OU account of WMC. Prior work has
considered various semantics with high-dimension probabil-
ity spaces, appealing to topological orderings and such. We
contribute a definition to this literature that is logically mo-
tivated, based on the below (informally stated) properties:

1. When the query is believed, it has probability 1.

2. When the query contradicts what is believed, it has prob-
ability 0.

3. When the query mentions unknown individuals, these in-
dividuals are interchangeable with other unknowns.

Our definition satisfies these features in a first-order setting,
and will further leverage Theorem 9 in only using OU(A).
The benefit is that no assumptions are needed about the en-
coding (A, w) because only a finite weighted propositional
theory is instantiated wrt a given query.> Formally:

Definition 15: Suppose A is an acceptable KB, w a weight
function, and {Q, E} propositional formulas.* Then, the
WMC of (A,w) in an OU setting is defined as:

WMCOU(A, w) = WMC(OU(A), w).
The probability of Q given E wrt (A, w) is defined as:
Pr(Q | E,A,w) = WMCOUAAQAE, w)/WMCOU(AAE, w).

3While the definition is coherent wrt entailment over an infinite
number of atoms, it is conceivable that other notions are possible,
such as those based on infinitely many random variables (Singla
and Domingos 2007).

“For technical reasons, we assume here that Q and E mention
the same set of names. This is without loss of generality: let y =
{p vV —p | atom p is mentioned in Q A E}, replace Q with Q' = QA
v, and E with E = E Ay. Of course, Q = Q' and E = E’, and
clearly Q" and E’ mention the same set of names.

We often write Pr(Q | A, w) to mean E = true. Algorithm 1
provides a pseudocode for Pr in terms of WMC.
Its correctness is stated as follows:

Theorem 16 : Suppose A is any acceptable KB, a any
propositional formula, w any predicate-level weight func-
tion. Then

(@ Pr(@| A,w)=1ifEADa;
(b) Pr(a |A,w) =0ifE AD —a;
(©) Pr(a | A,w) = Pr(a® | A,w) for any bijection e from N

to N such that it maps names from A to themselves and
otherwise arbitrary.

If A was propositional, classical WMC would satisfy (a) and
(b), e.g., if ¢ E @ then ¢ = ¢ A @ and therefore, ¢ and ¢ A @
have the same model counts. Our definition not only lifts this
property to first-order entailment but also enjoys (c) which
is relevant with infinitely many unknowns.’

Example 17: To see this in action, let A be the union of:
o Y (Smoker(x) V Alcoholic(x))
e Y(x # john D —~Smoker(x))

Suppose v,v map all predicates to 1. Consider a; =
Alcoholic(jane) vs ay = Smoker(jane). Note that A E «a;
but A | —a,. Observe OU(A A ay) is the conjunction of:

o (Smoker(john) Vv Alcoholic(john)) N (Smoker(jane) V
Alcoholic(jane)) A (Smoker(bob) vV Alcoholic(bob))

o —Smoker(jane) A —=Smoker(bob) A Alcoholic(jane)

where bob is chosen arbitrarily. Clearly models can vary in
how they interpret Smoker(john) vV Alcoholic(john), and so
we obtain WMCOU(AAa) = 3, and also, Pr(a; | A,w) = 1.
However, A A @, is inconsistent, and indeed WMCOU(A A
ay) = 0 leading to Pr(a; | A,w) = 0.

Finally, let 8 = Alcoholic(bob). We note Pr(B | A,w) = 1.
Let @ map john to itself, otherwise arbitrary: say, it maps bob
to jane. So B°* = Alcoholic(jane). Indeed Pr(8°* | A,w) = 1.

Example 18: We now consider a parameterized version of
Pearl’s (1988) Alarm Bayesian network. In the classic ver-
sion, a burglary or an earthquake can trigger your house
alarm, and hearing that your neighbors would probably call
you. Russell (2015) sketches a richer variant, which we call
AlarmX: imagine a large set of regions, and in each region,
there are any number of houses. In region r, the likelihood
of an earthquake and the likelihood of a burglary in house &
are Bernoulli random variables. Roughly, imagine rules like:

.003 Burglary(r, h).
.002 Earthquake(r).
.8 Alarm(r, h) < Burglary(r, h), =Earthquake(r).

Consider the following set-up. Let A represent the above
parameterized Bayesian network as a set of V-clauses, us-
ing the usual semantics for encoding Bayesian networks

SReaders may observe that we stipulate a predicate-level weight
function. As it turns out, the weight function is irrelevant for
(a) and (b). However, (c) would not hold, if, for example, given
A = {¥(Smoker(x))}, w maps Smoker(bob) to a higher weight than
Smoker(rob) even though both of them are unknown. Thus, factor-
ization at the level of predicates is one way to enable that unknown
instances of a predicate are considered equally likely.



Algorithm 1 Pr(Q | E, A, w)

I: ay =AANQAE,ap=AANE
C = names(a,), d = rank(A)
C’ = C U { d new names }
a; = ground @; wrt C’
return WMC(a)/WMC(a})

as logical theories (Chavira and Darwiche 2008). How-
ever, the domain of the quantifiers will be unrestricted in
A: we will not stipulate the list of regions, etc. Suppose
we now provide the evidence E = Alarm(regionl, house2).
Intuitively, we would expect the following properties in
an infinite instantiation: (a) the probability of Q1 =
Burglary(regionl, house2) is > the probability of 02 =
Burglary(a, b) for every (a,b) # (regionl, house2); (b) the
probability of O3 = Earthquake(regionl) is > the probabil-
ity of Q4 = Earthquake(c) for every c # regionl. As it turns
out, our definition confirms this intuition:

Theorem 19: Let A, E and Qs be as above, with a = ¢ =
region2 and b = house3. Let w be a predicate-level (strictly
positive) weight function. Then Pr(Q1 | E,A,w) > Pr(Q2 |
E,A,w), and Pr(Q3 | E,A,w) = Pr(Q4 | E,A,w).

Lifted Inference

The WMC formulation works with the ground propositional
theory. But just as first-order resolution is equivalent to a
large number of propositional resolution steps, there are a
number of extensions to WMC that leverage the first-order
structure of template models by lumping together classes of
objects (Poole 2003; de Salvo Braz, Amir, and Roth 2005;
Gogate and Domingos 2011; Beame et al. 2015), referred
to as lifted inference. A crisp formal claim is this (Van den
Broeck 2013): an algorithm is said to be domain-lifted when
it runs in time polynomial in the size of the domain.

Space precludes a discussion on these algorithms. As an
example, observe that on grounding @ = VY(Smoker(x) vV
Alcoholic(x)) wrt the domain {a} the model count is 3, on
grounding a wrt {a, b} the model count is 32, and so on.
Lifted systems recognize that the model count of @ wrt the
domain C is 3/°!, without the need for explicit grounding.

Unfortunately, different from standard template models,
in the OU setting, quantification ranges over an infinite set,
and equality is understood as identity over these infinitely
many individuals. So, we will be interested in two questions:

e can these KBs be put in a form that is acceptable as input
to lifted algorithms in a correctness preserving way, and

e can we inherit the polynomial time guarantees of domain-
lifted algorithms where available?

We answer in the affirmative for both. The key construction
will be to normalize acceptable KBs wrt the appropriate fi-
nite set of names required by the OU semantics.

Definition 20: Suppose A is acceptable, k its rank, and B the
names mentioned in A. Let N > C 2 B be any finite set such
that |C| = |B|+k. Then putting A in equality-free normal form
(ENF) wrt C is achieved by recurring the transformations:

1. If V(e D ¢) € A, then ¢ does not mention any names: that
is, convert Y(e D c(a)) to Y((e A z = a) D ¢(z)) where z is
a fresh variable not used in e.
2. If V(e O ¢) € A, then eliminate e by introducing sorts:
(a) Transform Y(((x = a; V...V x = a,) Ae) D ¢) to
V[Vx € S(eDc)] where S ={ay,...,a,}.
(b) Transform Y(((x # aj A ... A X # a,) Ae) D ¢) to
V[Vxe€ S(eD>c)]where S =C —{ay,...,a,}.

Proposition 21: When A is converted to ENF, then (i)
ENF(A) does not mention equality, and is a conjunction of
formulas of the form Vx; € Sy,...,x, € S, ¢ where c is a
clause not mentioning names; (ii) the sort S introduced in
2(a) is such that S C B; and (iii) the sort S introduced in
2(b) is such that S = C — S’, where S’ C B.

The sentence ENF(A) is equality-free, function-free and
over finite sorts, which is precisely the fragment expected by
lifted algorithms. For starters, it is correctness preserving:

Theorem 22: WMC(ENF(A), w) = WMCOU(A, w) for any
predicate-level w.

It is shown in (Van den Broeck 2013) that when first-order
formulas mention only 2 variables, then there is a domain-
lifted algorithm for their WFOMC task. We leverage this:

Corollary 23: Suppose A,C and w are as above. Suppose
ENF(A) = A;V ¢; is such that ¢; only uses at most 2 logi-
cal variables. Then WMCOU(A, w) = WMC(ENF(A), w) is
computable in time polynomial in |C|.

Investigations on other classes of first-order formulas is
an area of ongoing research (Beame et al. 2015), and owing
to Theorem 22, we expect these to carry over.

Preliminary Evaluations

The simplicity of the OU semantics, that of grounding KBs
wrt a few extra constants, makes it straightforward to solve
OU problems using existing (unmodified) WMC software,
either by Algorithm 1 or by ENF(A) with a grounder. For a
range of problems, we have verified that correct answers wrt
the OU semantics are returned using the C2D WMC solver
(Darwiche 2004), the WFOMC lifted WMC solver (Van den
Broeck 2013), and the ProbLog probabilistic programming
language (Fierens et al. 2011).6

In this section, we investigate two empirical questions (for
problems in ENF). First, how expensive is handling the OU
case? Second, how does a WMC approach to OU problems
compare against a sampling-based OU approach, as embed-
ded in BLOG,’ for example (Milch et al. 20052)?

To answer these questions, we chose 5 problems that em-
phasize an OU environment. The particulars of the problems
are discussed below, and the empirical behavior is presented
in Figure 1. Experiments were run on OS X, using a 1.3
GHz Intel i5 processor with 4GB RAM. ProbLog was used
for computing probabilities (OU with ENF or otherwise).
BLOG v0.2 was run with the default settings.

®Recent installments of ProbLog are based on a logical transla-
tion of probabilistic rules to weighted CNFs (Fierens et al. 2011).

"BLOG is a strong baseline as it is designed and optimized for
OU applications, is well-studied and approachable for modeling
relational template models owing to its first-order syntax.



semantics | AlarmR | Smokerl | Smoker2
ou 0.194 0.172 0.182
DC 0.192 0.170 0.175

language | AlarmR | AlarmX | Grades
WMCOU | 0.194 0.2 0.36
BLOG 0.782 0.85 6.0

Figure 1: DC vs OU (top) and WMCOU vs BLOG (bottom).
Time reported is in seconds, and is averaged over 10 runs.

Domain Closure (DC) vs OU

Let us remark that for OU problems, DC may not give the
correct answers. Nonetheless, we considered Examples 13
and 14 (Smokerl and Smoker2 in Figure 1 respectively). Re-
call that DC would return the correct answer for the first, but
not the second. These are then compared to WMCOU.

Next, we reconsider the classical Alarm Bayesian network
(AlarmR in Figure 1), now with two neighbors, where we
are interested in the probability that there was a burglary
given that both persons called. This is a DC setting. For the
OU case, we leave the neighbor predicate open, that is, it is
not known how many neighbors there are, but of these, two
distinct people call after hearing the alarm.

The execution times reported in Figure 1 indicate that
handling the OU case has only a marginal impact on per-
formance, as is expected (and desired).®

WMCOU vs BLOG

We contrasted the two approaches on AlarmR, but also on
AlarmX. In both cases, WMCOU is notably faster. A more
glaring difference is observed when we consider the Grades
problem from (Heckerman, Meek, and Koller 2004). Briefly,
we are to predict the probability of a student’s grade, given
the courses she takes, the difficulty of these courses, the stu-
dent’s intelligence level, and so on. We enable an OU set-
ting here by leaving the set of students open, and their exis-
tence is inferred from the evidence. The problem is known
to have a non-trivial relational skeleton, and so it seems that
a WMC-based approach fares well owing to a SAT solver’s
ability to handle complex logical dependencies.

Lineage and Conclusions

There are several recent instrumental papers focusing on
OU models. We mention the ones that are most closely
related, and refer readers to (Milch et al. 2005a) and ref-
erences therein on historical developments. Extensions of
template models to infinite domains are, of course, the
closest in spirit: Singla and Domingos (2007) handle infi-
nite domains in Markov logic networks using locality con-
straints over Gibbs measures, Jaeger (1998) proves decid-
ability in infinite-domain relational BN given independency
constraints in query atoms, Laskey and da Costa (2005) pro-
vides a semantics for infinite-state BNs assuming stratifi-

8Execution times with C2D and WFOMC, along with scalabil-
ity numbers for increasing domain sizes, are left to an extended
report.

cation conditions, and Milch et al. (2005b) provide a se-
mantics for infinite-state BNs while assuming that only a
finite number of ancestors affect a variable. (Approaches not
based on template models include, e.g., (Welling, Porteous,
and Bart 2007), that view infinite-state BNs as hierarchical
Dirichlet processes.) Such template models can also be en-
abled by means of programming languages, which include
both declarative approaches e.g., (Kersting and Raedt 2000;
Fierens et al. 2011) that often support derivations that are in-
finitely long, as well as procedural ones, e.g., BLOG (Milch
et al. 2005a) that also allows identity uncertainty in ad-
dition to open domains. There has also been recent work
on handling existential quantifiers and exchangeable atoms
for model counting (Van den Broeck, Meert, and Darwiche
2014; Niepert and Van den Broeck 2014) that are related to
some of the ideas in the OU semantics.

From the representation side, our language and KB syn-
tax is based on modal logic with rigid designators (Levesque
and Lakemeyer 2001; Lakemeyer and Levesque 2002; Belle
and Lakemeyer 2011). Our results on logical entailment, in
particular, revisit and simplify the developments in (Belle
and Lakemeyer 2011). Beyond this, there is a large body of
work on handling unknowns for query entailment in knowl-
edge representation and database theory, e.g., see (Van der
Meyden 1998; Libkin 2016; Giacomo, Lespérance, and
Levesque 2011) and references therein. Finally, in the con-
text of WMCOU considering new constants, studying the
model count of a first-order formula as a function of the
domain size is of long-standing interest in database theory
(Dalvi 2006; Beame et al. 2015; Fagin 1976).

The OU semantics of this paper contributes to the above
literature, and offers the following salient features:

1. no syntactic stipulations (e.g., stratification constraints)
on the weighted theory (A, w) outside of the usual clausal
representation for A;

2. if a parameterized representation serves as a proxy for a
large but finite domain (e.g., family trees, language mod-
els), the semantics necessitates grounding only wrt the
constants in the query at hand (plus KB’s rank);

3. conditional probabilities are coherent wrt logical entail-
ment over a full first-order language;

4. the ability to leverage existing WMC technology, includ-
ing lifted inference that can (sometimes) lead to exponen-
tial improvements.

We think these 4 properties can put OU applications within
the reach of weighted model counters. The simplicity of
the propositional apparatus and the separation of the weight
function from the encoding has led to the popularity of
WMC, and in this vein, we hope that WMCOU can serve
as an assembly language for OU formalisms.

As for future work, it would be worthwhile to better un-
derstand the mathematical relationships between WMCOU
and other OU semantics.

References

Bacchus, F. 1990. Representing and Reasoning with Proba-
bilistic Knowledge. MIT Press.



Beame, P.; Van den Broeck, G.; Gribkoft, E.; and Suciu, D.
2015. Symmetric weighted first-order model counting. In
PODS, 313-328. ACM.

Belle, V., and Lakemeyer, G. 2011. On progression and
query evaluation in first-order knowledge bases with func-
tion symbols. In Proc. IJCAI, 255-260.

Chakraborty, S.; Fremont, D. J.; Meel, K. S.; Seshia, S. A.;
and Vardi, M. Y. 2014. Distribution-aware sampling and
weighted model counting for sat. AAAIL

Chavira, M., and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artif. Intell. 172(6-
7):772-799.

Choi, A.; Kisa, D.; and Darwiche, A. 2013. Compiling
probabilistic graphical models using sentential decision di-
agrams. In Symbolic and Quantitative Approaches to Rea-
soning with Uncertainty. Springer. 121-132.

Dalvi, N. 2006. Query evaluation on a database given by a
random graph. In Database Theory—ICDT 2007. Springer.
149-163.

Darwiche, A. 2004. New advances in compiling CNF to
decomposable negation normal form. In ECAI, 328-332.
de Salvo Braz, R.; Amir, E.; and Roth, D. 2005. Lifted first-
order probabilistic inference. In Proc. IJCAI, 1319-1325.
Dong, X.; Gabrilovich, E.; Heitz, G.; Horn, W.; Lao, N.;
Murphy, K.; Strohmann, T.; Sun, S.; and Zhang, W. 2014.
Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In Knowledge discovery and data min-
ing.

Doshi, F.; Wingate, D.; Tenenbaum, J. B.; and Roy, N. 2011.
Infinite dynamic bayesian networks. In /ICML, 913-920.
Ermon, S.; Gomes, C. P.; Sabharwal, A.; and Selman, B.
2013. Embed and project: Discrete sampling with universal
hashing. In NIPS, 2085-2093.

Fagin, R. 1976. Probabilities on finite models. The Journal
of Symbolic Logic 41(01):50-58.

Fierens, D.; den Broeck, G. V.; Thon, I.; Gutmann, B.; and
Raedt, L. D. 2011. Inference in probabilistic logic programs
using weighted CNF’s. In UAI, 211-220.

Getoor, L., and Taskar, B., eds. 2007. An Introduction to
Statistical Relational Learning. MIT Press.

Giacomo, G. D.; Lespérance, Y.; and Levesque, H. J. 2011.
Efficient reasoning in proper knowledge bases with un-
known individuals. In IJCAI, 827-832.

Gogate, V., and Domingos, P. 2011. Probabilistic theorem
proving. In Proc. UAI, 256-265.

Halpern, J. 1990. An analysis of first-order logics of proba-
bility. Artificial Intelligence 46(3):311-350.

Heckerman, D.; Meek, C.; and Koller, D. 2004. Probabilis-
tic models for relational data. Technical report, Technical
Report MSR-TR-2004-30, Microsoft Research.

Jaeger, M. 1998. Reasoning about infinite random structures
with relational bayesian networks. In KR, 570-581.
Kersting, K., and Raedt, L. D. 2000. Bayesian logic pro-
grams. In ILP Work-in-progress reports.

Lakemeyer, G., and Levesque, H. J. 2002. Evaluation-based
reasoning with disjunctive information in first-order knowl-
edge bases. In Proc. KR, 73-81.

Laskey, K. B., and da Costa, P. C. G. 2005. Of starships
and klingons: Bayesian logic for the 23rd century. In UAI,
346-353.

Levesque, H., and Lakemeyer, G. 2001. The logic of knowl-
edge bases. The MIT Press.

Levesque, H. J. 1998. A completeness result for reasoning
with incomplete first-order knowledge bases. In Proc. KR,
14-23.

Libkin, L. 2016. SQL’s three-valued logic and certain an-
swers. ACM Trans. Database Syst. 41(1):1:1-1:28.

Milch, B.; Marthi, B.; Russell, S. J.; Sontag, D.; Ong, D. L;
and Kolobov, A. 2005a. BLOG: Probabilistic models with
unknown objects. In Proc. IJCAI, 1352-1359.

Milch, B.; Marthi, B.; Sontag, D.; Russell, S. J.; Ong, D. L;
and Kolobov, A. 2005b. Approximate inference for infinite
contingent bayesian networks. In AISTATS.

Niepert, M., and Van den Broeck, G. 2014. Tractabil-
ity through exchangeability: A new perspective on efficient
probabilistic inference. In AAAI 2467-2475.

Pearl, J. 1988. Probabilistic reasoning in intelligent sys-
tems: networks of plausible inference. Morgan Kaufmann.
Poole, D. 2003. First-order probabilistic inference. In Proc.
1JCAI, 985-991.

Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine learning 62(1):107-136.

Russell, S. J. 2015. Unifying logic and probability. Com-
mun. ACM 58(7):88-97.

Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing
bayesian inference by weighted model counting. In AAAI,
475-482.

Singla, P., and Domingos, P. M. 2007. Markov logic in
infinite domains. In UAI, 368-375.

Srivastava, S.; Russell, S. J.; Ruan, P.; and Cheng, X. 2014.
First-order open-universe pomdps. In UAI, 742-751.

Van den Broeck, G.; Meert, W.; and Darwiche, A. 2014.
Skolemization for weighted first-order model counting. In
KR.

Van den Broeck, G. 2013. Lifted Inference and Learning in

Statistical Relational Models. Ph.D. Dissertation, KU Leu-
ven.

Van der Meyden, R. 1998. Logical approaches to incom-
plete information: A survey. In Logics for databases and
information systems. Springer. 307-356.

Wei, W., and Selman, B. 2005. A new approach to model
counting. In Theory and Applications of Satisfiability Test-
ing, 96-97. Springer.

Welling, M.; Porteous, I.; and Bart, E. 2007. Infinite state
bayes-nets for structured domains. In NIPS, 1601-1608.
Wu, W,; Li, H.; Wang, H.; and Zhu, K. Q. 2012. Probase: A

probabilistic taxonomy for text understanding. In Proc. Int.
Conf. on Management of Data, 481-492.



Appendix
Proof of Proposition 6

Proof: Since A is finite, and the number of quantifiers in a
V-clause is finite, the set of names considered for the ground-
ing is finite, leading to only finitely many substitutions for
each V-clause in A. I

Proof of Proposition 7

Proof:  For each V-clause, given a rank of k and ¢ con-
stants, there are ¢* possible substitutions, each of which re-
sult in m atoms. In the OU case, we will consider ¢ + k con-
stants, by definition. il

Proof of Theorem 8

Proof: By construction, cd € GND(A) is a ground clause,
and so GND(A) is essentially a (possibly infinite) proposi-
tional theory, over a (possibly infinite) vocabulary. Compact-
ness from propositional logic then applies. il

Proof of Theorem 9

The proof will need two lemmas. Before presenting the
lemmas, suppose e is a bijection from N to N. Then for any
formula S, we write 5° to mean that the names a appearing
in 3 are replaced by a®.

We first prove Lemma 10.

Proof: LetI = GND(A,k) A @ and I = GND(A, j) A a.
Without loss of generality, we assume that the names men-
tioned in GND(A, j) is the union of the names mentioned in
GND(A, k) and j—k new ones. Notation: let names() be the
set of names mentioned in .

Suppose, by assumption, M [ I'. Construct M’:

1. for every atom p mentioned in I, let M'[p] = M[p];
2. for every atom p not mentioned in I, let M’[p] = M[p];

3. for every atom p mentioned in I" — I, or more precisely,
forc0 e I — T, do as follows.

Note that cf mentions at most k£ names not appearing
in A. By construction, since ¢ € I” — I', ¢ mentions
names in names(I") — names(T'), say [ of them. But be-
cause of this, c6 does not mention at least / names from
names(I') —names(A). Then let e be a bijection from N to
N that swaps every name from (names(I"”) — names(I')) N
names(c) with [ names from names(I') — names(A) but
not appearing in names(cf), and maps the rest to them-
selves.

By construction, c6 € I” — I because there is a V-clause
V¥(e D ¢) € A and | ef. A simple induction shows that
E el iff £ (ef)* iff (because e does not mention names
from I — ') E 6°. But by construction, then, c6° € T.
(Basically, after the swap, the names mentioned in c6*
must be from names(T').) In other words, for every atom
p mentioned in c6, there is an atom p* mentioned in c6°.
To conclude, let M'[p] = M[p°®].

We have completed the construction of M’. It is easy to
show (by induction) that M’ satisfies I' because of construc-
tion step (1). Similarly, it is easy to show that M’ satisfies
I — T because of construction step (3). Thus, M’ satisfies I
and we are done. il

Next, we prove Lemma 11.

Proof: Suppose A E @ but GND(A, k) A -« is satisfiable.
By Lemma 10, GND(A, j) A - is satisfiable for every j > k
and so, by Theorem 8, GND(A) A —a is satisfiable, that is,
A A —a is satisfiable. Contradiction.

Suppose GND(A, k) E a. Since GND(A, k) € GND(A),
GND(A) Eaandso A E a.ll

The proof for Theorem 9 is then as follows.
Proof: Lety = {pV —p|atom p is mentioned in a}. Let
AN = AANy. Since A’ = A, we have A F a iff A" E a.
From Lemma 11, A’ E «a iff OU(A’) E a iff OU(A”) A —a is
unsatisfiable. It is easy to verify that OU(A")A—a = OU(A’A
=) = OU(A A —a). Therefore, A E « iff OU(A A —a) is
unsatisfiable. il

Proof of Theorem 16

Proof: Here, (a) holds because if = A D athen A = AAa.
Next, (b) is by way of Theorem 9 because if A A « is unsat-
isfiable, then it has no models. Finally, suppose 5° means
B with names a replaced by a®. For (c), by construction,
(A A @)°® = A A a®. By induction on @, we can show that
for any model M of A A @, we can construct a model M’ of
A A @*, and vice versa. I

Proof of Proposition 21

Proof: Here, (i) is from the two transformation rules; (ii)
is because S is obtained from a e of a Y-clause Y(e D ¢) € A
and so § C B by construction; and (iii) is because S’ is
(also) obtained from a e of V(e D ¢) € A and so S’ C B by
construction. il

Proof of Theorem 22

Proof:  The understanding is that ENF(A) is wrt C. Let
D be the set of names mentioned in OU(A). By construc-
tion, D N C = B, where B is the set of names in A. Let o
be a bijection from N to N that maps names from B to it-
self, and names from D — C are mapped to those in C — D
(say, the smallest in D — C is mapped to the smallest in
C — D, and so on). An induction argument can be used to
show that WMC(OU(A),w) = WMC(OU(A)*, w). (Recall
that predicate-level weight functions will not rank unknown
atoms over other unknown instances, as already observed for
Theorem 16.) But then OU(A)* is equivalent to ENF(A). Il



