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SYSTEMATIC REVIEW AND META-ANALYSIS

Systematic Review of Cerebral Phenotypes 
Associated With Monogenic Cerebral Small-
Vessel Disease
Ed Whittaker , MBChB*; Sophie Thrippleton, MBChB*; Liza Y. W. Chong, BMedSci; Victoria G. Collins , 
BMedSci; Amy C. Ferguson, PhD; David E. Henshall , MBChB; Emily Lancastle, BMedSci; Tim Wilkinson, PhD; 
Blair Wilson, MBChB; Kirsty Wilson, MBChB; Cathie Sudlow , FRSE; Joanna Wardlaw , MD, FRCR;  
Kristiina Rannikmäe , MD, PhD

BACKGROUND: Cerebral small-vessel disease (cSVD) is an important cause of stroke and vascular dementia. Most cases are 
multifactorial, but an emerging minority have a monogenic cause. While NOTCH3 is the best-known gene, several others have 
been reported. We aimed to summarize the cerebral phenotypes associated with these more recent cSVD genes.

METHODS AND RESULTS: We performed a systematic review (PROSPERO [International Prospective Register of Systematic 
Reviews]: CRD42020196720), searching Medline/Embase (conception to July 2020) for any language publications describing 
COL4A1/2, TREX1, HTRA1, ADA2, or CTSA pathogenic variant carriers. We extracted data about individuals’ characteristics 
and clinical and vascular radiological cerebral phenotypes. We summarized phenotype frequencies per gene, comparing 
patterns across genes. We screened 6485 publications including 402, and extracted data on 390 individuals with COL4A1, 
123 with TREX1, 44 with HTRA1 homozygous, 41 with COL4A2, 346 with ADA2, 82 with HTRA1 heterozygous, and 14 with 
CTSA. Mean age ranged from 15 (ADA2) to 59 years (HTRA1 heterozygotes). Clinical phenotype frequencies varied widely: 
stroke, 9% (TREX1) to 52% (HTRA1 heterozygotes); cognitive features, 0% (ADA2) to 64% (HTRA1 homozygotes); and psychi-
atric features, 0% (COL4A2; ADA2) to 57% (CTSA). Among individuals with neuroimaging, vascular radiological phenotypes 
appeared common, ranging from 62% (ADA2) to 100% (HTRA1 homozygotes; CTSA). White matter lesions were the most 
common pathology, except in ADA2 and COL4A2 cases, where ischemic and hemorrhagic lesions dominated, respectively.

CONCLUSIONS: There appear to be differences in cerebral manifestations across cSVD genes. Vascular radiological changes 
were more common than clinical neurological phenotypes, and present in the majority of individuals with reported neuroimag-
ing. However, these results may be affected by age and biases inherent to case reports. In the future, better characterization of 
associated phenotypes, as well as insights from population-based studies, should improve our understanding of monogenic 
cSVD to inform genetic testing, guide clinical management, and help unravel underlying disease mechanisms.

Key Words: Mendelian ■ radiological features ■ small-vessel disease ■ stroke ■ systematic review

Cerebral small-vessel disease (cSVD) is recog-
nized as an important cause of stroke and vas-
cular cognitive impairment worldwide. The term 

cSVD describes a group of pathological processes 
that affect the small arteries, arterioles, venules, and 

capillaries within the brain.1 Features of cSVD on neu-
roimaging include subcortical infarcts, white matter 
lesions (WMLs), deep intracerebral hemorrhage (ICH), 
enlarged perivascular spaces (PVSs), cerebral mi-
crobleeds, and brain atrophy.2 Despite the increase in 
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cSVD burden among an aging population, the underly-
ing disease mechanisms are incompletely understood, 
and therapeutic options limited, with vascular risk 

factor management remaining the mainstay of cSVD 
prevention and treatment.3

While the majority of cSVD cases are thought to 
result from the interaction of multiple genetic variants 
and environmental factors, an important minority of 
cases are monogenic, that is, caused by a pathogenic 
rare variant in a single gene. NOTCH3 (Notch Receptor 
3) is the best known of these genes and is implicated 
in cerebral autosomal dominant arteriopathy with sub-
cortical infarcts and leukoencephalopathy.4 However, 
since NOTCH3 was first described in 1996, several 
additional cSVD genes have been identified, includ-
ing COL4A1 (Collagen, Type Iv, Alpha-1), TREX1 (3-
Prime Repair Exonuclease 1), HTRA1 (HTRA Serine 
Peptidase 1), COL4A2 (Collagen, Type Iv, Alpha-2), 
ADA2 (Adenosine Deaminase 2) and, most recently, 
CTSA (Cathepsin A). Pathogenic rare variants in these 
genes have been associated with various clinical 
phenotypes alongside cSVD, including extracerebral 
manifestations (Table 1), as well as certain radiological 
features seen on neuroimaging.5

Better characterization of these rare disorders, in-
cluding which radiological and clinical phenotypes are 
associated with specific genes, can inform genetic 
testing and counseling, including the appropriate selec-
tion of patients and screening of family members. This 
knowledge can also aid in the management of affected 
individuals, for example, by guiding appropriate screen-
ing for certain associated phenotypes. Furthermore, 
an improved understanding of monogenic cSVD may 
offer insights into the disease mechanisms underlying 
sporadic cSVD, as there is increasing evidence to sug-
gest an overlap of disease pathways involved in both 
sporadic and monogenic disease.6-8 Observations 
from large-scale genetic association studies have also 
shown common variation in monogenic cSVD genes to 
be associated with sporadic cSVD. Examples include 
COL4A2 single-nucleotide polymorphisms’ association 
with lacunar ischemic stroke and deep ICH, HTRA1 
single-nucleotide polymorphism association with isch-
emic stroke, and possibly association of NOTCH3 
single-nucleotide polymorphisms with WMLs.9-12

We undertook a systematic literature review with the 
aim of identifying all reported individuals with putative 
pathogenic rare variants in any of the following mono-
genic cSVD genes: COL4A1, TREX1, HTRA1, COL4A2, 
ADA2 and CTSA. We aimed to summarize and compare 
both clinical and vascular radiological cerebral pheno-
types associated with each monogenic cSVD gene.

METHODS
As a systematic review based on data from published 
studies, this work does not require approval from an 
ethical standards committee.

CLINICAL PERSPECTIVE

What Is New?
•	 We present a large systematic review allowing 

comparisons to be made across the cerebral 
manifestations of several cerebral small-vessel 
disease genes, following a comprehensive 
search strategy including abstracts and foreign-
language papers.

•	 Neuroimaging appears particularly important in 
detecting early or otherwise clinically asympto-
matic disease (radiological vascular phenotypes 
were more common than clinical neurological 
phenotypes).

•	 Cognitive involvement appeared even more fre-
quently than clinical stroke for several genes.

What Are the Clinical Implications?
•	 The findings summarized here have clinical im-

plications for the diagnosis of these rare genetic 
diseases, especially in conjunction with similar 
summaries of their extracerebral phenotypes 
published elsewhere, potentially allowing more 
informed clinical management of symptoms 
and disease progression.

•	 There may be a role for radiological screening 
for earlier diagnosis in patients and at-risk fam-
ily members, but more research is needed to 
explore this further.

•	 The frequency profile of clinical cerebral phe-
notypes associated with monogenic cerebral 
small-vessel diseases suggests that it is impor-
tant to consider a broad spectrum of manifes-
tations when identifying potential patients for 
genetic testing.

Nonstandard Abbreviations and Acronyms

cSVD	 cerebral small-vessel disease
HetZ	 heterozygous
HomZ	 homozygous or compound 

heterozygous
ICH	 intracerebral hemorrhage
OMIM	 Online Mendelian Inheritance in Man
PROSPERO	 International Prospective Register of 

Systematic Reviews
PVSs	 perivascular spaces
VEP	 Variant Effect Predictor
WMLs	 white matter lesions
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Transparency and Openness Promotion 
Statement
The authors declare that all supporting data are avail-
able within the article (and its supplemental material).

Registration
We have registered a PROSPERO (International 
Prospective Register of Systematic Reviews) proto-
col (ID: CRD42020196720) at https://www.crd.york.
ac.uk/prosp​ero/displ​ay_record.php?ID=CRD42​02019​
6720.13 We followed the Preferred Reporting Items for 
Systematic Reviews and Meta-analyses guidelines.14

Search Strategy
We searched the MEDLINE and EMBASE databases 
using OvidSP (from conception to July 2020) for 
publications about individuals with pathogenic rare 
variants in any of our genes of interest: COL4A1, 
TREX1, HTRA1, COL4A2, ADA2, or CTSA. We did not 
restrict the search by language or publication date; 
we limited it to human studies; and we included con-
ference abstracts. We used a previously published 
search strategy (Data S1).5 In summary, the search 
included:

	 1. �Text words, phrases, and Medical Subject Headings 
for relevant monogenic syndromes/diseases as-
sociated with our genes of interest, and

	 2. � �Text words, phrases, and Medical Subject Headings 
terms associated with cSVD combined with those 
for our genes of interest and their proteins.

Screening
We carried out the screening using Covidence (www.
covid​ence.org). At least two reviewers (E. W., S. T., L. 
Y. W. C., D. E. H., B. W., K. R.) independently screened 
titles and abstracts of all publications identified in our 
search, blinded to each other’s decisions. Full texts 
of studies included at this stage were then retrieved 
and screened by 2 reviewers for eligibility, recording 
any reasons for exclusion. We resolved disagreements 

through discussion and mutual consensus with a third 
reviewer. The included publications were combined 
with those identified via a previous systematic review.5

Inclusion/Exclusion Criteria
We included studies that met the following conditions:

	 1. �A case report, case series, or other study 
design (except review papers) describing the 
clinical or cerebral radiological phenotype of ≥1 
individual. Such description could be anything 
between stating that the individual was healthy 
to an in-depth case report.

	 2. �Genetically confirmed rare variant (in a heterozygous 
[HetZ] or homozygous or compound heterozygous 
state [HomZ]) in any of our genes of interest.

	 3. �Study authors considered the rare variant to be 
probably or definitely pathogenic.

We excluded studies describing individuals with rare 
variants in CTSA and TREX1 associated with galactosial-
idosis, Aicardi-Goutieres syndrome, and chilblain or sys-
temic lupus. We excluded individuals with a presumed 
pathogenic variant in >1 gene.

Data Extraction
From each included publication, we (one of E. W., S. T., 
L. Y. W. C., V. C., E. L., D. E. H., K. R.) extracted data 
on the first author, publication year, journal, and num-
ber of eligible individuals and pedigrees. For foreign 
language articles, we sought a full translation where 
an English language abstract did not provide sufficient 
information or was not available. For each eligible indi-
vidual, we extracted data using a standardized form, 
including:

	 1. �The individual’s characteristics (region of origin, 
sex, age at time of assessment); genetic variant, 
and resulting protein change;

	 2. �Clinical cerebral phenotype (presence, type and 
age at diagnosis of clinical stroke[s], cognitive fea-
tures, psychiatric features, and headache);

Table 1.  Modes of Inheritance and Extracerebral Features for Each Gene

Gene Mode of inheritance Extracerebral features

COL4A1/COL4A2 AD Retinal artery tortuosity*; cataract; kidney cysts; hematuria; muscle cramps and raised creatinine 
kinase; anterior segment defects; arrhythmia; Raynaud phenomenon; hemolytic anemia

TREX1 AD Retinal vasculopathy; nephropathy; liver disease; Raynaud phenomenon; skin lesions

HTRA1 AR/AD Hair loss; degenerative spine disease; back pain

ADA2 AR Inflammation; skin involvement; liver disease; nephropathy; splenomegaly; myalgia; hematological 
features

CTSA AR Hypertension; dry mouth/eyes; muscle cramps

AD indicates autosomal dominant; and AR, autosomal recessive.
*The relationship between this phenotype and the gene is classed as provisional in the Online Mendelian Inheritance in Man (OMIM) database. Otherwise, all 

phenotype-genotype relationships are classed as established in OMIM or were taken from the first reporting where not included in the OMIM database (CTSA).
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	 3. �Vascular radiological cerebral phenotype (pres-
ence, location, burden, scan type used, age at 
diagnosis of ischemia, ICH, WMLs, microbleeds, 
atrophy, enlarged PVSs, calcification, and cer-
ebral aneuryms); and

	 4. �Vascular risk factors (presence of ≥1 of hyper-
tension, smoking, diabetes, excess alcohol con-
sumption, or hypercholesterolemia).

We selected the list of clinical cerebral phenotypes 
to extract to represent known manifestations of cSVD, 
including stroke, and the broad categories of cogni-
tive and psychiatric features. We additionally included 
headache as phenotype of interest because of its as-
sociation with several monogenic cSVD genes in the 
Online Mendelian Inheritance in Man (OMIM) database 
(ADA2, COL4A1, TREX1, and HTRA1). Finally, we also 
noted any other cerebral clinical phenotypes on our 
data extraction form.

We selected the list of vascular radiological cerebral 
phenotypes to extract to represent known manifesta-
tions of cSVD and again noted any other features on 
our data extraction form. Finally, we noted any specific 
radiological patterns to lesion location or severity that 
might help identify cases in everyday clinical practice.

To assess agreement in data extraction, at least 2 
members of the team extracted data from 10% of pub-
lications, working independently and blinded to each 
other’s decisions.

Where radiological imaging findings were de-
scribed, the terminology used across publications 
varied widely, as has been noted previously in the liter-
ature.2 We made an effort to sort the imaging descrip-
tions into our prespecified categories to deal with the 
variable terminology (see Data S1 for a list of decisions 
and assumptions), discussing uncertainties with an ex-
pert neuroradiologist (J.W.).

Data Synthesis
For each gene, we summarized the total number of 
relevant publications, pedigrees, individuals and rare 
variants, and the individuals’ characteristics. We sum-
marized data on the presence or absence of each 
cerebral phenotype (clinical and vascular radiological) 
as well as cumulative evidence of any vascular radio-
logical feature, to assess their apparent frequency. 
We compared findings between genes, highlighting 
shared patterns and differences in the frequencies of 
associated phenotypes.

We stratified the presence of clinical stroke and any 
vascular feature(s) on neuroimaging by presence of ≥1 
vascular risk factors. We used the chi-squared test 
(significance threshold of 0.05) to assess differences 
in phenotype frequency in patients with and without 
vascular risk factors.

Variant Pathogenicity Assessment
We used the Ensembl Variant Effect Predictor (VEP)15 
to assess the consequences of the genetic variants 
included in our systematic review. We extracted in-
formation on the variants on the basis of the follow-
ing VEP subcomponents: (1) SnpEff variant annotation 
and effect prediction tool to assess variant impact16; 
(2) ClinVar to assess variant’s clinical significance17; (3) 
SIFT to predict whether an amino acid substitution is 
likely to affect protein function18; and (4) Polymorphism 
Phenotyping v2 to predict the effect of an amino acid 
substitution on the structure and function of a protein.19 
Where conflicting evidence was provided for the same 
variant (usually because an allele may have a different 
effect in different transcripts), we selected the category 
with a more significant/negative effect. We calculated 
the results (expressed as percentages) among variants 
per each individual VEP subcomponent.

RESULTS
We included 402 publications from 6485 identified for 
screening (Figure 1, Supplemental References). As in 
our previous systematic review,5 despite only being 
first reported in 2013, ADA2 had the largest number 
of eligible publications (n=149), while the number of 
publications for other genes appears to be related to 
their order of discovery (COL4A1, n=137; TREX1, n=38; 
HTRA1HomZ, n=32; COL4A2, n=20; HTRA1HetZ, n=32; 
CTSA, n=5) (Figure 2). A likely explanation is the com-
bination of existing treatment options and the severe 
early-onset systemic phenotype of ADA2, prompting 
more widespread genetic testing. We extracted data 
on 1040 individuals, with the number of individuals per 
gene ranging from 14 (CTSA) to 390 (COL4A1), and 
the number of pedigrees ranging from 3 (CTSA) to 266 
(ADA2). The percentage of pedigrees carrying a pri-
vate variant ranged from 0% (CTSA) to 76% (COL4A2). 
As expected, the proportion carrying a private variant 
has decreased since our previous systematic review,5 
presumablybecause of new reported individuals now 
becoming increasingly likely to have had their rare vari-
ant identified previously (Figure 2).

The subset of included studies with data independently 
extracted for comparison showed 96.3% agreement.

Summary of Individuals’ Characteristics
The most common region of origin was Europe for 
individuals with COL4A1, TREX1, COL4A2, and CTSA 
(67% [263/390], 57% [70/123], 49% [20/41], and 
100% [14/14], respectively); Asia for individuals with 
HTRA1HomZ and HTRA1HetZ (75% [33/44] and 56% 
[46/82]); and Turkey for individuals with ADA2 (28% 
[98/346]). The region of origin was unknown in 0% to 
16% of individuals per gene.
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Sex distribution was generally approximated equal 
(45%–52% female sex) where the number of individu-
als per gene was considered sufficient to allow mean-
ingful comparison (>100 individuals per gene).

Data about the age of individuals at the time of as-
sessment were not available for >20% of COL4A1/2 in-
dividuals. Mean (median) age ranged from 15 (13) years 
for individuals with ADA2 to 59 (60) years for individuals 
with HTRA1HetZ. For COL4A1/2 and ADA2, the median 

age of individuals was <18 years, while the age ranges 
were broad (ranging from <1 to 77, 72, and 76, respec-
tively) (Table 2).

Frequency of Clinical Cerebral 
Phenotypes
Cognitive features were the most common clini-
cal cerebral phenotype for 4 of 7 genes (HTRA1HomZ, 

Figure 1.  Selection of included publications.
abs indicates abstract; HetZ¸ heterozygous; and HomZ, homozygous/compound heterozygous. *We identified NOTCH3, FOXC1 and 
PITX2 individuals as part of another systematic review. †One publication reported both individuals with HTRA1HomZ and individuals with 
HTRA1HetZ, 7 publications reported both individuals with COL4A1/2, and 1 publication reported individuals with HTRA1HetZ, COL4A1/2, 
and TREX1, so the number of unique publications (402) is not the sum of publications per gene (413).
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COL4A2, HTRA1HetZ, and CTSA); stroke was the most 
common among individuals with COL4A1 and ADA2, 
and headache was most common among individuals 
with TREX1 (Figure 3, Table S1).

Stroke

The frequency of clinical stroke ranged from 22% to 
52% for 6 of 7 genes (COL4A2, 22% [9/41]; HTRA1HomZ, 

30% [13/44]; ADA2, 33% [115/346]; COL4A1, 41% 
[161/390]; CTSA, 50% [7/14]; HTRA1HetZ, 52% [43/82]), 
while only 9% (11/123) of TREX1 individuals were re-
ported to have suffered a clinical stroke. Hemorrhagic 
events (ICH, porencephaly, and intraventricular hem-
orrhage) were the most commonly reported stroke 
type among COL4A1/2 individuals, affecting 73% 
(118/161) and 100% (9/9) of stroke cases, respec-
tively. Ischemic events (including arterial and venous 
ischemic stroke, transient ischemic attacks, and ocular 

Figure 2.  Number of included individuals and pedigrees.
This figure is reporting on DNA change, variant was considered n/r where DNA change was not reported. 
For compound heterozygotes, if either variant was private, the pedigree was considered to carry a 
private variant. Where publications had not clearly reported these data (eg, reporting 5 individuals with 
pathogenic COL4A1 variants, but not specifying the variants, could refer to 5 individuals all carrying the 
same variant or each carrying a private variant), we assumed the maximum number of private variants 
(eg, 5 private variants in this example). HetZ indicates heterozygous; HomZ, homozygous/compound 
heterozygous; n/r, not reported; and year, year gene first reported to be associated with cSVD.

COL4A1

N = 137

390 individuals from
233 pedigrees with:

131 private, 53 non-private and 49 n/r variants
71% pedigrees carry a private variant

TREX1

N = 38

123 individuals from
34 pedigrees with:

17 private, 14 non-private and 3 n/r variants
55% pedigrees carry a private variant

HTRA1HomZ

N = 32

44 individuals from
36 pedigrees with:

16 private, 10 non-private and 10 n/r variants
62% pedigrees carry a private variant

COL4A2

N = 20

41 individuals from
22 pedigrees with:

16 private, 5 non-private and 1 n/r variants
76% pedigrees carry a private variant

ADA2

N = 149

346 individuals from
266 pedigrees with:

68 private, 75 non-private and 123 n/r variants
48% pedigrees carry a private variant

HTRA1HetZ

N = 32

82 individuals from
51 pedigrees with:

27 private, 17 non-private and 7 n/r variants
61% pedigrees carry a private variant

CTSA

N = 5

14 individuals from
3 pedigrees with:

0 private, 3 non-private and 0 n/r variants
0% pedigrees carry a private variant

2005

2007

2009

2012

2013

2015

2016

YEAR
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vascular occlusions) were most common for all other 
genes and were reported in 54% to 100% of stroke 
cases (HTRA1HomZ, 54% [7/13]; ADA2, 61% [70/115]; 
HTRA1HetZ, 62% [27/43]; TREX1, 82% [9/11]; CTSA, 
100% [7/7]), although hemorrhagic events also oc-
curred in a substantial minority.

Cognitive Features

The frequency of cognitive features ranged from 
27% to 64% for 6 of 7 genes (COL4A2, 27% [11/41]; 
TREX1, 29% [36/123]; COL4A1, 33% [128/390]; 
HTRA1HetZ, 56% [46/82]; HTRA1HomZ, 64% [28/44]; 
and CTSA, 64% [9/14]), while only 2% [7/346] of in-
dividuals with ADA2 were reported to have cognitive 
features. Developmental delay was present in over 
80% of individuals with COL4A1/2 with cognitive 
features; however, no cases of developmental delay 
were reported for other genes. For other genes, 
publications were generally lacking in detail, so we 
could not draw conclusions about the nature and 
severity of cognitive decline (ie, cognitive impairment 
versus dementia).

Psychiatric Features

The frequency of psychiatric features ranged from 22% 
to 57% for 4 of 7 genes (HTRA1HetZ, 22% [18/82], TREX1, 
29% [36/124], HTRA1HomZ, 32% [14/44], and CTSA, 57% 
[8/14], in ascending order of frequency). The most com-
monly reported psychiatric features were depression, 
followed by irritability or agitation. In contrast, only 2% 
(8/390) of individuals with COL4A1 reported psychiat-
ric features, and no psychiatric features were reported 
among individuals with COL4A2 and ADA2 (Table S1).

Headache

Headache was reported in 31% (38/123) of TREX1 indi-
viduals and 43% (6/14) of CTSA individuals, with >80% 
of headache cases being specified as migraine. For all 
other genes, the frequency of headache ranged from 
2% to 10%.

Other Clinical Cerebral Phenotypes

Thirty-two percent of individuals with COL4A1/2 
(123/390 and 13/41, respectively) were reported to 

Table 2.  Summary of Case Characteristics

COL4A1 (N=390) TREX1 (N=123)
HTRA1HomZ 
(N=44) COL4A2 (N=41) ADA2 (N=346)

HTRA1HetZ 
(N=82) CTSA (N=14)

Region of origin*

European 67 (263/390) 57 (70/123) 11 (5/44) 49 (20/41) 27 (95/346) 40 (33/82) 100 (14/14)

Asian 15 (57/390) 14 (17/123) 75 (33/44) 20 (8/41) 18 (62/346) 56 (46/82) 0 (0/14)

Turkish 6 (25/390) 1 (1/123) 7 (3/44) 0 (0/41) 28 (98/346) 2 (2/82) 0 (0/14)

North American 7 (29/390) 24 (30/123) 2 (1/44) 15 (6/41) 6 (21/346) 0 (0/82) 0 (0/14)

South American 0 (0/390) 0 (0/123) 0 (0/44) 0 (0/41) 2 (6/346) 0 (0/82) 0 (0/14)

African 0 (0/390) 0 (0/123) 0 (0/44) 0 (0/41) 2 (8/346) 1 (1/82) 0 (0/14)

Australian <1 (1/390) 4 (5/123) 5 (2/44) 10 (4/41) 0 (0/346) 0 (0/82) 0 (0/14)

Unknown 4 (15/390) 0 (0/123) 0 (0/44) 7 (3/41) 16 (56/346) 0 (0/82) 0 (0/14)

Sex

Female/male 52/48 (160/146) 45/55 (54/65) 55/45 
(22/18)

38/62 (15/24) 49/51 (132/140) 34/66 
(27/52)

86/14 (12/2)

Sex not reported 22 (84/390) 3 (4/123) 9 (4/44) 5 (2/41) 21 (74/346) 4 (3/82) …

Age at time of assessment†

Mean, y 22 44 36 23 15 59 57

Median, y 17 … 34 15 13 60 55

Range, y <1–77 … 24–52 <1–72 <1–76 31–86 39–74

Age not 
reported, %

28 14 11 22 20 10 0

Variables were reported as percentage (proportion). HetZ indicates heterozygous; and HomZ, homozygous/compound heterozygous.
*Region of origin assumed from first author’s institution country: 179/390 individuals with COL4A1, 19/123 with TREX1, 10/44 with HTRA1HomZ, 21/41 with 

COL4A2, 152/346 with ADA2, and 25/82 with HTRA1HetZ. We could not derive this for 15 individuals with COL4A1, 3 with COL4A2, and 56 with ADA2. Individuals 
reported to have a different region of origin/ancestry from that of the country they lived in were considered to be from their region of origin (eg, Chinese-origin 
person living in the United States was considered Asian).

†If mean age was available for a group of individuals, the overall summary estimate was weighted by group size. For 78/123 individuals with TREX1, only mean 
age was reported; therefore, they were included in the calculations for mean but not for median age/age range. Turkey was reported on specifically because of 
high proportion of individuals with ADA2 from there.
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have suffered a seizure or have epilepsy. Forty-three 
percent of individuals with (6/14) CTSA were reported 
to suffer from vertigo or balance problems of unclear 
etiology but suggested to signify brain stem and lower 
cranial nerve involvement.

Frequency of Radiological Cerebral 
Phenotypes
The proportion of individuals with neuroimaging (mag-
netic resonance imaging [MRI], computed tomogra-
phy, magnetic resonance angiography, or computed 
tomography angiography) was 74% (290/390) for 
COL4A1, 59% (73/123) for TREX1, 100% (44/44) for 
HTRA1HomZ, 76% (31/41) for COL4A2, 34% (119/346) 
for ADA2, 85% (70/82) for HTRA1HetZ, and 100% (14/14) 
for CTSA. Where neuroimaging was done, it included 
an MRI scan in 71% to 100% of cases. The rest of this 
section applies to those with neuroimaging only.

The majority of individuals showed vascular fea-
ture(s) on neuroimaging: ≥86% for all genes except 
ADA2 (62%). Figure 4 shows the proportion of individ-
uals with specific features suggestive of vascular brain 
disease, and Table S2 shows the breakdown of these 
features by location and severity.

Ischemia

Presence ranged from 0% (COL4A2) to 66% 
(HTRA1HetZ). Ischemia was the most common radio-
logical manifestation for individuals with ADA2 (45%). 
Location was reported for most individuals (80%), and 
as expected, where reported, was mainly in deep/lacu-
nar areas. Most individuals (70%) had multiple lesions.

Intracerebral Hemorrhage

Presence ranged from 0% (TREX1) to 68% (COL4A2). 
It was predominantly present in individuals with 
COL4A1/2. However, ICH was also present in a small 
minority (7%–10%) of individuals with HTRA1, ADA2, 
and CTSA. Porencephaly was present in individuals 
with COL4A1/2 only (61% and 76%, respectively) and 
intraventricular hemorrhage was present in individuals 
with COL4A1 only (7%). Location, where reported, was 
mostly deep. The burden is less clear: Single lesions 
were common, though a minority of individuals did 
have multiple lesions.

White Matter Lesions

Presence ranged from 3% (ADA2) to 100% (CTSA). 
WMLs were the most common radiological manifesta-
tion for 5 of 7 genes (not COL4A2 and ADA2). Location 
was poorly reported, though, where reported, was 
common in the temporal regions in several genes. 
Individuals with CTSA appear to have lesions mainly 
in the frontal and parietal regions (though numbers 
are low). The burden of WMLs, where reported, was 
mostly severe, though the burden was not reported 
well (data missing for 51% individuals). The exception 
to this was individuals with HTRA1HetZ, who appear 
to have less severe WMLs. All individuals with CTSA 
with WMLs with known location had temporal lobe 
sparing.

Microbleeds

Presence ranged from 1% (TREX1 and ADA2) to 
30% (HTRA1HomZ). Microbleeds were also common in 

Figure 3.  Frequency of clinical cerebral phenotypes by gene.
HetZ indicates heterozygous; and HomZ, homozygous/compound heterozygous.
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individuals with HTRA1HetZ (27%). Location, where re-
ported, was mostly deep. All individuals had multiple 
lesions where burden was reported.

Atrophy

Presence ranged from 0% (COL4A2) to 71% (CTSA). 
Location and burden were poorly described overall, 
and the low numbers make it difficult to make any 
conclusions.

Enlarged PVSs

Presence was infrequent: Enlarged PVSs were present 
in COL4A1 (3%), HTRA1HetZ (16%), and CTSA (64%) in-
dividuals only.

Calcification

Presence was infrequent: Calcification was present in indi-
viduals with COL4A1/2 only (12% and 32%, respectively).

Cerebral Aneurysm

Present in 36% (13/36) of individuals with COL4A1, 60% 
(3/5) with COL4A2 and 6% (1/17) with ADA2 (of those 
with computed tomography angiograms or magnetic 
resonance angiograms reported).

Other Radiological Cerebral Phenotypes

Individuals with COL4A1/2 were also reported to mani-
fest with schizencephaly (8% [24/290] of individuals 
with COL4A1 and 13% [4/31] with COL4A2) and cere-
bellar atrophy (5% [14/290] of individuals with COL4A1 
and 3% [1/31] with COL4A2). Fifteen percent of indi-
viduals with TREX1 (11/73) had pseudotumoral lesions.

Particular Patterns to Lesion Location or 
Severity to Help Identify Cases in Practice

A unique feature of individuals with HTRA1HomZ was the 
presence of arc-shaped hyperintense lesions from the 

Figure 4.  Frequency of radiological cerebral phenotypes by gene.
Hemorrhage: intracerebral hemorrhage, intraventricular hemorrhage or porencephalic cysts. HetZ indicates heterozygous; HomZ, 
homozygous/compound heterozygous; and N, number of individuals with neuroimaging. Of those with computed tomography 
angiograms or magnetic resonance angiograms reported are indicated by asterisk (*).

D
ow

nloaded from
 http://ahajournals.org by on July 20, 2022



J Am Heart Assoc. 2022;11:e025629. DOI: 10.1161/JAHA.121.025629� 10

Whittaker et al� Cerebral Phenotypes in Monogenic cSVD

pons to the middle cerebellar peduncles referred to as 
the “arc sign” (9% [4/44] of individuals) (Figure 5).20 A 
unique feature of individuals with HTRA1HetZ was the 
presence of dilated PVSs in the basal ganglia referred 
to as “status cribrosum” or “état crible” (13% [9/70] indi-
viduals) (Figure 6).2,21 Overall, the descriptions provided 
were not detailed enough to identify further patterns 
for other genes.

Vascular Risk Factor Stratification
Fourteen percent (134/928) of individuals across all 
genes were reported to have ≥1 vascular risk factors. 
Of these individuals, 62% (88/134) reported clinical 
stroke, compared with 34% (272/794) of individu-
als with no reported risk factors (P<0.01), while 78% 
(104/134) reported vascular features on neuroimag-
ing, compared with 51% (401/794) of individuals with 
no reported risk factors (P<0.01) (Figure 7). The mean 
(median) age was 43 (48) years for those with ≥1 risk 
factor, and 22 (17) years for those with no reported risk 
factors. This analysis excludes individuals for whom 
data on risk factors or phenotypes were not available 
on an individual basis.

Variant Pathogenicity Assessment
VEP produced results from ≥1 of its subcomponents 
for 15% to 66% of variants overall (SnpEff, 66%; ClinVar, 
15%; SIFT, 60%; and Polymorphism Phenotyping 
v2, 62%), although there was substantial variability 
for these estimates across different genes. While the 
percentage of variants with supporting evidence of 

pathogenicity was high (81%–99%) when studying only 
the group of variants with data available, this appeared 
much lower when including all variants regardless of 
whether VEP was able to process them (12%–65%). 
Again, there was substantial variability across individ-
ual genes (Tables S3 and S4).

DISCUSSION
Vascular changes are commonly seen on neuroimag-
ing in individuals with rare variant(s) in cSVD genes. 
Where data are available, the most frequent radiologi-
cal manifestations are WMLs and ischemic changes 
and, as expected, most lesions are deep. Common 
clinical phenotypes include clinical stroke, psychiat-
ric symptoms, and, most frequently reported, cogni-
tive decline. Overall, radiological vascular phenotypes 
were more common than clinical neurological pheno-
types. However, when interpreting these results, it is 
important to bear in mind that variation in the mean 
age of affected individuals may explain some of the dif-
ferences in phenotypes between genes (eg, increased 
age is a risk factor for both clinical stroke and vascular 
cerebral phenotypes on neuroimaging).

Both ICH and ischemic stroke were described for 
all cSVD genes, although the most common stroke 
subtype was hemorrhagic for COL4A1/2 and isch-
emic for the remaining genes. Enlarged perivascular 
spaces were infrequently reported, which may reflect 
this feature being less apparent with older imaging 
modalities, difficult to differentiate from other lesions 
such as lacunes,2 or less commonly reported on 
neuroimaging.

The frequency of both clinical stroke and vascular 
radiological features on neuroimaging was higher for 
those with at least 1 vascular risk factor, compared 
with those with no reported risk factors. However, 
vascular risk factors were generally poorly reported 
(therefore, their presence cannot be excluded in most 
cases), age is highly likely to be a confounding factor, 
and individuals presenting with stroke/vascular radio-
logical features are more likely to be investigated for 
vascular risk factors. More research is needed to un-
derstand the role for a focused effort on addressing 
modifiable vascular risk factors in the management of 
monogenic cSVDs.

We identified only 14 individuals with a putative 
pathogenic variant in CTSA. This is likely (at least partly) 
explained by the relatively recent description of its as-
sociation with cSVD, but the small overall number of 
affected individuals limit the conclusions that can be 
drawn about its phenotype associations.

The strengths of our study are (1) a comprehensive 
search strategy, including foreign-language papers 
and abstracts; (2) systematic data extraction follow-
ing a preset spreadsheet with a comprehensive list of 

Figure 5.  Example of the “arc sign” of the cerebellopontine 
peduncle on MRI imaging.
Reproduced with permission from Yu et al [22]. Copyright © 2020 
Elsevier.
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variables to be collected, while also allowing for novel 
phenotypes to be recorded; and (3) inclusion of several 
cSVD genes, allowing comparisons to be made across 
these.

This research also has some limitations. First, re-
porting for some variables was poor. For example, 
region of origin as a marker of ethnicity was fre-
quently poorly reported and therefore often had to 
be assumed on the basis of information such as the 
location of the authors’ institute. It is possible that 
some true differences between ethnicities may not 
have been revealed because of incorrect categori-
zation. Furthermore, individuals from African and 
South American regions were reported rarely (none 
reported in 5/7 genes; ≤2% of individuals in 2/7 
genes). The understudy of these populations, which 
comprise over a fifth of the world population, may 
limit our appreciation of the breadth and frequency 
of phenotypes that exist. The frequency of neuroim-
aging reporting was also low for some genes, and 
it is unknown if neuroimaging was not reported be-
cause of lack of positive findings or whether it was 
not done at all. Second, case reports and case se-
ries have many inherent biases that are difficult to 
control for (eg, testing bias, publication bias, and re-
porting bias). In addition, the case reports included 
in this research appeared to lack use of a reporting 
structure. Current guidelines such as CARE (CAse 
REports)24,25 do not work so well in the field of rare 
genetic diseases, so new, tailored guidelines could 
help improve the consistency of reporting.

The frequency profile of clinical cerebral phenotypes 
associated with monogenic cSVDs suggests that it is 
important to consider a broader spectrum of manifes-
tations when identifying potential patients for genetic 
testing. Specifically, cognitive involvement appeared 
even more frequently than clinical stroke for several 
genes. Our results also show that in monogenic cSVD 
a radiological vascular phenotype is described more 
frequently than clinical cerebral phenotypes, suggest-
ing a potential benefit of radiological screening, both 
for patients and for at-risk family members.

Mancuso et al26,27 and Guey et al26,27 provide expert 
recommendations regarding indications for monogenic 
cSVD testing in a clinical context. Our work broadly 
supports these existing recommendations, including 
“red flag” suggestive clinical and radiological features 
and age of onset for each gene.

It is also notable that across several monogenic 
cSVDs, WMLs were commonly identified in the tem-
poral region, a feature that has previously been asso-
ciated with cerebral autosomal dominant arteriopathy 
with subcortical infarcts and leukoencephalopathy 
(caused by NOTCH3 mutations).28 It is therefore im-
portant to also consider other cSVD genes in the pres-
ence of this feature.

Finally, according to OMIM (https://www.omim.
org), headache is a known phenotype associated with 
TREX1 rare variants, thus its high frequency in individ-
uals with TREX1 was expected. However, other genes 
associated in OMIM with headache (COL4A1, ADA2, 
and HTRA1) were not found to have a clear association 
with this phenotype in our review. Forty-three percent 
of individuals with CTSA (albeit among a total of only 14 
individuals) also reported headache, which is more than 
the expected population prevalence of 15%,29 suggest-
ing a potentially novel associated phenotype. Epilepsy 
was another common phenotype in COL4A1/2, as sug-
gested by OMIM and previous literature.30

Figure 6.  Example of “état crible” on MRI imaging.
Reprinted with permission from Pati et al [23] Copyright 2018, 
Springer.

Figure 7.  Frequency of cerebral phenotypes, stratified by 
presence of vascular risk factors.
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VEP predicted 81% to 99% of the processed vari-
ants to have a high likelihood of being pathogenic. 
However, since these percentages are calculated only 
among variants with data available, this introduces a 
bias, as some variants without data (eg, synonymous 
single-nucleotide polymorphisms) have a lower prior 
likelihood of being pathogenic. Adjusting these calcu-
lations to include all variants resulted in only 12% to 
65% of variants having supporting evidence of patho-
genicity, with substantial variability for results across 
individual genes. Also, it is possible that some vari-
ants have been submitted to ClinVar on the basis of 
the same case report/case series included in our re-
view. This makes it difficult to draw robust conclusions 
about included variants’ pathogenicity.

The findings summarized here have potential clinical 
implications for the diagnosis and follow-up of mono-
genic cSVDs, especially in conjunction with previous 
data of associated extracerebral phenotypes.5 Having 
said this, to get a more comprehensive and less biased 
overview of the clinical and radiological consequences 
of monogenic cSVDs, further work should address 
these same questions using a genotype-first approach 
(ie, studying this in a population-based setting and 
among individuals selected on the basis of carrying the 
variant of interest, regardless of their phenotype). The 
emergence of prospective population-based studies 
with biosamples yielding genetic data at scale, such 
as the UK Biobank (https://www.ukbio​bank.ac.uk), will 
make this possible and complement our study findings.

In summary, we found that individuals with rare vari-
ant(s) in our genes of interest appear to develop vascular 
features on neuroimaging. Clinical stroke and cognitive 
and psychiatric features are also common. The pheno-
type profiles appear to differ across monogenic cSVD 
genes, however, these results may be affected by age 
and other biases inherent to case reports. In the future, 
better characterization of associated phenotypes, as 
well as insights from population-based studies, should 
improve our understanding of monogenic cSVD to in-
form genetic testing, guide clinical management, and 
help unravel underlying disease mechanisms.
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Supplemental Methods: Decisions and Assumptions made when extracting data 

Demographic data 

• Age: sometimes specific ages weren’t reported but rather an approximate age or

greater/less than a particular age was provided. In these cases we took a best

estimation, erring towards overestimating age in some cases so as to minimise

overestimation of the burden of the disease in younger brains. For example: <1 = 0,

<2 = 1, <27 = 26, ≤26 = 26, early 50s = 52, mid-40s = 45.

Clinical data 

• Clinical stroke classification required reporting of symptoms, i.e. not just radiological

description

• Intellectual disability was classified under developmental delay

Radiology data 

• When scan findings only described 'hemosiderin deposits' we did not take it to mean

a confirmed bleed or microbleed

• Cerebral matter loss in <18 year old was recorded as ‘other’ rather than ‘atrophy’

• If a scan was described as showing 'stable findings'/’no changes’ or equivalent, we

marked the scan as showing the same pathology as the previous scan of the same

patient

• In general, author interpretations which used words such as ‘probable’ or ‘suggests’

were taken to mean the feature was present, while author interpretations which

used words such as ‘possible’ or ‘might be’ were not sufficient to consider the

feature present

• We took 'periventricular gliosis' to mean white matter lesions

• We classified haemorrhage at the splenium of corpus callosum as ‘deep’

• We took 'Hyperintense signal adjacent to the horn of the lateral ventricle' to mean

periventricular white matter lesions

• External capsule, internal capsule, centrum semiovale and corona radiata locations

qualified as deep

• Punctate hemorrhages were taken to mean brain microbleeds

• Regarding severity of white matter lesions, we assumed the following:

• ‘Severe’ when described as: extensive, diffuse, severe, widespread,

confluent, Fazekas score 3, disseminated

• ‘Not severe’ when described as subtle, early/beginning confluent, limited,

moderate, mild, weak, Fazekas score 1 or 2, punctiform

• If a scan was implied but not explicitly stated, we decided whether it was more likely

a scan was done than not and assumed based on that – e.g. “haemorrhage in the

right frontal area” was taken to mean a scan had been done

• We took a ‘petechial spot’ to mean a microbleed

• We took porencephalic cysts to be a subcategory of intracerebral haemorrhage

Data S1.
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Search Strategy 

1. CADASIL/

2. (CADASIL or "Cerebral autosomal dominant arterio$ with subcortical infarct$ and

leukoencephalopathy" or (Dementia and hereditary and multi?infarct) or "Familial vascular

leukoencephalopathy" or CASIL or "Cerebral arterio$ with subcortical infarct$ and

leukoencephalopathy" or "Chronic familial vascular encephalopathy" or "Familial disorder

with subcortical ischemic stroke$" or "Agnogenic medial arteriopathy" or "Familial

Binswanger$ disease" or (cerebral and autosomal dominant and arterio$ and infarct$ and

leukoencephalophy)).af.

3. (CARASIL or "Maeda$ syndrome" or "Cerebral autosomal recessive arterio$ with

subcortical infarct$ and leukoencephalopathy" or ("Subcortical Vascular Encephalopathy"

and Progressive) or "Cerebrovascular Disease With Thin Skin Alopecia And Disc Disease" or

"Nemoto disease" or (cerebral and autosomal recessive and arterio$ and infarct$ and

leukoencephalophy) or "Familial young adult onset arterio$ leukoencephalopathy with

alopecia and lumbago").af.

4. ((COL4A1$ and (leukoencephalopathy or small vessel disease or autosomal dominant or

infantile hemiparesis or retinal arter$ tortuosity or RATOR or PADMAL or "pontine

autosomal dominant microangiopathy and leukoencephalopathy" or Walker Warburg or

porencephaly 1 or "small vessel disease of the brain with or without ocular abnormalities"

or BSVD)) or HANAC or (hereditary angio$ and nephropath$ and aneurysm$ and cramp$) or

((autosomal dominant or familial or hereditary) and (h?ematuria and Retinal Arter$

Tortuosity)) or ("Autosomal dominant familial porencephaly" or "Hereditary multi infarct

dementia" or HEMID or hMID) or (multi-infarct dementia and Swedish) or "Nonsyndromic

autosomal dominant congenital cataract").af.

5. Muscle Cramp/ and Raynaud Disease/

6. (COL4A2 and (Porencephaly or stroke or Microbleed$ or h?emorrhage or

leukoencephalopathy or small vessel disease or autosomal recessive or infantile hemiparesis

or retinal arter$ tortuosity)).af.

7. (RVCL or "Retinal vasculopathy with cerebral leukodystrophy" or ($retinal vascul$ and

(hereditary or familial)) or ((Cerebroretinal Vasculopathy and Hereditary) or "hereditary

vascular retinopathy") or "Grand-Kaine-Fulling syndrome" or HERNS or Hereditary Systemic

Angiopathy or (hereditary and endotheliopathy and retin$ and nephro$ and stroke$) or

(hereditary and retin$ and (raynaud$ or migraine)) or ADRVCL or (Autosomal Dominant and

Retin$ and (leukodystrophy or leukoenchalopathy))).af.

8. ("Early-onset stroke and vasculopathy associated with mutations in ADA2" or (Stroke and

vasc$ and ADA2) or ((deficien$ and (ADA 2 or ADA2 or adenosine deaminase-2)) or DADA2

or DADA 2 or (Vasculitis and ADA2 deficien$)) or Sneddon Syndrome or (Polyarteritis nodosa

and Childhood onset)).af.
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9. (CARASAL or (Cathepsin A related arteriopathy with stroke? and

leukoencephalopathy)).af.

10. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9

11. (NOTCH?3 or Notch 3 or "Neurogenic locus notch homolog protein 3").af.

12. (TREX?1 or TREX 1 or "Three prime repair exonuclease 1").af.

13. (COL4A1 or COL4A2 or COL4 A1 or COL4 A2 or "COL4 A 1" or "COL4 A 2" or "COL 4 A1" or

"COL 4 A2").af.

14. (Collagen and ("type IV" or "type 4") and (alpha?1 or alpha?2 or alpha 1 or alpha 2)).af.

15. Collagen Type IV/

16. (alpha?1 or alpha?2 or alpha 1 or alpha 2).af.

17. 15 and 16

18. (HTRA?1 or HTRA 1 or "HtrA serine peptidase 1" or "HtrA serine protease 1").af.

19. (CECR?1 or CECR 1 or "Cat eye syndrome critical region protein 1" or "adenosine

deaminase 2" or ADA2 or ADA 2).af.

20. (FOXC?1 or FOX C1 or FOXC 1 or "FOX C 1" or "forkhead box C?1" or "Forkhead box C

1").af.

21. (PITX?2 or PITX 2 or "paired-like homeodomain 2" or "pituitary homeobox 2" or "Paired-

like homeodomain transcription factor 2").af.

22. (Cathepsin?A or Cathepsin A or CathA or Cath A or CTSA).af.

23. 11 or 12 or 13 or 14 or 17 or 18 or 19 or 20 or 21 or 22

24. exp Cerebral Small Vessel Diseases/

25. exp Cerebrovascular Disorders/

26. exp stroke/

27. exp dementia, vascular/

28. Brain Diseases/

29. exp basal ganglia cerebrovascular disease/

30. exp brain ischemia/

31. exp intracranial arterial diseases/

32. exp Cerebral Hemorrhage/

33. exp intracranial hemorrhages/

34. leukomalacia, periventricular/

35. stroke, lacunar/

36. Leukoaraiosis/

37. Leukoencephalopathies/

38. White Matter/

39. Infarction/

40. ("Cerebral Small Vessel Disease?" or cerebrovascular).af.

41. (White matter hyperintensit$ or WMH$ or White matter MR hyperintensit$ or White

matter magnetic resonance hyperintensit$ or Subcortical hyperintensit$ or White matter
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lesion? or WML$ or Hyper intensit$ or Leukodystroph$ or Leukoaraiosis or Leukomalacia or 

White Matter Change? or WMC? or White Matter Disease or WMD or White matter damage 

or Grey matter hyperintensit$ or Brainstem hyperintensit$ or Subcortical hyperintensit$ or 

White matter hypoattenuation? or White matter hypodensit$ or Leukoencephalopath$).af.  

42. (Subcortical infarct? or Cerebral infarct$ or Brain infarct$ or Silent brain infarct$ or

Striatocapsular infarct$ or Lacunar infarct$ or Lacune? or Lacunar stroke? or Lacunar

syndrome or Stroke? or Vascular lesion?).af.

43. (Microbleed? or Cerebral Microbleed or CMB? or Hypointense lesion? or Subcortical

H?emorrhage or Intracerebral h?emorrhage or Cortical siderosis or Superficial siderosis).af.

44. (Perivascular space? or Virchow Robin space? or Type 3 lacune? or Etat crible).af.

45. (Brain atrophy or Cerebral atrophy or Global atrophy or Corpus callosum atrophy or

Central atrophy or Mesencephalic atrophy or Hippocampal atrophy or Cortical thinning).af.

46. 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or

39 or 40 or 41 or 42 or 43 or 44 or 45

47. 23 and 46

48. 10 or 47

49. limit 48 to humans

50. remove duplicates from 49

D
ow

nloaded from
 http://ahajournals.org by on July 20, 2022



D
ow

nloaded from
 http://ahajournals.org by on July 20, 2022



Table S1. Frequency and Subtypes of Cerebral Clinical 

Features COL4A1 
(N=390) 

TREX1 
(N=123) 

HTRA1HomZ 
(N=44) 

COL4A2 
(N=41) 

ADA2 
(N=346) 

HTRA1HetZ

(N=82) 
CTSA 

(N=14) 

% (n/N) 

CLINICAL 
STROKE 

Unknown/ absent 59 (229/390) 91(112/123) 70 (31/44) 78 (32/41) 67(231/346) 48 (39/82) 50 (7/14) 

Present 41 (161/390) 9 (11/123) 30 (13/44) 22 (9/41) 33 (115/346) 52 (43/82) 50 (7/14) 

Ischaemic 15 (24/161) 82 (9/11) 54 (7/13) 0 (0/9) 53 (61/115) 53 (23/43) 71 (5/7) 

Ischaemic 15 (24/161) 73 (8/11) 46 (6/13) 11 (1/9) 55 (63/115) 44 (19/43) 43 (3/7) 

TIA 2 (3/161) 0 (0/11) 8 (1/13) 0 (0/9) 5 (6/115) 14 (6/43) 43 (3/7) 

Eye infarction 0 (0/161) 9 (1/11) 0 (0/13) 0 (0/9) 3 (4/115) 0 (0/43) 14 (1/7) 

Venous 
thrombosis/infarct 

0 (0/161) 0 (0/11) 0 (0/13) 0 (0/9) 0 (0/115) 0 (0/43) 14 (1/7) 

Haemorrhagic 72 (116/161) 0 (0/11) 8 (1/13) 89 (8/9) 12 (14/115) 5 (2/43) 0 (0/7) 

ICH 32 (51/161) 0 (0/11) 8 (1/13) 22 (2/9) 20 (23/115) 14 (6/43) 29 (2/7) 

IVH 4 (7/161) 0 (0/11) 0 (0/13) 0 (0/9) 0 (0/115) 0 (0/43) 0 (0/7) 

Porencephalic cyst 47 (76/161) 0 (0/11) 0 (0/13) 78 (7/9) 0 (0/115) 0 (0/43) 0 (0/7) 

Ischaemic and 
haemorrhagic 

1 (2/161) 0 (0/11) 0 (0/13) 11 (1/9) 8 (9/115) 9 (4/43) 29 (2/7) 

Unspecified/ 
no detail 

12 (19/161) 18 (2/11) 38 (5/13) 0 (0/9) 27 (31 /115) 33 (14/43) 0 (0/7) 

COGNITIVE 
FEATURES 

Unknown/ absent 67 (262/390) 71 (87/123) 36 (16/44) 73 (30/41) 100(346/346) 44 (36/82) 36 (5/14) 

Present 33 (128/390) 29 (36/123) 64 (28/44)# 27 (11/41) 0 (0/346) 56 (46/82) 64 (9/14) 

Present (≥18 y) 23 (30/131) 34 (36/106) 65 (20/31) 0 (0/13) 0 (0/85) 62 (46/74) 64 (9/14) 

Dementia* 
3 (4/128) 
17 (5/30) 

0 (0/36) 
0 (0/36) 

32 (9/28) 
45 (9/20) 

0 (0/11) 
0 (0/0) 

0 (0/0) 
0 (0/0) 

13 (6/46) 
13 (6/46) 

0 (0/9) 
0 (0/9) 
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Cognitive 
impairment- no 
ADL impact* 

2 (2/128) 
7 (2/30) 

0 (0/36) 
0 (0/36) 

0 (0/28) 
0 (0/20) 

0 (0/11) 
0 (0/0) 

0 (0/0) 
0 (0/0) 

15 (7/46) 
15 (7/46) 

0 (0/9) 
0 (0/9) 

Cognitive 
impairment- no 
ADL detail* 

12 (15/128) 
(22/30) 

97 (35/36) 
100 (35/36) 

68 (19/28) 
55 (11/20) 

0 (0/11) 
0 (0/0) 

0 (0/0) 
0 (0/0) 

65 (30/46) 
65 (30/46) 

100 (9/9) 
100 (9/9) 

Subjective 
cognitive decline* 

0 (0/128) 
73 (0/30) 

0 (0/36) 
0 (0/36) 

0 (0/28) 
0 (0/20) 

0 (0/11) 
0 (0/0) 

0 (0/0) 
0 (0/0) 

7 (3/46) 
7 (3/46) 

0 (0/9) 
0 (0/9) 

Developmental 
delay 

83 (106/128) 0 (0/36) 0 (0/28) 100 (11/11) 0 (0/0) 0 (0/46) 0 (0/9) 

PSYCHIATRIC 
FEATURES 

Unknown/ absent 98 (382/390) 71 (87/123) 68 (30/44) 100 (41/41) 100(346/346) 78 (64/82) 43 (6/14) 

Present 2 (8/390) 29 (36/123) 32 (14/44) 0 (0/41) 0 (0/346) 22 (18/82) 57 (8/14) 

Psychosis 0 (0/8) 6 (2/36) 7 (1/14) 0 (0/0) 0 (0/0) 6 (1/18) 0 (0/8) 

Depression 
symptoms 

25 (2/8) 17 (6/36) 64 (9/14) 0 (0/0) 0 (0/0) 67 (12/18) 88 (7/8) 

Anxiety 0 (0/8) 3 (1/36) 14 (2/14) 0 (0/0) 0 (0/0) 0 (0/18) 0 (0/8) 

Irritability/ 
agitation 

25 (2/8) 8 (3/36) 64 (9/14) 0 (0/0) 0 (0/0) 0 (0/18) 13 (1/8) 

Emotional lability 13 (1/8) 0 (0/36) 21 (3/14) 0 (0/0) 0 (0/0) 28 (5/18) 13 (1/8) 

OCD 0 (0/8) 0 (0/36) 0 (0/14) 0 (0/0) 0 (0/0) 6 (1/18) 0 (0/8) 

Unspecified/ 
no detail 

0 (0/8) 78 (28/36) 0 (0/14) 0 (0/0) 0 (0/0) 0 (0/18) 0 (0/8) 

HEADACHE 

Unknown/ absent 93 (362/390) 69 (85/123) 95 (42/44) 98 (40/41) 95 (329/346) 91 (75/82) 57 (8/14) 

Present 7 (28/390) 31 (38/123) 5 (2/44) 2 (1/41) 5 (17/346) 9 (7/82) 43 (6/14) 

Migraine 68 (19/28) 84 (32/38) 50 (1/2) 100 (1/1) 24 (4/17) 43 (3/7) 83 (5/6) 

Unspecified 32 (9/28) 16 (6/38) 50 (1/2) 0 (0/1) 76 (13/17) 57 (4/7) 17 (1/6) 

HetZ=heterozygous; HomZ=homozygous/compound heterozygous; N=overall number of individuals; n=number of affected individuals; 
ADL=activities of daily living; #8 cases with unknown age; * second row: only individuals ≥18 years; assumed Stam et al cohort were all ≥18 y. 
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Table S2. Frequency of Vascular Radiological Cerebral Phenotypes by Location and Severity 

COL4A1 
(N=290) 

TREX1 
(N=73) 

HTRA1HomZ 

(N=44) 
COL4A2 
(N=31) 

ADA2 
(N=119) 

HTRA1HetZ

(N=70) 
CTSA 

(N=14) 

% (n/N) 

ISCHAEMIA 

To
ta

l
s

Present 16 (47/290) 8 (6/73) 34 (15/44) 0 (0/31) 44 (52/119) 66 (46/70) 57 (8/14) 

Unknown/Absent 84(243/290) 92 (67/73) 66 (29/44) 100(31/31) 56 (67/119) 34 (24/70) 43 (6/14) 

Lo
ca

ti
o

n
 

Su
p

ra
te

n
to

ri
al

Deep/ lacunar 43 (20/47) 100 (6/6) 53 (8/15) 0 (0/0) 42 (22/52) 46 (21/46) 75 (6/8) 

Cortical 2 (1/47) 0 (0/6) 0 (0/15) 0 (0/0) 2 (1/52) 2 (1/46) 25 (2/8) 

Unknown 4 (2/47) 0 (0/6) 20 (3/15) 0 (0/0) 10 (5/52) 15 (7/46) 0 (0/8) 

In
fr

at
en

to
r

ia
l

Brainstem 51 (24/47) 0 (0/6) 53 (8/15) 0 (0/0) 44 (23/52) 26 (12/46) 0 (0/8) 

Cerebellum 2 (1/47) 0 (0/6) 0 (0/15) 0 (0/0) 2 (1/52) 0 (0/46) 25 (2/8) 

Unknown 0 (0/47) 0 (0/6) 0 (0/15) 0 (0/0) 0 (0/52) 0 (0/46) 0 (0/8) 

O
ve

ra
ll 

Any deep 83 (39/47) 100 (6/6) 67 (10/15) 0 (0/0) 77 (40/52) 78 (36/46) 100 (8/8) 

No deep 2 (1/47) 0 (0/6) 0 (0/15) 0 (0/0) 0 (0/52) 0 (0/46) 0 (0/8) 

Unknown 15 (7/47) 0 (0/6) 33 (5/15) 0 (0/0) 23 (12/52) 22 (10/46) 0 (0/8) 

B
u

rd
e

n
n

Single lesion 2 (1/47) 33 (2/6) 0 (0/15) 0 (0/0) 37 (19/52) 0 (0/46) 50 (4/8) 

Multiple lesions 57 (27/47) 50 (3/6) 87 (13/15) 0 (0/0) 56 (29/52) 100(46/46) 38 (3/8) 
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Unknown 40 (19/47) 17 (1/6) 13 (2/15) 0 (0/0) 8 (4/52) 0 (0/46) 13 (1/8) 

HAEMORRHAGE 

To
ta

l
s

Present 41(118/290) 0 (0/73) 2 (1/44) 68 (21/31) 10 (12/119) 7 (5/70) 7 (1/14) 

Unknown/Absent 59(172/290) 100(73/73) 98 (43/44) 32 (10/31) 90(107/119) 93 (65/70) 93(13/14) 

Porencephaly 61 (72/118) 0 (0/0) 0 (0/1) 76 (16/21) 0 (0/12) 0 (0/5) 0 (0/1) 

IVH 7 (8/118) 0 (0/0) 0 (0/1) 0 (0/21) 0 (0/12) 0 (0/5) 0 (0/1) 
Lo

ca
ti

o
n

 

Su
p

ra
te

n
to

ri
al

 Deep/ lacunar 25 (29/118) 0 (0/0) 0 (0/1) 14 (3/21) 50 (6/12) 40 (2/5) 100 (1/1) 

Cortical 2 (2/118) 0 (0/0) 0 (0/1) 0 (0/21) 8 (1/12) 0 (0/5) 0 (0/1) 

Unknown 13 (15/118) 0 (0/0) 0 (0/1) 10 (2/21) 42 (5/12) 0 (0/5) 0 (0/1) 

In
fr

at
en

to
ri

al
 Brainstem 2 (2/118) 0 (0/0) 0 (0/1) 0 (0/21) 0 (0/12) 20 (1/5) 0 (0/1) 

Cerebellum 6 (7/118) 0 (0/0) 100 (1/1) 0 (0/21) 0 (0/12) 0 (0/5) 0 (0/1) 

Unknown 0 (0/118) 0 (0/0) 0 (0/1) 0 (0/21) 0 (0/12) 0 (0/5) 0 (0/1) 

O
ve

ra
ll 

Any deep 56 (36/64) 0 (0/0) 100 (1/1) 60 (3/5) 50 (6/12) 60 (3/5) 100 (1/1) 

No deep 3 (2/64) 0 (0/0) 0 (0/1) 0 (0/5) 8 (1/12) 0 (0/5) 0 (0/1) 

Unknown 41 (26/64) 0 (0/0) 0 (0/1) 40 (2/5) 42 (5/12) 40 (2/5) 0 (0/1) 
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B
u

rd
en

 

Single lesion 45 (53/118) 0 (0/0) 100 (1/1) 76 (16/21) 25 (3/12) 100 (5/5) 100 (1/1) 

Multiple lesions 39 (46/118) 0 (0/0) 0 (0/1) 19 (4/21) 8 (1/12) 0 (0/5) 0 (0/1) 

Unknown 16 (19/118) 0 (0/0) 0 (0/1) 5 (1/21) 67 (8/12) 0 (0/5) 0 (0/1) 

WML 

To
ta

ls
 Present 58(167/290) 89 (65/73) 98 (43/44) 29 (9/31) 3 (3/119) 96 (67/70) 100(14/14) 

Unknown/Absent 42(123/290) 11 (8/73) 2 (1/44) 71 (22/31) 97 116/119) 4 (3/70) 0(0/14) 

Lo
ca

ti
o

n
 

G
en

er
al

 

Periventricular 
only 

26 (43/167) 9 (6/65) 0 (0/43) 78 (7/9) 33 (1/3) 7 (5/67) 0 (0/14) 

Deep only 5 (9/167) 2 (1/65) 14 (6/43) 0 (0/9) 33 (1/3) 24 (16/67) 0 (0/14) 

Both 14 (24/167) 2 (1/65) 21 (9/43) 0 (0/9) 0 (0/3) 25 (17/67) 93 (13/14) 

Unknown 54 (91/167) 88 (57/65) 65 (28/43) 22 (2/9) 33 (1/3) 43 (29/67) 7 (1/14) 

R
eg

io
n

 

Temporal 7 (11/167) 0 (0/65) 30 (13/43) 11 (1/9) 0 (0/3) 7 (5/67) 0 (0/14) 

Frontal 3 (5/167) 0 (0/65) 5 (2/43) 11 (1/9) 0 (0/3) 0 (0/67) 86 (12/14) 

Parietal 2 (3/167) 0 (0/65) 2 (1/43) 0 (0/9) 0 (0/3) 0 (0/67) 86 (12/14) 

Brainstem 2 (3/167) 0 (0/65) 21 (9/43) 0 (0/9) 0 (0/3) 9 (6/67) 7 (1/14) 

Unknown 89(149/167) 100(65/65) 63 (27/43) 89 (8/9) 100 (3/3) 85 (57/67) 7 (1/14) 

B
u

rd
e

n

Severe 35 (59/167) 5 (3/65) 95 (41/43) 22 (2/9) 0 (0/3) 12 (8/67) 93 (13/14) 

Not severe 12 (20/167) 3 (2/65) 0 (0/43) 0 (0/9) 0 (0/3) 49 (33/67) 0 (0/14) 
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Unknown 53 (88/167) 92 (60/65) 5 (2/43) 78 (7/9) 100 (3/3) 39 (26/67) 7 (1/14) 

MICROBLEEDS 

To
ta

l
s

Present 10 (29/290) 1 (1/73) 30 (13/44) 6 (2/31) 0 (0/119) 27 (19/70) 21 (3/14) 

Unknown/Absent 90(261/290) 99 (72/73) 70 (31/44) 94 (29/31) 100(119/119) 73 (51/70) 79 (11/14) 

Lo
ca

ti
o

n
 

Su
p

ra
te

n
to

ri
al

 Deep/ lacunar 52 (15/29) 0 (0/1) 31 (4/13) 50 (1/2) 0 (0/0) 47 (9/19) 100 (3/3) 

Cortical 3 (1/29) 0 (0/1) 8 (1/13) 0 (0/2) 0 (0/0) 0 (0/19) 0 (0/3) 

Unknown 14 (4/29) 0 (0/1) 46 (6/13) 0 (0/2) 0 (0/0) 26 (5/19) 0 (0/3) 

In
fr

at
en

to
ri

al
 Brainstem 21 (6/29) 0 (0/1) 31 (4/13) 0 (0/2) 0 (0/0) 16 (3/19) 33 (1/3) 

Cerebellum 10 (3/29) 0 (0/1) 0 (0/13) 0 (0/2) 0 (0/0) 11 (2/19) 33 (1/3) 

Unknown 3 (1/29) 0 (0/1) 23 (3/13) 0 (0/2) 0 (0/0) 0 (0/19) 0 (0/3) 

O
ve

ra
ll 

Any deep 69 (20/29) 0 (0/1) 62 (8/13) 50 (1/2) 0 (0/0) 53 (10/19) 100 (3/3) 

No deep 0 (0/29) 0 (0/1) 0 (0/13) 0 (0/2) 0 (0/0) 0 (0/19) 0 (0/3) 

Unknown 31 (9/29) 100 (1/1) 38 (5/13) 50 (1/2) 0 (0/0) 47 (9/19) 0 (0/3) 

B
u

rd
en

 

Single lesion 14 (4/29) 0 (0/1) 0 (0/13) 0 (0/2) 0 (0/0) 0 (0/19) 33 (1/3) 

Multiple lesions 76 (22/29) 100 (1/1) 85 (11/13) 100 (2/2) 0 (0/0) 100 19/19) 67 (2/3) 

Unknown 10 (3/29) 0 (0/1) 15 (2/13) 0 (0/2) 0 (0/0) 0 (0/19) 0 (0/3) 
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CEREBRAL 
ATROPHY 

To
ta

l
s

Present 4 (12/290) 1 (1/73) 20 (9/44) 0 (0/31) 3 (4/119) 11 (8/70) 71 (10/14) 

Unknown/Absent 96(278/290) 99 (72/73) 80 (35/44) 100(31/31) 97 (115/119) 89 (62/70) 29 (4/14) 

Lo
ca

ti
o

n
 Global 25 (3/12) 0 (0/1) 0 (0/9) 0 (0/0) 25 (1/4) 25 (2/8) 0 (0/10) 

Focal 42 (5/12) 0 (0/1) 11 (1/9) 0 (0/0) 25 (1/4) 50(4/8) 10 (1/10) 

Unknown 33 (4/12) 100 (1/1) 89 (8/9) 0 (0/0) 50 (2/4) 25 (2/8) 90 (9/10) 
B

u
rd

en
 Severe 42 (5/12) 0 (0/1) 0 (0/9) 0 (0/0) 0 (0/4) 0 (0/8) 0 (0/10) 

Not severe 0 (0/12) 100 (1/1) 11 (1/9) 0 (0/0) 25 (1/4) 50 (4/8) 90 (9/10) 

Unknown 58 (7/12) 0 (0/1) 89 (8/9) 0 (0/0) 75 (3/4) 50 (4/8) 10 (1/10) 

CALCIFICATION 

To
ta

l
s

Present 12 (34/290) 32 (23/73) 0 (0/44) 0 (0/31) 0 (0/119) 0 (0/70) 0 (0/14) 

Unknown/Absent 88(256/290) 68 (50/73) 100(44/44) 100(31/31) 100(119/119) 100(70/70) 100(14/14) 

ENLARGED PVS 

To
ta

l
s

Present 3 (8/290) 0 (0/73) 0 (0/44) 0 (0/31) 0 (0/119) 16 (11/70) 64 (9/14) 

Unknown/Absent 97(282/290) 100(73/73) 100(44/44) 100(31/31) 100(119/119) 84 (59/70) 36 (5/14) 

CEREBRAL 
ANEURYSM To

ta
l

s

Present 36 (13/36) 0 (0/1) 0 (0/9) 60 (3/5) 6 (1/17) 0 (0/2) 0 (0/1) 

Unknown/Absent 64 (23/36) 100 (1/1) 100 (9/9) 40 (2/5) 94 (16/17) 100 (2/2) 100 (1/1) 

HetZ=heterozygous; HomZ=homozygous/compound heterozygous; N=overall number of individuals with neuroimaging; n=number of affected 
individuals; WML=white matter lesions(s); PVS=perivascular space(s);  
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Table S3. Variant Effect Predictor Output Summary 

Number of variants 
% variants 
with info 

% pathogenic* 
among variants 

with data 

% pathogenic* 
among 

all variants 

VARIANT IMPACT/CLASSIFICATION OF SEVERITY (SNPEff) 

no info low moderate* high* 

HTRA1 7 0 35 11 87% 100% 87% 

ADA2 43 3 24 18 51% 93% 48% 

COL4A1 43 0 88 23 72% 100% 72% 

COL4A2 1 0 14 1 94% 100% 94% 

TREX1 21 0 2 8 32% 100% 32% 

CTSA 1 0 0 0 0% 0% 0% 

Total 116 3 163 61 66% 99% 65% 

CLINICAL SIGNIFICANCE (ClinVar) 

no info 
uncertain clinical 

significance 
benign 

likely 
benign 

likely 
pathogenic* 

pathogenic* 

HTRA1 30 3 0 0 5 15 43% 87% 38% 

ADA2 76 2 1 0 6 3 14% 75% 10% 

COL4A1 150 1 0 0 0 3 3% 75% 2% 

COL4A2 5 0 0 3 3 5 69% 73% 50% 

TREX1 29 0 0 0 1 1 6% 100% 6% 

CTSA 1 0 0 0 0 0 0% 0% 0% 

Total 291 6 1 3 15 27 15% 81% 12% 

IMPACT ON PROTEIN FUNCTION (SIFT) 

no info tolerated deleterious* 

HTRA1 18 1 34 66% 97% 64% 
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ADA2 43 4 41 51% 91% 47% 

COL4A1 46 9 99 70% 92% 64% 

COL4A2 1 2 13 94% 87% 81% 

TREX1 29 1 1 6% 50% 3% 

CTSA 1 0 0 0% 0% 0% 

Total 138 17 188 60% 92% 55% 

IMPACT ON PROTEIN STRUCTURE AND FUNCTION (PolyPhen-2) 

no info benign 
possibly 

damaging* 
probably 

damaging* 

HTRA1 18 0 4 31 66% 100% 66% 

ADA2 43 5 1 39 51% 89% 45% 

COL4A1 40 2 15 97 74% 98% 73% 

COL4A2 1 0 4 11 94% 100% 94% 

TREX1 29 2 0 0 6% 0% 0% 

CTSA 1 0 0 0 0% 0% 0% 

Total 132 9 24 178 62% 96% 59% 

*category considered to provide supporting evidence for pathogenicity; SnpEff classifies each variant in one of the following output categories:

high impact (variant is assumed to have a disruptive impact in the protein, probably causing protein truncation, loss of function or triggering

nonsense mediated decay), moderate impact (non-disruptive variant that might change protein effectiveness), and low impact (variant

assumed to be mostly harmless or unlikely to change protein behaviour). The ‘modifier’ category is taken to represent no information about

these categories; ClinVar assigns each variant as pathogenic, likely pathogenic, likely benign, benign, or of uncertain clinical significance; SIFT

predicts whether an amino acid substitution is likely to affect protein function based on sequence homology and the physico-chemical

similarity between the alternate amino acids, concluding with a qualitative prediction if a variant is deleterious or tolerated; PolyPhen-2

predicts the effect of an amino acid substitution on the structure and function of a protein using sequence homology, 3D structures where

available, and a number of other databases and tools. It classifies each variant as probably damaging, possibly damaging or benign.
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TABLE S4. Variant Effect Predictor outputs per 

gene A. HTRA1 

Genetic 
mutation 

Protein change Variant information 

c.589C>T p.R197X Stop gained, likely deleterious, high impact. Pathogenic 

c.865C>T p.Q289X Stop gained, likely deleterious, high impact. Pathogenic 

c.1108C>T p.R370X Stop gained, high impact variant. Pathogenic/likely pathogenic 

c.904C>T p.R302X Stop gained, high impact variant. Likely pathogenic 

c.502A.T p.K168ter Stop gained, high impact variant 

c.847G>T p.G283Ter Stop gained, high impact variant 

c.983C>A p.S328* Stop gained, high impact variant 

c.1005+1G>T Splice donor variant, high impact 

c.971A>C p.N324T Missense variant, possible splice region variant with moderate impact. Probably damaging to protein 
structure and conflicting evidence of tolerated/deleterious to protein function. Likely pathogenic 

c.754G>A p.A252T Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein 
structure and deleterious to protein function. Pathogenic 

c.956C>T p.T319I Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.451C>A p.Q151K Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Probably damaging to protein structure and likely to have 
deleterious effect on protein function. Uncertain clinial significance 

c.359G>A p.G120D Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Probably damaging to protein structure and likely to have 
deleterious effect on protein function. Likely pathogenic 

c.361A>C p.S121R Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 
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c.397C>G p.R133G Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Possibly damaging to protein structure but tolerated by protein 
function 

c.367G>T p.A123S Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Only possibly damaging to protein structure and likely to have 
deleterious effect on protein function 

c.821G>A p.R274Q Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious/some reports of tolerated to protein function. Pathogenic 

c.496C>T p.R166C Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious to protein function 

c.517G>A p.A173T Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious to protein function 

c.517G>C p.A173P Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious to protein function 

c.856T>G p.F286V Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious to protein function 

c.854C>A p.P285Q Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Uncertain clinical significance/pathogenic 

c.854C>T p.P285L Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Uncertain clinical significance/pathogenic 

c.616G>A p.G206R Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Uncertain clinical significance 

c.961G>A p.A321T Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Uncertain clinical significance 

c.1091T>C p.L364P Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.497G>T p.R166L Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.614C>G p.S205C Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 
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c.852C>A p.S284R Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.883G>A p.G295R Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.889G>A p.V297M Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.536T>A p.I179N Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Likely pathogenic 

c.827G>C p.G276A Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Likely pathogenic 

c.1021G>A p.G341J Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. 

c.524T>A p. V175E Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.527T>C p.V176A Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.646 G>A p.V216 M Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.847G>A p.G283R Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.848G>A p.G283E Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.850A>G p.S284G Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.905G>A p.R302Q Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.1348G>C p.D450H Missense variant with moderate impact. Only possibly damaging to protein structure and deleterious 
to protein function. 
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c.184-185del Intronic variant, with possible impact on both upstream and downsteam gene regulation, ARMS2. 
Possible influence on lncRNA.  

c.830_831delAG p.E277Vfs Intronic variant with possible influence on upstream gene 

c.126delG p.E42fs Frameshift variant with high impact. Pathogenic 

c.543delT p.A182Pfs*33 Frameshift mutation with high impact. Potentially leading to premature stop. Pathogenic 

c.739delG p.E247Rfs Frameshift mutation with high impact. Potentially leading to premature stop 

c.958G>A p.D320N Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function.  

B. ADA2 

Genetic mutation 
Protein 
change 

Variant information 

c.982G>A p.E328K

Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene, 
and CTCF binding site. Probably damaging/benign to protein structure and likely deleterious to 
protein function/potentially tolerated. 

c.138/144delG
5'UTR variant, intronic variant with possible impact on regulation of upstream gene through 
processing of pseudogene/nonsense mediated decay 

c.37_39del p.K13del
5'UTR variant, intronic variant with possible impact on regulation of upstream gene through 
processing of pseudogene/nonsense mediated decay 

c.143_144insG p.R49Afs*13
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.144 dup p.R49Afs*13
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.144_145ins
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.144del p.R49Gfs*4
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 
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c.144delG p.R49fs
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.144dupG p.R49fs
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.629delT Frameshift variant, high impact with potential impact on both upstream and downstream genes. 

c.427del p.I143Sfs*41
Frameshift variant, high impact. Impact on nonsense mediated decay transcript processing. Possible 
impact on downstream genes 

c.1447_1451del p.S483Pfs*5 Intronic variant, possible impact on transcript processing 

c.680- 681delAT Intronic variant, possible impact on transcript processing 

c.973-?_1081+?del p.V325Tfs*7
Intronic variant, possible retained intron. Could have impact on both upstream, downstream genes 
and nonsense medicated decay transcript processing. 

c.972+3A>G
Intronic, splice region variant with low impact. Possible retained intron and impact on nonsense 
mediated decay transcript processing 

c.326C>A p.A109D
Missense variant with moderate impact, possible 5'UTR variant. Probably damaging to protein 
structure and deleterious to protein function. 

c.336C>A p.H112Q
Missense variant with moderate impact, possible 5'UTR variant. Probably damaging to protein 
structure and deleterious to protein function. 

c.336C>G p.H112Q
Missense variant with moderate impact, possible 5'UTR variant. Probably damaging to protein 
structure and deleterious to protein function.  

c.336G>C p.H112Q
Missense variant with moderate impact, possible 5'UTR variant. Probably damaging to protein 
structure and deleterious to protein function.  

c.962G>A p.G321E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.133C>T p.A45T
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. 

c.1358A>G p.Y453C
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. 

c.385A>C p.T129P
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. 
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c.932T>G p.L311R
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic.  

c.1352T>G p.L451W
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function. 

c.1353G>T p.L451F
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function. 

c.1360G>C
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function. 

c.1373T>A p.V458D
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function. 

c.1223G>A p.C408Y
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function.  

c.1348G>T p.G450C
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function.  

c.1367A>G p.Y456C
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function.Pathogenic 

c.1065C>A p.F355L
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Benign protein structure and tolerated by protein function.  

c.1052T>A p.L351Q
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function. 
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c.1057T>C p.Y353H
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function. 

c.1069G>A p.A357T
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function. 

c.1072G>A p.G358R
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function.  

c.1078A>G p.T360A
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function. 

c.140G>C p.G47A
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.278T>C p.I93T
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.506C>T p.R169Q
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. 

c.506G>A R169Q 
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function.  

c.533T>C p.F178S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. Possible 
retained intron. 

c.139G>T p.G47W
Missense variant, moderate impact and potential modifier of upstream and downstream gene 
regulation, possible impact on processing of pseudogene (FAM32BP). Probably damaging to protein 
structure and likely to have deleterious effect on protein function.Pathogenic 

c.563T>C p.L188P
Missense variant, moderate impact and potential modifier of upstream and downstream gene 
regulation. Probably damaging to protein structure and likely to have deleterious effect on protein 
function 
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c.578C>T p.P193L
Missense variant, moderate impact and potential modifier of upstream and downstream gene 
regulation. Probably damaging to protein structure and likely to have deleterious effect on protein 
function.  

c.139G>A p.G47R
Missense variant, moderate impact and potential modifier of upstream and downstream gene 
regulation. Probably damaging to protein structure and likely to have deleterious effect on protein 
function. Conflicting evidence on clinical significance 

c.650T>A p.V217D
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.712G>A p.D238N
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.872C>T p.S291L
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. 

c.620T>C
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. Uncertain 
clinical significance 

c.791G>C p.W264S
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging/benign to protein structure and could have deleterious/tolerated impact on protein 
function. May cause retained intron.  

c.1110C>A p.N370K
Missense variant, moderate impact, possible 3'UTR variant involved in nonsense mediated decay. 
Probably damaging to protein structure and likely to have deleterious effect on protein function.  

c.1445A>G
Missense variant, splice variant with potential impact on downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Probably damaging to protein structure and 
likely deleterious to protein function. 

c.1226C>A
Missense variant, splice variant with potential impact on downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Probably damaging to protein structure and 
likely deleterious to protein function.  

c.752C>T p.P251L
Missense variant, splice region variant with moderate impact. Possibly damaging to protein structure 
and tolerated by protein function. 

c.424G>A p.G142S Missense variant. Change tolerated by protein function, benign impact on protein structure 
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c.25C>T p.R9W
Missense variant. Deleterious (but some evidnec of low confidence in finding) to protein function, 
benign impact on protein structure 

c.2T>C p.M1T
Missense variant. Deleterious (but some evidnec of low confidence in finding) to protein function, 
benign impact on protein structure 

c.73G>T p.G25C
Missense, splice region variant. Change tolerated by protein function and has benign impact on 
protein structure 

c.882 -2A>G Splice acceptor variant, high impact . Also potential impact on upstream gene regulation 

c.973 -1G>A
Splice acceptor variant, high impact . Also potential regulatory region variant altering TF binding site. 
Could impact upstream gene regulation (RPL32P5) 

c.973 -2A>G
Splice acceptor variant, high impact, may result in retained intron, could impact nonsense mediated 
decay . Also potential regulatory region variant altering TF binding site. Could impact upstream and 
downstream gene regulation (RPL32P5) 

c.973-2A>G
Splice acceptor variant, high impact, may result in retained intron, could impact nonsense mediated 
decay . Also potential regulatory region variant altering TF binding site. Could impact upstream and 
downstream gene regulation (RPL32P5). 

c.542+1G>A Splice donor variant with high impact. Possible impact on nonsense mediated decay 

c.753+2T>A Splice donor variant with high impact. Possible retained intron 

c.753G>A Splice region variant with low impact. May influence downstream and upstream gene regulation. 

c.781delinsCCATA p.D261Pfs*2 Stop gained, frameshift variant with high impact 

c.1196G>A p.W399* Stop gained, high impact 

c.794C>G p.Q265X Stop gained, high impact variant. Possible impact on upstream gene regulation 

c.916C>T p.R306* Stop gained, high impact variant. Possible impact on upstream gene regulation. 

c.660C>A p.Y220X Stop gained, high impact variant. Possible impact on upstream gene regulation. Benign. 

c.47+2T>C Synonymous, intron variant with low impact. Potential retained intron 

C. COL4A1 

Genetic mutation Protein change Variant information 

c.*35C>A 3' UTR variant, regulatory region variant 

c.*31G>T 3'UTR variant, regulatory region variant 
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c.*32G>A 3'UTR variant, regulatory region variant 

c.*32G>T 3'UTR variant, regulatory region variant 

c.*33T>A 3'UTR variant, regulatory region variant 

c.-2C>T 5'UTR variant, with possible impact on upstream gene regulation 

c.2545G>T p.G808V Evidence of stop gained, high impact 

c.2424delT p.P810fs Frameshift mutation with high impact. Potentially leading to premature stop 

c.2931dupT p.G978WfsX15 Frameshift mutation with high impact. Potentially leading to premature stop 

c.3702delC p. G1236* Frameshift mutation with high impact. Potentially leading to premature stop 

c.2085del p.G696fs Frameshift mutation with high impact. Potentially leading to premature stop. Pathogenic. 

c.1121-18G>A Intronic variant possibly leading to retained intron 

c.2645_2646delinsAA p.G882E Intronic variant potentially leading to retained intron 

c.3877-30C>A Intronic variant with possible impact on upstream gene regulation. Intron retained 

c.4582
-4586
dupCCCATG ins.

Intronic variant, retained intron. Likely deleterious and probably damaging. Possible impact on 
upstream gene regulation 

c.4642T>G p.C1548G
Missense & splice region variant with low to moderate effect. Likely to impact protein function and 
probably damaging 

c.2969G>A p.G990E
Missense variant and splice region variant. May result in retained intron. Possible modifier of 
downstream gene regulation. Likely deleterious and probably damaging. 

c.2969G>T p.G990V
Missense variant and splice region variant. May result in retained intron. Possible modifier of 
downstream gene regulation. Likely deleterious and probably damaging. 

c.3200G>A p. G1067E
Missense variant and splice region variant. May result in retained intron. Possible modifier of 
downstream gene regulation. Likely deleterious and probably damaging. 

c.3200G>C p.G1067A
Missense variant and splice region variant. May result in retained intron. Possible modifier of 
downstream gene regulation. Likely deleterious and probably damaging. 

c.3770G>C p.G1257E Missense variant in possible regulatory region. Likely deleterious and probably damaging 

c.3796G>C p.G1266R Missense variant in possible regulatory region. Likely deleterious and probably damaging 

c.3832G>T p.G1278S
Missense variant in possible regulatory region. Likely deleterious and probably damaging. Uncertain 
clinical significance 
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c.3245G>A p.G1082E
Missense variant with moderate impact and possible modifier of downstream gene regulation. Likely 
deleterious and possibly damaging 

c.3280G>C p.G1094R
Missense variant with moderate impact and possible modifier of downstream gene regulation. Likely 
deleterious and possibly damaging 

c.1249G>C p.G417R
Missense variant with moderate impact. Benign impact on protein structure and deleterious to 
protein function 

c.3997G>A p.D1333N
Missense variant with moderate impact. Conflicting evidence of effect on protein function, potentially 
tolerated/potentially deleterious 

c.3592G>A p.G1198R Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3620G>T p.G1207V Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3656G>A p. G1219E Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3671C>T p.P1224L Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3704A>G p.K1235R Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3706G>A p.G1236R Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3707G>A p. G1237E Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3712C>T p.R1238C Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3505G>A p. G1169S
Missense variant with moderate impact. Possible splice region variant, with potential impact on 
downstream gene regulation. Likely deleterious and probably damaging 

c.2512A>G p.M838V
Missense variant with moderate impact. Possibly damaging to protein structure and deleterious to 
protein function 

c.3389G>A p.G1130D
Missense variant with moderate impact. Potentially modifies upstream and downstream gene 
regulation. Likely deleterious and probably damaging 

c.4088 G > A p.G1363D Missense variant with moderate impact. Probably damaging and deleterious to protein function 

c.1502G>A
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.1528G>A p.G510R
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.1583G>A p.G528E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 
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c.1619A>G p.K540R
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2008G>A p.G670R
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2045G>T p. G682V
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2063G>A p.G688D
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2078G>A p.G693E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2086G>A p.G696S
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2086G>T p.G696C
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2132G>A p.G711E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2159G>A p.G720D
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2168G>A p. G723E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2504G>A p.G835E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.625G>A p. G209S
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.634G>A p.G212S
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.1493G>A p.G498D
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic. 
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c.1493G>T p.G498V
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic. 

c.3383T>A p.I1128N
Missense variant with moderate impact. Substitution seems to be tolerated by protein function but 
probably damaging to protein structure 

c.3715G>A p.G1239R Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.3941G>T p.G1314V Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.3976G>A p.G1326R Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.3995G>A p.G1332D Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.4031G>C p.G1344A Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.4105G>C p.G1369R Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.4213G>A p.G1405S Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.1801G>A p. G601S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Only 
possibly damaging to protein structure and likely to have deleterious effect on protein function 

c.1807C>T p.P603S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Only 
possibly damaging to protein structure and likely to have deleterious effect on protein function 

c.1555G>A p.G519R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.1835G>A p.G612D
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.1853G > A p.G618E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2494G>A p.G832R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2563G>C p.G855R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2581G>A p.G861S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2599G>A p.G867R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 
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c.2608G>A p.G870R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2636G>A p.G879E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2645G>A p.G882D
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2662G>A p.G888R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2689G>A p.G897S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2699G>A p.G900E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2744G>A p.G915E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2782G>C p.D928H
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2842G>A p.G948S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2987G>A p.G996D
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3022G>A p.G1008R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3040G>C p.G1014R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3104G>T p.G1035V
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3122G>A p.G1041E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 
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c.3130G>C p.G1044E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3190G>A p.G1064S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.191G>T p.G64V
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. Possible 3'UTR 
variant. 

c.4739G>C p.G1580A
Missense variant, moderate impact, deleterious and likely to impact protein function, probably 
damaging 

c.4881C>G p.N1627K
Missense variant, moderate impact, deleterious and likely to impact protein function, probably 
damaging 

c.4843G>A p.E1615K Missense variant, Moderate impact, possibly retained intron, probably damaging 

c.4232G>C p.G1411A
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4380T>G p.C1460W
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4652G>A p. C1551Y
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4717G>A p.G1573R
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4738 G > A p.G1580S
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4738G>A p. G1580S
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.1955G>A p. G652E
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.1963G>A p.G655R
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 
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c.1964G>A p.G655E
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.1973C>A p. G658V
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.1973G>A p.G658D
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.2441 G > T p.G814V
Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein 
structure and deleterious to protein function 

c.2413G>A p.G805R
Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein 
structure and deleterious to protein function 

c.2413G>C p. G805R
Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein 
structure and deleterious to protein function 

c.2317G>A p.G773R
Missense variant, non-coding exon variant with moderate impact. Probably damaging to protein 
structure and deleterious to protein function 

c.2317G>C p.G773R
Missense variant, non-coding exon variant with moderate impact. Probably damaging to protein 
structure and deleterious to protein function 

c.2228G>T p.G743V
Missense variant, non-coding exon variant with moderate impact. Regulatory region variant, leading 
to open chromatin structure. Probably damaging to protein structure and deleterious to protein 
function 

c.2245G>A p.G749S
Missense variant, non-coding exon variant with moderate impact. Regulatory region variant, leading 
to open chromatin structure. Probably damaging to protein structure and deleterious to protein 
function 

c.2263G>A p.G755R
Missense variant, non-coding exon variant with moderate impact. Regulatory region variant, leading 
to open chromatin structure. Probably damaging to protein structure and deleterious to protein 
function 

c.4267G>C p.G1423R
Missense variant, possibly resulting in retained intron. Possibly damaging and likely deleterious to 
protein function 

c.4133G>A p.G1378D
Missense variant, potentially impacting upstream gene regulation. Likely deleterious and probably 
damaging 
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c.4150+1(IVS46) G>T
Missense variant, splice donor variant with potential impact on upstream gene regulation. High 
impact. Probably damaging and likely deleterious. 

c.4150+1G>A
Missense variant, splice donor variant with potential impact on upstream gene regulation. High 
impact. Probably damaging and likely deleterious. 

c.4150G>A p.G1384S
Missense variant, splice donor variant with potential impact on upstream gene regulation. High 
impact. Probably damaging and likely deleterious. 

c.2345G>C p.G782A
Missense variant, splice region variant with low-moderate impact. Likely deleterious and probably 
damaging 

c.2096G>A pG699D 
Missense variant, splice region variant with low-moderate impact. Likely deleterious to protein 
function and probably damaging to protein structure 

c.236G>T p.G79V
Missense variant, splice region variant with low-moderate impact. Likely deleterious to protein 
function and probably damaging to protein structure 

c.443G>A p.G148E
Missense variant, splice region variant with low-moderate impact. Likely deleterious to protein 
function and probably damaging to protein structure 

c.196C>A p.Q66K Missense variant. Change tolerated by protein function but possibly damaging to protein structure 

c.2641A>G p.M881V Missense variant. Change tolerated by protein function but possibly damaging to protein structure 

c.3046A>G p.M1016V Missense variant. Change tolerated by protein function but possibly damaging to protein structure 

c.31C>A p.L11M Missense variant. Change tolerated by protein function but possibly damaging to protein structure 

c.1612C>G p.R538G Missense variant. Change tolerated by protein function with benign impact on protein structure 

c.1769G>A p.G562E Missense variant. Change tolerated by protein function with benign impact on protein structure 

c.3946C>G p.Q1316E
Missense variant. Change tolerated by protein function, likely benign some evidence of possibly 
damaging protein structure 

c.1537-2A>G Potential frameshift variant and splice acceptor variant with high impact 

c.1537–2delA Potential frameshift variant and splice acceptor variant with high impact 

c.1121-2dupA
p.G374_N429
delinsD

Splice acceptor variant, intronic variant leading to retained intron. High impact variant. 

c.1382-1G>C Splice acceptor variant, intronic variant leading to retained intron. High impact variant. 

c.2194-1G.A
Splice acceptor variant, intronic variant leading to retained intron. High impact variant. Also potential 
regulatory region variant leading to open chromatin structure 
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c.553-2A>G
Splice acceptor variant, intronic variant leading to retained intron. High impact variant. Also potential 
regulatory region variant leading to open chromatin structure and altered downstream gene 
regulation. Potential 3' UTR variant 

c.1990+1G>A Splice donor variant with high impact. Possible retained intron 

c.3406 + 1G>T
Splice donor variant with high impact. Potential impact on both upstream and downstream gene 
regulation 

c.2716 + 1G>A Splice donor variant with high impact. Potential impact on downstream gene regulation 

c.2716+ G>T Splice donor variant with high impact. Potential impact on downstream gene regulation 

c.2716+2T>C Splice donor variant with high impact. Potential impact on downstream gene regulation 

c.2458+1G>A
Splice donor variant, high impact. Possibly retained intron and downstream gene regulation 
modification 

c.1A>T
Start lost, but seems to be tolerated by protein function but possibly damaging to protein structure. 
Possible impact on upstream gene regulation 

c.739C>T p.Q247* Stop gained, high impact. Possible modifier of downstream gene regulation 

c.607G>T p. G203R Stop gained, high impact. Potential 3'UTR regulatory variant 

c.4875C>A p.Y1625* Stop gained, likely deleterious, high impact 

c.4887C>A p.Y1629X Stop gained, likely deleterious, high impact 

c.1870G>T p.G624* Stop gained, likely deleterious, high impact. Possible modifier of downstream gene regulation 

D. COL4A2 

Genetic 
mutation 

Protein 
change 

Variant information 

c.1396G>A p.G466S Missense variant with moderate impact. Probably damaging to protein structure and deleterious to protein 
function. Possible intron variant causing alteration to lncRNA influencing gene AS2 

c.1776+1G>A Splice donor variant with high impact. Possible retained intron and impact to lncRNA influencing gene AS2. 
Pathogenic but also reported to have uncertain clinical significance 

c.1810G>C p.G604R Missense variant, moderate impact and potential modifier of upstream and downstream gene regulation. 
Probably damaging to protein structure and likely to have deleterious effect on protein function. Potenital 
influence on promoter refulation and lncRNA influencing AS2 
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c.1856G>A p.G619D Missense variant, moderate impact and potential modifier of upstream and downstream gene regulation. 
Probably damaging to protein structure and likely to have deleterious effect on protein function. Potenital 
influence on promoter refulation and lncRNA influencing AS2. Likely pathogenic 

c.2105G>A p.G702D Missense variant with moderate impact. Probably damaging to protein structure and deleterious to protein 
function 

c.2399G>A p.G800E Missense variant with moderate impact. Probably damaging to protein structure and deleterious to protein 
function. With possible impact on upstream gene regulation and promoter regions 

c.2821G>A p.G941R Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein structure and 
deleterious to protein function. Possible retained intron. 

c.3110G>A p.G1037E Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably damaging to 
protein structure and likely to have deleterious effect on protein function. Pathogenic 

c.3368A>G p.E1123G Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein structure and 
deleterious to protein function. Likely benign clinical significance but possible risk factor 

c.3448C>A p.Q1150K Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein structure and 
tolerated to protein function. Likely benign clinical significance but possible risk factor 

c.3455G>A p.G1152D Missense variant, splice region variant. Probably damaging to protein structure and deleterious to protein 
function. Pathogenic 

c.3490G>A p.R1164G Missense variant with moderate impact. Probably damaging to protein structure and deleterious to protein 
function. Pathogenic 

c.4129G > A p.G1377R Missense variant, moderate impact and potential modifier of upstream gene regulation, possible impact on 
lncRNA influencing AS2. Probably damaging to protein structure and likely to have deleterious effect on protein 
function. Pathogenic 

c.4147G>A p.G1383R Missense variant, moderate impact and potential modifier of upstream gene regulation, possible impact on 
lncRNA influencing AS2. Probably damaging to protein structure and likely to have deleterious effect on protein 
function. Likely pathogenic 

c.4987G>A p.G1663S Missense variant, moderate impact and potential modifier of both upstream and downstream gene regulation, 
possible impact on lncRNA influencing AS2. Probably damaging to protein structure and likely to have deleterious 
effect on protein function. Conflicting clinical significane, reported both likely benign and likely pathogenic 

c.5068G>A p.A1690T Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein structure and 
tolerated to protein function. Likely benign clinical significance but possible risk factor 
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E. TREX1 

Genetic mutation Protein 
change 

Variant information 

c.703dup p.V235GfsX6 Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.822delT p.P275Qfsx2 Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.830-
833dupAGGA

p.D278fs Intronic variant. Potential 3'UTR variant with downstream gene variation. Possible influence on ATRIP 
and nonsense mediated decay of SHISA5 

c.829A>T p.K277* Stop gained, high impact. Possible modifier of downstream gene regulation. Likely pathogenic. 

c.828_831dupGA
AG

p.D278EfsTer
48

Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.703dupG p.V235Gfs Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.685A>G p.Arg229Gly Missense variant, moderate impact and potential modifier of downstream gene regulation. Benign 
impact on protein structure and tolerated by protein function 

c.690G>T p.Lys230Asn Missense variant, moderate impact and potential modifier of downstream gene regulation. Benign 
impact on protein structure and could have deleterious effect on protein function, but tolerated also 
reported 

c.581delC p.Ala194fs Frameshift variant with high impact, possible downstream gene regulation of ATRIP and SHISA5. 
Pathogenic 

c.742_745dupGTC
A

p.T249fs Intronic variant. Potential 3'UTR variant with downstream gene variation. Possible influence on ATRIP 
and nonsense mediated decay of SHISA5 

c.734dupC ? Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.911_912delCA p.T304Nfs*12 Intronic variant. Potential 3'UTR variant with downstream gene variation. Possible influence on ATRIP 
and nonsense mediated decay of SHISA5 

c.703_704insG p.V235GfsX6 Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 
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Supplemental Methods: Decisions and Assumptions made when extracting data 

Demographic data 

• Age: sometimes specific ages weren’t reported but rather an approximate age or

greater/less than a particular age was provided. In these cases we took a best

estimation, erring towards overestimating age in some cases so as to minimise

overestimation of the burden of the disease in younger brains. For example: <1 = 0,

<2 = 1, <27 = 26, ≤26 = 26, early 50s = 52, mid-40s = 45.

Clinical data 

• Clinical stroke classification required reporting of symptoms, i.e. not just radiological

description

• Intellectual disability was classified under developmental delay

Radiology data 

• When scan findings only described 'hemosiderin deposits' we did not take it to mean

a confirmed bleed or microbleed

• Cerebral matter loss in <18 year old was recorded as ‘other’ rather than ‘atrophy’

• If a scan was described as showing 'stable findings'/’no changes’ or equivalent, we

marked the scan as showing the same pathology as the previous scan of the same

patient

• In general, author interpretations which used words such as ‘probable’ or ‘suggests’

were taken to mean the feature was present, while author interpretations which

used words such as ‘possible’ or ‘might be’ were not sufficient to consider the

feature present

• We took 'periventricular gliosis' to mean white matter lesions

• We classified haemorrhage at the splenium of corpus callosum as ‘deep’

• We took 'Hyperintense signal adjacent to the horn of the lateral ventricle' to mean

periventricular white matter lesions

• External capsule, internal capsule, centrum semiovale and corona radiata locations

qualified as deep

• Punctate hemorrhages were taken to mean brain microbleeds

• Regarding severity of white matter lesions, we assumed the following:

• ‘Severe’ when described as: extensive, diffuse, severe, widespread,

confluent, Fazekas score 3, disseminated

• ‘Not severe’ when described as subtle, early/beginning confluent, limited,

moderate, mild, weak, Fazekas score 1 or 2, punctiform

• If a scan was implied but not explicitly stated, we decided whether it was more likely

a scan was done than not and assumed based on that – e.g. “haemorrhage in the

right frontal area” was taken to mean a scan had been done

• We took a ‘petechial spot’ to mean a microbleed

• We took porencephalic cysts to be a subcategory of intracerebral haemorrhage

Data S1.
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Search Strategy 

1. CADASIL/

2. (CADASIL or "Cerebral autosomal dominant arterio$ with subcortical infarct$ and

leukoencephalopathy" or (Dementia and hereditary and multi?infarct) or "Familial vascular

leukoencephalopathy" or CASIL or "Cerebral arterio$ with subcortical infarct$ and

leukoencephalopathy" or "Chronic familial vascular encephalopathy" or "Familial disorder

with subcortical ischemic stroke$" or "Agnogenic medial arteriopathy" or "Familial

Binswanger$ disease" or (cerebral and autosomal dominant and arterio$ and infarct$ and

leukoencephalophy)).af.

3. (CARASIL or "Maeda$ syndrome" or "Cerebral autosomal recessive arterio$ with

subcortical infarct$ and leukoencephalopathy" or ("Subcortical Vascular Encephalopathy"

and Progressive) or "Cerebrovascular Disease With Thin Skin Alopecia And Disc Disease" or

"Nemoto disease" or (cerebral and autosomal recessive and arterio$ and infarct$ and

leukoencephalophy) or "Familial young adult onset arterio$ leukoencephalopathy with

alopecia and lumbago").af.

4. ((COL4A1$ and (leukoencephalopathy or small vessel disease or autosomal dominant or

infantile hemiparesis or retinal arter$ tortuosity or RATOR or PADMAL or "pontine

autosomal dominant microangiopathy and leukoencephalopathy" or Walker Warburg or

porencephaly 1 or "small vessel disease of the brain with or without ocular abnormalities"

or BSVD)) or HANAC or (hereditary angio$ and nephropath$ and aneurysm$ and cramp$) or

((autosomal dominant or familial or hereditary) and (h?ematuria and Retinal Arter$

Tortuosity)) or ("Autosomal dominant familial porencephaly" or "Hereditary multi infarct

dementia" or HEMID or hMID) or (multi-infarct dementia and Swedish) or "Nonsyndromic

autosomal dominant congenital cataract").af.

5. Muscle Cramp/ and Raynaud Disease/

6. (COL4A2 and (Porencephaly or stroke or Microbleed$ or h?emorrhage or

leukoencephalopathy or small vessel disease or autosomal recessive or infantile hemiparesis

or retinal arter$ tortuosity)).af.

7. (RVCL or "Retinal vasculopathy with cerebral leukodystrophy" or ($retinal vascul$ and

(hereditary or familial)) or ((Cerebroretinal Vasculopathy and Hereditary) or "hereditary

vascular retinopathy") or "Grand-Kaine-Fulling syndrome" or HERNS or Hereditary Systemic

Angiopathy or (hereditary and endotheliopathy and retin$ and nephro$ and stroke$) or

(hereditary and retin$ and (raynaud$ or migraine)) or ADRVCL or (Autosomal Dominant and

Retin$ and (leukodystrophy or leukoenchalopathy))).af.

8. ("Early-onset stroke and vasculopathy associated with mutations in ADA2" or (Stroke and

vasc$ and ADA2) or ((deficien$ and (ADA 2 or ADA2 or adenosine deaminase-2)) or DADA2

or DADA 2 or (Vasculitis and ADA2 deficien$)) or Sneddon Syndrome or (Polyarteritis nodosa

and Childhood onset)).af.
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9. (CARASAL or (Cathepsin A related arteriopathy with stroke? and

leukoencephalopathy)).af.

10. 1 or 2 or 3 or 4 or 5 or 6 or 7 or 8 or 9

11. (NOTCH?3 or Notch 3 or "Neurogenic locus notch homolog protein 3").af.

12. (TREX?1 or TREX 1 or "Three prime repair exonuclease 1").af.

13. (COL4A1 or COL4A2 or COL4 A1 or COL4 A2 or "COL4 A 1" or "COL4 A 2" or "COL 4 A1" or

"COL 4 A2").af.

14. (Collagen and ("type IV" or "type 4") and (alpha?1 or alpha?2 or alpha 1 or alpha 2)).af.

15. Collagen Type IV/

16. (alpha?1 or alpha?2 or alpha 1 or alpha 2).af.

17. 15 and 16

18. (HTRA?1 or HTRA 1 or "HtrA serine peptidase 1" or "HtrA serine protease 1").af.

19. (CECR?1 or CECR 1 or "Cat eye syndrome critical region protein 1" or "adenosine

deaminase 2" or ADA2 or ADA 2).af.

20. (FOXC?1 or FOX C1 or FOXC 1 or "FOX C 1" or "forkhead box C?1" or "Forkhead box C

1").af.

21. (PITX?2 or PITX 2 or "paired-like homeodomain 2" or "pituitary homeobox 2" or "Paired-

like homeodomain transcription factor 2").af.

22. (Cathepsin?A or Cathepsin A or CathA or Cath A or CTSA).af.

23. 11 or 12 or 13 or 14 or 17 or 18 or 19 or 20 or 21 or 22

24. exp Cerebral Small Vessel Diseases/

25. exp Cerebrovascular Disorders/

26. exp stroke/

27. exp dementia, vascular/

28. Brain Diseases/

29. exp basal ganglia cerebrovascular disease/

30. exp brain ischemia/

31. exp intracranial arterial diseases/

32. exp Cerebral Hemorrhage/

33. exp intracranial hemorrhages/

34. leukomalacia, periventricular/

35. stroke, lacunar/

36. Leukoaraiosis/

37. Leukoencephalopathies/

38. White Matter/

39. Infarction/

40. ("Cerebral Small Vessel Disease?" or cerebrovascular).af.

41. (White matter hyperintensit$ or WMH$ or White matter MR hyperintensit$ or White

matter magnetic resonance hyperintensit$ or Subcortical hyperintensit$ or White matter
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lesion? or WML$ or Hyper intensit$ or Leukodystroph$ or Leukoaraiosis or Leukomalacia or 

White Matter Change? or WMC? or White Matter Disease or WMD or White matter damage 

or Grey matter hyperintensit$ or Brainstem hyperintensit$ or Subcortical hyperintensit$ or 

White matter hypoattenuation? or White matter hypodensit$ or Leukoencephalopath$).af.  

42. (Subcortical infarct? or Cerebral infarct$ or Brain infarct$ or Silent brain infarct$ or

Striatocapsular infarct$ or Lacunar infarct$ or Lacune? or Lacunar stroke? or Lacunar

syndrome or Stroke? or Vascular lesion?).af.

43. (Microbleed? or Cerebral Microbleed or CMB? or Hypointense lesion? or Subcortical

H?emorrhage or Intracerebral h?emorrhage or Cortical siderosis or Superficial siderosis).af.

44. (Perivascular space? or Virchow Robin space? or Type 3 lacune? or Etat crible).af.

45. (Brain atrophy or Cerebral atrophy or Global atrophy or Corpus callosum atrophy or

Central atrophy or Mesencephalic atrophy or Hippocampal atrophy or Cortical thinning).af.

46. 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or

39 or 40 or 41 or 42 or 43 or 44 or 45

47. 23 and 46

48. 10 or 47

49. limit 48 to humans

50. remove duplicates from 49
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Table S1. Frequency and Subtypes of Cerebral Clinical 

Features COL4A1 
(N=390) 

TREX1 
(N=123) 

HTRA1HomZ 
(N=44) 

COL4A2 
(N=41) 

ADA2 
(N=346) 

HTRA1HetZ

(N=82) 
CTSA 

(N=14) 

% (n/N) 

CLINICAL 
STROKE 

Unknown/ absent 59 (229/390) 91(112/123) 70 (31/44) 78 (32/41) 67(231/346) 48 (39/82) 50 (7/14) 

Present 41 (161/390) 9 (11/123) 30 (13/44) 22 (9/41) 33 (115/346) 52 (43/82) 50 (7/14) 

Ischaemic 15 (24/161) 82 (9/11) 54 (7/13) 0 (0/9) 53 (61/115) 53 (23/43) 71 (5/7) 

Ischaemic 15 (24/161) 73 (8/11) 46 (6/13) 11 (1/9) 55 (63/115) 44 (19/43) 43 (3/7) 

TIA 2 (3/161) 0 (0/11) 8 (1/13) 0 (0/9) 5 (6/115) 14 (6/43) 43 (3/7) 

Eye infarction 0 (0/161) 9 (1/11) 0 (0/13) 0 (0/9) 3 (4/115) 0 (0/43) 14 (1/7) 

Venous 
thrombosis/infarct 

0 (0/161) 0 (0/11) 0 (0/13) 0 (0/9) 0 (0/115) 0 (0/43) 14 (1/7) 

Haemorrhagic 72 (116/161) 0 (0/11) 8 (1/13) 89 (8/9) 12 (14/115) 5 (2/43) 0 (0/7) 

ICH 32 (51/161) 0 (0/11) 8 (1/13) 22 (2/9) 20 (23/115) 14 (6/43) 29 (2/7) 

IVH 4 (7/161) 0 (0/11) 0 (0/13) 0 (0/9) 0 (0/115) 0 (0/43) 0 (0/7) 

Porencephalic cyst 47 (76/161) 0 (0/11) 0 (0/13) 78 (7/9) 0 (0/115) 0 (0/43) 0 (0/7) 

Ischaemic and 
haemorrhagic 

1 (2/161) 0 (0/11) 0 (0/13) 11 (1/9) 8 (9/115) 9 (4/43) 29 (2/7) 

Unspecified/ 
no detail 

12 (19/161) 18 (2/11) 38 (5/13) 0 (0/9) 27 (31 /115) 33 (14/43) 0 (0/7) 

COGNITIVE 
FEATURES 

Unknown/ absent 67 (262/390) 71 (87/123) 36 (16/44) 73 (30/41) 100(346/346) 44 (36/82) 36 (5/14) 

Present 33 (128/390) 29 (36/123) 64 (28/44)# 27 (11/41) 0 (0/346) 56 (46/82) 64 (9/14) 

Present (≥18 y) 23 (30/131) 34 (36/106) 65 (20/31) 0 (0/13) 0 (0/85) 62 (46/74) 64 (9/14) 

Dementia* 
3 (4/128) 
17 (5/30) 

0 (0/36) 
0 (0/36) 

32 (9/28) 
45 (9/20) 

0 (0/11) 
0 (0/0) 

0 (0/0) 
0 (0/0) 

13 (6/46) 
13 (6/46) 

0 (0/9) 
0 (0/9) 
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Cognitive 
impairment- no 
ADL impact* 

2 (2/128) 
7 (2/30) 

0 (0/36) 
0 (0/36) 

0 (0/28) 
0 (0/20) 

0 (0/11) 
0 (0/0) 

0 (0/0) 
0 (0/0) 

15 (7/46) 
15 (7/46) 

0 (0/9) 
0 (0/9) 

Cognitive 
impairment- no 
ADL detail* 

12 (15/128) 
(22/30) 

97 (35/36) 
100 (35/36) 

68 (19/28) 
55 (11/20) 

0 (0/11) 
0 (0/0) 

0 (0/0) 
0 (0/0) 

65 (30/46) 
65 (30/46) 

100 (9/9) 
100 (9/9) 

Subjective 
cognitive decline* 

0 (0/128) 
73 (0/30) 

0 (0/36) 
0 (0/36) 

0 (0/28) 
0 (0/20) 

0 (0/11) 
0 (0/0) 

0 (0/0) 
0 (0/0) 

7 (3/46) 
7 (3/46) 

0 (0/9) 
0 (0/9) 

Developmental 
delay 

83 (106/128) 0 (0/36) 0 (0/28) 100 (11/11) 0 (0/0) 0 (0/46) 0 (0/9) 

PSYCHIATRIC 
FEATURES 

Unknown/ absent 98 (382/390) 71 (87/123) 68 (30/44) 100 (41/41) 100(346/346) 78 (64/82) 43 (6/14) 

Present 2 (8/390) 29 (36/123) 32 (14/44) 0 (0/41) 0 (0/346) 22 (18/82) 57 (8/14) 

Psychosis 0 (0/8) 6 (2/36) 7 (1/14) 0 (0/0) 0 (0/0) 6 (1/18) 0 (0/8) 

Depression 
symptoms 

25 (2/8) 17 (6/36) 64 (9/14) 0 (0/0) 0 (0/0) 67 (12/18) 88 (7/8) 

Anxiety 0 (0/8) 3 (1/36) 14 (2/14) 0 (0/0) 0 (0/0) 0 (0/18) 0 (0/8) 

Irritability/ 
agitation 

25 (2/8) 8 (3/36) 64 (9/14) 0 (0/0) 0 (0/0) 0 (0/18) 13 (1/8) 

Emotional lability 13 (1/8) 0 (0/36) 21 (3/14) 0 (0/0) 0 (0/0) 28 (5/18) 13 (1/8) 

OCD 0 (0/8) 0 (0/36) 0 (0/14) 0 (0/0) 0 (0/0) 6 (1/18) 0 (0/8) 

Unspecified/ 
no detail 

0 (0/8) 78 (28/36) 0 (0/14) 0 (0/0) 0 (0/0) 0 (0/18) 0 (0/8) 

HEADACHE 

Unknown/ absent 93 (362/390) 69 (85/123) 95 (42/44) 98 (40/41) 95 (329/346) 91 (75/82) 57 (8/14) 

Present 7 (28/390) 31 (38/123) 5 (2/44) 2 (1/41) 5 (17/346) 9 (7/82) 43 (6/14) 

Migraine 68 (19/28) 84 (32/38) 50 (1/2) 100 (1/1) 24 (4/17) 43 (3/7) 83 (5/6) 

Unspecified 32 (9/28) 16 (6/38) 50 (1/2) 0 (0/1) 76 (13/17) 57 (4/7) 17 (1/6) 

HetZ=heterozygous; HomZ=homozygous/compound heterozygous; N=overall number of individuals; n=number of affected individuals; 
ADL=activities of daily living; #8 cases with unknown age; * second row: only individuals ≥18 years; assumed Stam et al cohort were all ≥18 y. 

D
ow

nloaded from
 http://ahajournals.org by on July 20, 2022



Table S2. Frequency of Vascular Radiological Cerebral Phenotypes by Location and Severity 

COL4A1 
(N=290) 

TREX1 
(N=73) 

HTRA1HomZ 

(N=44) 
COL4A2 
(N=31) 

ADA2 
(N=119) 

HTRA1HetZ

(N=70) 
CTSA 

(N=14) 

% (n/N) 

ISCHAEMIA 

To
ta

l
s

Present 16 (47/290) 8 (6/73) 34 (15/44) 0 (0/31) 44 (52/119) 66 (46/70) 57 (8/14) 

Unknown/Absent 84(243/290) 92 (67/73) 66 (29/44) 100(31/31) 56 (67/119) 34 (24/70) 43 (6/14) 

Lo
ca

ti
o

n
 

Su
p

ra
te

n
to

ri
al

Deep/ lacunar 43 (20/47) 100 (6/6) 53 (8/15) 0 (0/0) 42 (22/52) 46 (21/46) 75 (6/8) 

Cortical 2 (1/47) 0 (0/6) 0 (0/15) 0 (0/0) 2 (1/52) 2 (1/46) 25 (2/8) 

Unknown 4 (2/47) 0 (0/6) 20 (3/15) 0 (0/0) 10 (5/52) 15 (7/46) 0 (0/8) 

In
fr

at
en

to
r

ia
l

Brainstem 51 (24/47) 0 (0/6) 53 (8/15) 0 (0/0) 44 (23/52) 26 (12/46) 0 (0/8) 

Cerebellum 2 (1/47) 0 (0/6) 0 (0/15) 0 (0/0) 2 (1/52) 0 (0/46) 25 (2/8) 

Unknown 0 (0/47) 0 (0/6) 0 (0/15) 0 (0/0) 0 (0/52) 0 (0/46) 0 (0/8) 

O
ve

ra
ll 

Any deep 83 (39/47) 100 (6/6) 67 (10/15) 0 (0/0) 77 (40/52) 78 (36/46) 100 (8/8) 

No deep 2 (1/47) 0 (0/6) 0 (0/15) 0 (0/0) 0 (0/52) 0 (0/46) 0 (0/8) 

Unknown 15 (7/47) 0 (0/6) 33 (5/15) 0 (0/0) 23 (12/52) 22 (10/46) 0 (0/8) 

B
u

rd
e

n
n

Single lesion 2 (1/47) 33 (2/6) 0 (0/15) 0 (0/0) 37 (19/52) 0 (0/46) 50 (4/8) 

Multiple lesions 57 (27/47) 50 (3/6) 87 (13/15) 0 (0/0) 56 (29/52) 100(46/46) 38 (3/8) 
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Unknown 40 (19/47) 17 (1/6) 13 (2/15) 0 (0/0) 8 (4/52) 0 (0/46) 13 (1/8) 

HAEMORRHAGE 

To
ta

l
s

Present 41(118/290) 0 (0/73) 2 (1/44) 68 (21/31) 10 (12/119) 7 (5/70) 7 (1/14) 

Unknown/Absent 59(172/290) 100(73/73) 98 (43/44) 32 (10/31) 90(107/119) 93 (65/70) 93(13/14) 

Porencephaly 61 (72/118) 0 (0/0) 0 (0/1) 76 (16/21) 0 (0/12) 0 (0/5) 0 (0/1) 

IVH 7 (8/118) 0 (0/0) 0 (0/1) 0 (0/21) 0 (0/12) 0 (0/5) 0 (0/1) 
Lo

ca
ti

o
n

 

Su
p

ra
te

n
to

ri
al

 Deep/ lacunar 25 (29/118) 0 (0/0) 0 (0/1) 14 (3/21) 50 (6/12) 40 (2/5) 100 (1/1) 

Cortical 2 (2/118) 0 (0/0) 0 (0/1) 0 (0/21) 8 (1/12) 0 (0/5) 0 (0/1) 

Unknown 13 (15/118) 0 (0/0) 0 (0/1) 10 (2/21) 42 (5/12) 0 (0/5) 0 (0/1) 

In
fr

at
en

to
ri

al
 Brainstem 2 (2/118) 0 (0/0) 0 (0/1) 0 (0/21) 0 (0/12) 20 (1/5) 0 (0/1) 

Cerebellum 6 (7/118) 0 (0/0) 100 (1/1) 0 (0/21) 0 (0/12) 0 (0/5) 0 (0/1) 

Unknown 0 (0/118) 0 (0/0) 0 (0/1) 0 (0/21) 0 (0/12) 0 (0/5) 0 (0/1) 

O
ve

ra
ll 

Any deep 56 (36/64) 0 (0/0) 100 (1/1) 60 (3/5) 50 (6/12) 60 (3/5) 100 (1/1) 

No deep 3 (2/64) 0 (0/0) 0 (0/1) 0 (0/5) 8 (1/12) 0 (0/5) 0 (0/1) 

Unknown 41 (26/64) 0 (0/0) 0 (0/1) 40 (2/5) 42 (5/12) 40 (2/5) 0 (0/1) 
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B
u

rd
en

 

Single lesion 45 (53/118) 0 (0/0) 100 (1/1) 76 (16/21) 25 (3/12) 100 (5/5) 100 (1/1) 

Multiple lesions 39 (46/118) 0 (0/0) 0 (0/1) 19 (4/21) 8 (1/12) 0 (0/5) 0 (0/1) 

Unknown 16 (19/118) 0 (0/0) 0 (0/1) 5 (1/21) 67 (8/12) 0 (0/5) 0 (0/1) 

WML 

To
ta

ls
 Present 58(167/290) 89 (65/73) 98 (43/44) 29 (9/31) 3 (3/119) 96 (67/70) 100(14/14) 

Unknown/Absent 42(123/290) 11 (8/73) 2 (1/44) 71 (22/31) 97 116/119) 4 (3/70) 0(0/14) 

Lo
ca

ti
o

n
 

G
en

er
al

 

Periventricular 
only 

26 (43/167) 9 (6/65) 0 (0/43) 78 (7/9) 33 (1/3) 7 (5/67) 0 (0/14) 

Deep only 5 (9/167) 2 (1/65) 14 (6/43) 0 (0/9) 33 (1/3) 24 (16/67) 0 (0/14) 

Both 14 (24/167) 2 (1/65) 21 (9/43) 0 (0/9) 0 (0/3) 25 (17/67) 93 (13/14) 

Unknown 54 (91/167) 88 (57/65) 65 (28/43) 22 (2/9) 33 (1/3) 43 (29/67) 7 (1/14) 

R
eg

io
n

 

Temporal 7 (11/167) 0 (0/65) 30 (13/43) 11 (1/9) 0 (0/3) 7 (5/67) 0 (0/14) 

Frontal 3 (5/167) 0 (0/65) 5 (2/43) 11 (1/9) 0 (0/3) 0 (0/67) 86 (12/14) 

Parietal 2 (3/167) 0 (0/65) 2 (1/43) 0 (0/9) 0 (0/3) 0 (0/67) 86 (12/14) 

Brainstem 2 (3/167) 0 (0/65) 21 (9/43) 0 (0/9) 0 (0/3) 9 (6/67) 7 (1/14) 

Unknown 89(149/167) 100(65/65) 63 (27/43) 89 (8/9) 100 (3/3) 85 (57/67) 7 (1/14) 

B
u

rd
e

n

Severe 35 (59/167) 5 (3/65) 95 (41/43) 22 (2/9) 0 (0/3) 12 (8/67) 93 (13/14) 

Not severe 12 (20/167) 3 (2/65) 0 (0/43) 0 (0/9) 0 (0/3) 49 (33/67) 0 (0/14) 

D
ow

nloaded from
 http://ahajournals.org by on July 20, 2022



Unknown 53 (88/167) 92 (60/65) 5 (2/43) 78 (7/9) 100 (3/3) 39 (26/67) 7 (1/14) 

MICROBLEEDS 

To
ta

l
s

Present 10 (29/290) 1 (1/73) 30 (13/44) 6 (2/31) 0 (0/119) 27 (19/70) 21 (3/14) 

Unknown/Absent 90(261/290) 99 (72/73) 70 (31/44) 94 (29/31) 100(119/119) 73 (51/70) 79 (11/14) 

Lo
ca

ti
o

n
 

Su
p

ra
te

n
to

ri
al

 Deep/ lacunar 52 (15/29) 0 (0/1) 31 (4/13) 50 (1/2) 0 (0/0) 47 (9/19) 100 (3/3) 

Cortical 3 (1/29) 0 (0/1) 8 (1/13) 0 (0/2) 0 (0/0) 0 (0/19) 0 (0/3) 

Unknown 14 (4/29) 0 (0/1) 46 (6/13) 0 (0/2) 0 (0/0) 26 (5/19) 0 (0/3) 

In
fr

at
en

to
ri

al
 Brainstem 21 (6/29) 0 (0/1) 31 (4/13) 0 (0/2) 0 (0/0) 16 (3/19) 33 (1/3) 

Cerebellum 10 (3/29) 0 (0/1) 0 (0/13) 0 (0/2) 0 (0/0) 11 (2/19) 33 (1/3) 

Unknown 3 (1/29) 0 (0/1) 23 (3/13) 0 (0/2) 0 (0/0) 0 (0/19) 0 (0/3) 

O
ve

ra
ll 

Any deep 69 (20/29) 0 (0/1) 62 (8/13) 50 (1/2) 0 (0/0) 53 (10/19) 100 (3/3) 

No deep 0 (0/29) 0 (0/1) 0 (0/13) 0 (0/2) 0 (0/0) 0 (0/19) 0 (0/3) 

Unknown 31 (9/29) 100 (1/1) 38 (5/13) 50 (1/2) 0 (0/0) 47 (9/19) 0 (0/3) 

B
u

rd
en

 

Single lesion 14 (4/29) 0 (0/1) 0 (0/13) 0 (0/2) 0 (0/0) 0 (0/19) 33 (1/3) 

Multiple lesions 76 (22/29) 100 (1/1) 85 (11/13) 100 (2/2) 0 (0/0) 100 19/19) 67 (2/3) 

Unknown 10 (3/29) 0 (0/1) 15 (2/13) 0 (0/2) 0 (0/0) 0 (0/19) 0 (0/3) 
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CEREBRAL 
ATROPHY 

To
ta

l
s

Present 4 (12/290) 1 (1/73) 20 (9/44) 0 (0/31) 3 (4/119) 11 (8/70) 71 (10/14) 

Unknown/Absent 96(278/290) 99 (72/73) 80 (35/44) 100(31/31) 97 (115/119) 89 (62/70) 29 (4/14) 

Lo
ca

ti
o

n
 Global 25 (3/12) 0 (0/1) 0 (0/9) 0 (0/0) 25 (1/4) 25 (2/8) 0 (0/10) 

Focal 42 (5/12) 0 (0/1) 11 (1/9) 0 (0/0) 25 (1/4) 50(4/8) 10 (1/10) 

Unknown 33 (4/12) 100 (1/1) 89 (8/9) 0 (0/0) 50 (2/4) 25 (2/8) 90 (9/10) 
B

u
rd

en
 Severe 42 (5/12) 0 (0/1) 0 (0/9) 0 (0/0) 0 (0/4) 0 (0/8) 0 (0/10) 

Not severe 0 (0/12) 100 (1/1) 11 (1/9) 0 (0/0) 25 (1/4) 50 (4/8) 90 (9/10) 

Unknown 58 (7/12) 0 (0/1) 89 (8/9) 0 (0/0) 75 (3/4) 50 (4/8) 10 (1/10) 

CALCIFICATION 

To
ta

l
s

Present 12 (34/290) 32 (23/73) 0 (0/44) 0 (0/31) 0 (0/119) 0 (0/70) 0 (0/14) 

Unknown/Absent 88(256/290) 68 (50/73) 100(44/44) 100(31/31) 100(119/119) 100(70/70) 100(14/14) 

ENLARGED PVS 

To
ta

l
s

Present 3 (8/290) 0 (0/73) 0 (0/44) 0 (0/31) 0 (0/119) 16 (11/70) 64 (9/14) 

Unknown/Absent 97(282/290) 100(73/73) 100(44/44) 100(31/31) 100(119/119) 84 (59/70) 36 (5/14) 

CEREBRAL 
ANEURYSM To

ta
l

s

Present 36 (13/36) 0 (0/1) 0 (0/9) 60 (3/5) 6 (1/17) 0 (0/2) 0 (0/1) 

Unknown/Absent 64 (23/36) 100 (1/1) 100 (9/9) 40 (2/5) 94 (16/17) 100 (2/2) 100 (1/1) 

HetZ=heterozygous; HomZ=homozygous/compound heterozygous; N=overall number of individuals with neuroimaging; n=number of affected 
individuals; WML=white matter lesions(s); PVS=perivascular space(s);  
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Table S3. Variant Effect Predictor Output Summary 

Number of variants 
% variants 
with info 

% pathogenic* 
among variants 

with data 

% pathogenic* 
among 

all variants 

VARIANT IMPACT/CLASSIFICATION OF SEVERITY (SNPEff) 

no info low moderate* high* 

HTRA1 7 0 35 11 87% 100% 87% 

ADA2 43 3 24 18 51% 93% 48% 

COL4A1 43 0 88 23 72% 100% 72% 

COL4A2 1 0 14 1 94% 100% 94% 

TREX1 21 0 2 8 32% 100% 32% 

CTSA 1 0 0 0 0% 0% 0% 

Total 116 3 163 61 66% 99% 65% 

CLINICAL SIGNIFICANCE (ClinVar) 

no info 
uncertain clinical 

significance 
benign 

likely 
benign 

likely 
pathogenic* 

pathogenic* 

HTRA1 30 3 0 0 5 15 43% 87% 38% 

ADA2 76 2 1 0 6 3 14% 75% 10% 

COL4A1 150 1 0 0 0 3 3% 75% 2% 

COL4A2 5 0 0 3 3 5 69% 73% 50% 

TREX1 29 0 0 0 1 1 6% 100% 6% 

CTSA 1 0 0 0 0 0 0% 0% 0% 

Total 291 6 1 3 15 27 15% 81% 12% 

IMPACT ON PROTEIN FUNCTION (SIFT) 

no info tolerated deleterious* 

HTRA1 18 1 34 66% 97% 64% 
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ADA2 43 4 41 51% 91% 47% 

COL4A1 46 9 99 70% 92% 64% 

COL4A2 1 2 13 94% 87% 81% 

TREX1 29 1 1 6% 50% 3% 

CTSA 1 0 0 0% 0% 0% 

Total 138 17 188 60% 92% 55% 

IMPACT ON PROTEIN STRUCTURE AND FUNCTION (PolyPhen-2) 

no info benign 
possibly 

damaging* 
probably 

damaging* 

HTRA1 18 0 4 31 66% 100% 66% 

ADA2 43 5 1 39 51% 89% 45% 

COL4A1 40 2 15 97 74% 98% 73% 

COL4A2 1 0 4 11 94% 100% 94% 

TREX1 29 2 0 0 6% 0% 0% 

CTSA 1 0 0 0 0% 0% 0% 

Total 132 9 24 178 62% 96% 59% 

*category considered to provide supporting evidence for pathogenicity; SnpEff classifies each variant in one of the following output categories:

high impact (variant is assumed to have a disruptive impact in the protein, probably causing protein truncation, loss of function or triggering

nonsense mediated decay), moderate impact (non-disruptive variant that might change protein effectiveness), and low impact (variant

assumed to be mostly harmless or unlikely to change protein behaviour). The ‘modifier’ category is taken to represent no information about

these categories; ClinVar assigns each variant as pathogenic, likely pathogenic, likely benign, benign, or of uncertain clinical significance; SIFT

predicts whether an amino acid substitution is likely to affect protein function based on sequence homology and the physico-chemical

similarity between the alternate amino acids, concluding with a qualitative prediction if a variant is deleterious or tolerated; PolyPhen-2

predicts the effect of an amino acid substitution on the structure and function of a protein using sequence homology, 3D structures where

available, and a number of other databases and tools. It classifies each variant as probably damaging, possibly damaging or benign.
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TABLE S4. Variant Effect Predictor outputs per 

gene A. HTRA1 

Genetic 
mutation 

Protein change Variant information 

c.589C>T p.R197X Stop gained, likely deleterious, high impact. Pathogenic 

c.865C>T p.Q289X Stop gained, likely deleterious, high impact. Pathogenic 

c.1108C>T p.R370X Stop gained, high impact variant. Pathogenic/likely pathogenic 

c.904C>T p.R302X Stop gained, high impact variant. Likely pathogenic 

c.502A.T p.K168ter Stop gained, high impact variant 

c.847G>T p.G283Ter Stop gained, high impact variant 

c.983C>A p.S328* Stop gained, high impact variant 

c.1005+1G>T Splice donor variant, high impact 

c.971A>C p.N324T Missense variant, possible splice region variant with moderate impact. Probably damaging to protein 
structure and conflicting evidence of tolerated/deleterious to protein function. Likely pathogenic 

c.754G>A p.A252T Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein 
structure and deleterious to protein function. Pathogenic 

c.956C>T p.T319I Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.451C>A p.Q151K Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Probably damaging to protein structure and likely to have 
deleterious effect on protein function. Uncertain clinial significance 

c.359G>A p.G120D Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Probably damaging to protein structure and likely to have 
deleterious effect on protein function. Likely pathogenic 

c.361A>C p.S121R Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 
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c.397C>G p.R133G Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Possibly damaging to protein structure but tolerated by protein 
function 

c.367G>T p.A123S Missense variant, moderate impact and potential modifier of both upstream and downstream gene 
regulation (ARMS2), and lncRNA. Only possibly damaging to protein structure and likely to have 
deleterious effect on protein function 

c.821G>A p.R274Q Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious/some reports of tolerated to protein function. Pathogenic 

c.496C>T p.R166C Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious to protein function 

c.517G>A p.A173T Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious to protein function 

c.517G>C p.A173P Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious to protein function 

c.856T>G p.F286V Missense variant with moderate impact. Probably/possibly damaging to protein structure and 
deleterious to protein function 

c.854C>A p.P285Q Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Uncertain clinical significance/pathogenic 

c.854C>T p.P285L Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Uncertain clinical significance/pathogenic 

c.616G>A p.G206R Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Uncertain clinical significance 

c.961G>A p.A321T Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Uncertain clinical significance 

c.1091T>C p.L364P Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.497G>T p.R166L Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.614C>G p.S205C Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

D
ow

nloaded from
 http://ahajournals.org by on July 20, 2022



c.852C>A p.S284R Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.883G>A p.G295R Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.889G>A p.V297M Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic 

c.536T>A p.I179N Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Likely pathogenic 

c.827G>C p.G276A Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Likely pathogenic 

c.1021G>A p.G341J Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. 

c.524T>A p. V175E Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.527T>C p.V176A Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.646 G>A p.V216 M Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.847G>A p.G283R Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.848G>A p.G283E Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.850A>G p.S284G Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.905G>A p.R302Q Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.1348G>C p.D450H Missense variant with moderate impact. Only possibly damaging to protein structure and deleterious 
to protein function. 
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c.184-185del Intronic variant, with possible impact on both upstream and downsteam gene regulation, ARMS2. 
Possible influence on lncRNA.  

c.830_831delAG p.E277Vfs Intronic variant with possible influence on upstream gene 

c.126delG p.E42fs Frameshift variant with high impact. Pathogenic 

c.543delT p.A182Pfs*33 Frameshift mutation with high impact. Potentially leading to premature stop. Pathogenic 

c.739delG p.E247Rfs Frameshift mutation with high impact. Potentially leading to premature stop 

c.958G>A p.D320N Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function.  

B. ADA2 

Genetic mutation 
Protein 
change 

Variant information 

c.982G>A p.E328K

Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene, 
and CTCF binding site. Probably damaging/benign to protein structure and likely deleterious to 
protein function/potentially tolerated. 

c.138/144delG
5'UTR variant, intronic variant with possible impact on regulation of upstream gene through 
processing of pseudogene/nonsense mediated decay 

c.37_39del p.K13del
5'UTR variant, intronic variant with possible impact on regulation of upstream gene through 
processing of pseudogene/nonsense mediated decay 

c.143_144insG p.R49Afs*13
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.144 dup p.R49Afs*13
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.144_145ins
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.144del p.R49Gfs*4
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 
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c.144delG p.R49fs
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.144dupG p.R49fs
Frameshift variant with high impact, possible impact on both upstream and downstream gene 
regulation. Likely pathogenic 

c.629delT Frameshift variant, high impact with potential impact on both upstream and downstream genes. 

c.427del p.I143Sfs*41
Frameshift variant, high impact. Impact on nonsense mediated decay transcript processing. Possible 
impact on downstream genes 

c.1447_1451del p.S483Pfs*5 Intronic variant, possible impact on transcript processing 

c.680- 681delAT Intronic variant, possible impact on transcript processing 

c.973-?_1081+?del p.V325Tfs*7
Intronic variant, possible retained intron. Could have impact on both upstream, downstream genes 
and nonsense medicated decay transcript processing. 

c.972+3A>G
Intronic, splice region variant with low impact. Possible retained intron and impact on nonsense 
mediated decay transcript processing 

c.326C>A p.A109D
Missense variant with moderate impact, possible 5'UTR variant. Probably damaging to protein 
structure and deleterious to protein function. 

c.336C>A p.H112Q
Missense variant with moderate impact, possible 5'UTR variant. Probably damaging to protein 
structure and deleterious to protein function. 

c.336C>G p.H112Q
Missense variant with moderate impact, possible 5'UTR variant. Probably damaging to protein 
structure and deleterious to protein function.  

c.336G>C p.H112Q
Missense variant with moderate impact, possible 5'UTR variant. Probably damaging to protein 
structure and deleterious to protein function.  

c.962G>A p.G321E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.133C>T p.A45T
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. 

c.1358A>G p.Y453C
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. 

c.385A>C p.T129P
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. 
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c.932T>G p.L311R
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic.  

c.1352T>G p.L451W
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function. 

c.1353G>T p.L451F
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function. 

c.1360G>C
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function. 

c.1373T>A p.V458D
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function. 

c.1223G>A p.C408Y
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function.  

c.1348G>T p.G450C
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function.  

c.1367A>G p.Y456C
Missense variant with potential impact on downstream gene regulation, possible 3'UTR variant 
involved in nonsense-mediated decay. Probably damaging to protein structure and likely deleterious 
to protein function.Pathogenic 

c.1065C>A p.F355L
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Benign protein structure and tolerated by protein function.  

c.1052T>A p.L351Q
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function. 
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c.1057T>C p.Y353H
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function. 

c.1069G>A p.A357T
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function. 

c.1072G>A p.G358R
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function.  

c.1078A>G p.T360A
Missense variant with potential impact on upstream and downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Possible impact on processing of pseudogene. 
Probably damaging to protein structure and likely deleterious to protein function. 

c.140G>C p.G47A
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.278T>C p.I93T
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.506C>T p.R169Q
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. 

c.506G>A R169Q 
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function.  

c.533T>C p.F178S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. Possible 
retained intron. 

c.139G>T p.G47W
Missense variant, moderate impact and potential modifier of upstream and downstream gene 
regulation, possible impact on processing of pseudogene (FAM32BP). Probably damaging to protein 
structure and likely to have deleterious effect on protein function.Pathogenic 

c.563T>C p.L188P
Missense variant, moderate impact and potential modifier of upstream and downstream gene 
regulation. Probably damaging to protein structure and likely to have deleterious effect on protein 
function 
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c.578C>T p.P193L
Missense variant, moderate impact and potential modifier of upstream and downstream gene 
regulation. Probably damaging to protein structure and likely to have deleterious effect on protein 
function.  

c.139G>A p.G47R
Missense variant, moderate impact and potential modifier of upstream and downstream gene 
regulation. Probably damaging to protein structure and likely to have deleterious effect on protein 
function. Conflicting evidence on clinical significance 

c.650T>A p.V217D
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.712G>A p.D238N
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.872C>T p.S291L
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. 

c.620T>C
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. Uncertain 
clinical significance 

c.791G>C p.W264S
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging/benign to protein structure and could have deleterious/tolerated impact on protein 
function. May cause retained intron.  

c.1110C>A p.N370K
Missense variant, moderate impact, possible 3'UTR variant involved in nonsense mediated decay. 
Probably damaging to protein structure and likely to have deleterious effect on protein function.  

c.1445A>G
Missense variant, splice variant with potential impact on downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Probably damaging to protein structure and 
likely deleterious to protein function. 

c.1226C>A
Missense variant, splice variant with potential impact on downstream gene regulation, possible 
3'UTR variant involved in nonsense-mediated decay. Probably damaging to protein structure and 
likely deleterious to protein function.  

c.752C>T p.P251L
Missense variant, splice region variant with moderate impact. Possibly damaging to protein structure 
and tolerated by protein function. 

c.424G>A p.G142S Missense variant. Change tolerated by protein function, benign impact on protein structure 

D
ow

nloaded from
 http://ahajournals.org by on July 20, 2022



c.25C>T p.R9W
Missense variant. Deleterious (but some evidnec of low confidence in finding) to protein function, 
benign impact on protein structure 

c.2T>C p.M1T
Missense variant. Deleterious (but some evidnec of low confidence in finding) to protein function, 
benign impact on protein structure 

c.73G>T p.G25C
Missense, splice region variant. Change tolerated by protein function and has benign impact on 
protein structure 

c.882 -2A>G Splice acceptor variant, high impact . Also potential impact on upstream gene regulation 

c.973 -1G>A
Splice acceptor variant, high impact . Also potential regulatory region variant altering TF binding site. 
Could impact upstream gene regulation (RPL32P5) 

c.973 -2A>G
Splice acceptor variant, high impact, may result in retained intron, could impact nonsense mediated 
decay . Also potential regulatory region variant altering TF binding site. Could impact upstream and 
downstream gene regulation (RPL32P5) 

c.973-2A>G
Splice acceptor variant, high impact, may result in retained intron, could impact nonsense mediated 
decay . Also potential regulatory region variant altering TF binding site. Could impact upstream and 
downstream gene regulation (RPL32P5). 

c.542+1G>A Splice donor variant with high impact. Possible impact on nonsense mediated decay 

c.753+2T>A Splice donor variant with high impact. Possible retained intron 

c.753G>A Splice region variant with low impact. May influence downstream and upstream gene regulation. 

c.781delinsCCATA p.D261Pfs*2 Stop gained, frameshift variant with high impact 

c.1196G>A p.W399* Stop gained, high impact 

c.794C>G p.Q265X Stop gained, high impact variant. Possible impact on upstream gene regulation 

c.916C>T p.R306* Stop gained, high impact variant. Possible impact on upstream gene regulation. 

c.660C>A p.Y220X Stop gained, high impact variant. Possible impact on upstream gene regulation. Benign. 

c.47+2T>C Synonymous, intron variant with low impact. Potential retained intron 

C. COL4A1 

Genetic mutation Protein change Variant information 

c.*35C>A 3' UTR variant, regulatory region variant 

c.*31G>T 3'UTR variant, regulatory region variant 
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c.*32G>A 3'UTR variant, regulatory region variant 

c.*32G>T 3'UTR variant, regulatory region variant 

c.*33T>A 3'UTR variant, regulatory region variant 

c.-2C>T 5'UTR variant, with possible impact on upstream gene regulation 

c.2545G>T p.G808V Evidence of stop gained, high impact 

c.2424delT p.P810fs Frameshift mutation with high impact. Potentially leading to premature stop 

c.2931dupT p.G978WfsX15 Frameshift mutation with high impact. Potentially leading to premature stop 

c.3702delC p. G1236* Frameshift mutation with high impact. Potentially leading to premature stop 

c.2085del p.G696fs Frameshift mutation with high impact. Potentially leading to premature stop. Pathogenic. 

c.1121-18G>A Intronic variant possibly leading to retained intron 

c.2645_2646delinsAA p.G882E Intronic variant potentially leading to retained intron 

c.3877-30C>A Intronic variant with possible impact on upstream gene regulation. Intron retained 

c.4582
-4586
dupCCCATG ins.

Intronic variant, retained intron. Likely deleterious and probably damaging. Possible impact on 
upstream gene regulation 

c.4642T>G p.C1548G
Missense & splice region variant with low to moderate effect. Likely to impact protein function and 
probably damaging 

c.2969G>A p.G990E
Missense variant and splice region variant. May result in retained intron. Possible modifier of 
downstream gene regulation. Likely deleterious and probably damaging. 

c.2969G>T p.G990V
Missense variant and splice region variant. May result in retained intron. Possible modifier of 
downstream gene regulation. Likely deleterious and probably damaging. 

c.3200G>A p. G1067E
Missense variant and splice region variant. May result in retained intron. Possible modifier of 
downstream gene regulation. Likely deleterious and probably damaging. 

c.3200G>C p.G1067A
Missense variant and splice region variant. May result in retained intron. Possible modifier of 
downstream gene regulation. Likely deleterious and probably damaging. 

c.3770G>C p.G1257E Missense variant in possible regulatory region. Likely deleterious and probably damaging 

c.3796G>C p.G1266R Missense variant in possible regulatory region. Likely deleterious and probably damaging 

c.3832G>T p.G1278S
Missense variant in possible regulatory region. Likely deleterious and probably damaging. Uncertain 
clinical significance 
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c.3245G>A p.G1082E
Missense variant with moderate impact and possible modifier of downstream gene regulation. Likely 
deleterious and possibly damaging 

c.3280G>C p.G1094R
Missense variant with moderate impact and possible modifier of downstream gene regulation. Likely 
deleterious and possibly damaging 

c.1249G>C p.G417R
Missense variant with moderate impact. Benign impact on protein structure and deleterious to 
protein function 

c.3997G>A p.D1333N
Missense variant with moderate impact. Conflicting evidence of effect on protein function, potentially 
tolerated/potentially deleterious 

c.3592G>A p.G1198R Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3620G>T p.G1207V Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3656G>A p. G1219E Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3671C>T p.P1224L Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3704A>G p.K1235R Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3706G>A p.G1236R Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3707G>A p. G1237E Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3712C>T p.R1238C Missense variant with moderate impact. Likely deleterious and probably damaging 

c.3505G>A p. G1169S
Missense variant with moderate impact. Possible splice region variant, with potential impact on 
downstream gene regulation. Likely deleterious and probably damaging 

c.2512A>G p.M838V
Missense variant with moderate impact. Possibly damaging to protein structure and deleterious to 
protein function 

c.3389G>A p.G1130D
Missense variant with moderate impact. Potentially modifies upstream and downstream gene 
regulation. Likely deleterious and probably damaging 

c.4088 G > A p.G1363D Missense variant with moderate impact. Probably damaging and deleterious to protein function 

c.1502G>A
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.1528G>A p.G510R
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.1583G>A p.G528E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 
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c.1619A>G p.K540R
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2008G>A p.G670R
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2045G>T p. G682V
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2063G>A p.G688D
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2078G>A p.G693E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2086G>A p.G696S
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2086G>T p.G696C
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2132G>A p.G711E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2159G>A p.G720D
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2168G>A p. G723E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.2504G>A p.G835E
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.625G>A p. G209S
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.634G>A p.G212S
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function 

c.1493G>A p.G498D
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic. 
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c.1493G>T p.G498V
Missense variant with moderate impact. Probably damaging to protein structure and deleterious to 
protein function. Pathogenic. 

c.3383T>A p.I1128N
Missense variant with moderate impact. Substitution seems to be tolerated by protein function but 
probably damaging to protein structure 

c.3715G>A p.G1239R Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.3941G>T p.G1314V Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.3976G>A p.G1326R Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.3995G>A p.G1332D Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.4031G>C p.G1344A Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.4105G>C p.G1369R Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.4213G>A p.G1405S Missense variant with possible impact on upstream gene regulation. Probably damaging variant 

c.1801G>A p. G601S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Only 
possibly damaging to protein structure and likely to have deleterious effect on protein function 

c.1807C>T p.P603S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Only 
possibly damaging to protein structure and likely to have deleterious effect on protein function 

c.1555G>A p.G519R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.1835G>A p.G612D
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.1853G > A p.G618E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2494G>A p.G832R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2563G>C p.G855R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2581G>A p.G861S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2599G>A p.G867R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 
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c.2608G>A p.G870R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2636G>A p.G879E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2645G>A p.G882D
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2662G>A p.G888R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2689G>A p.G897S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2699G>A p.G900E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2744G>A p.G915E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2782G>C p.D928H
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2842G>A p.G948S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.2987G>A p.G996D
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3022G>A p.G1008R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3040G>C p.G1014R
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3104G>T p.G1035V
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3122G>A p.G1041E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 
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c.3130G>C p.G1044E
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.3190G>A p.G1064S
Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function 

c.191G>T p.G64V
Missense variant, moderate impact and potential modifier of upstream gene regulation. Probably 
damaging to protein structure and likely to have deleterious effect on protein function. Possible 3'UTR 
variant. 

c.4739G>C p.G1580A
Missense variant, moderate impact, deleterious and likely to impact protein function, probably 
damaging 

c.4881C>G p.N1627K
Missense variant, moderate impact, deleterious and likely to impact protein function, probably 
damaging 

c.4843G>A p.E1615K Missense variant, Moderate impact, possibly retained intron, probably damaging 

c.4232G>C p.G1411A
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4380T>G p.C1460W
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4652G>A p. C1551Y
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4717G>A p.G1573R
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4738 G > A p.G1580S
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.4738G>A p. G1580S
Missense variant, moderate impact. Probably damaging and likely to have deleterious effect on 
protein function 

c.1955G>A p. G652E
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.1963G>A p.G655R
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 
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c.1964G>A p.G655E
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.1973C>A p. G658V
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.1973G>A p.G658D
Missense variant, moderate impact. Probably damaging to protein structure and likely to have 
deleterious effect on protein function 

c.2441 G > T p.G814V
Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein 
structure and deleterious to protein function 

c.2413G>A p.G805R
Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein 
structure and deleterious to protein function 

c.2413G>C p. G805R
Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein 
structure and deleterious to protein function 

c.2317G>A p.G773R
Missense variant, non-coding exon variant with moderate impact. Probably damaging to protein 
structure and deleterious to protein function 

c.2317G>C p.G773R
Missense variant, non-coding exon variant with moderate impact. Probably damaging to protein 
structure and deleterious to protein function 

c.2228G>T p.G743V
Missense variant, non-coding exon variant with moderate impact. Regulatory region variant, leading 
to open chromatin structure. Probably damaging to protein structure and deleterious to protein 
function 

c.2245G>A p.G749S
Missense variant, non-coding exon variant with moderate impact. Regulatory region variant, leading 
to open chromatin structure. Probably damaging to protein structure and deleterious to protein 
function 

c.2263G>A p.G755R
Missense variant, non-coding exon variant with moderate impact. Regulatory region variant, leading 
to open chromatin structure. Probably damaging to protein structure and deleterious to protein 
function 

c.4267G>C p.G1423R
Missense variant, possibly resulting in retained intron. Possibly damaging and likely deleterious to 
protein function 

c.4133G>A p.G1378D
Missense variant, potentially impacting upstream gene regulation. Likely deleterious and probably 
damaging 

D
ow

nloaded from
 http://ahajournals.org by on July 20, 2022



c.4150+1(IVS46) G>T
Missense variant, splice donor variant with potential impact on upstream gene regulation. High 
impact. Probably damaging and likely deleterious. 

c.4150+1G>A
Missense variant, splice donor variant with potential impact on upstream gene regulation. High 
impact. Probably damaging and likely deleterious. 

c.4150G>A p.G1384S
Missense variant, splice donor variant with potential impact on upstream gene regulation. High 
impact. Probably damaging and likely deleterious. 

c.2345G>C p.G782A
Missense variant, splice region variant with low-moderate impact. Likely deleterious and probably 
damaging 

c.2096G>A pG699D 
Missense variant, splice region variant with low-moderate impact. Likely deleterious to protein 
function and probably damaging to protein structure 

c.236G>T p.G79V
Missense variant, splice region variant with low-moderate impact. Likely deleterious to protein 
function and probably damaging to protein structure 

c.443G>A p.G148E
Missense variant, splice region variant with low-moderate impact. Likely deleterious to protein 
function and probably damaging to protein structure 

c.196C>A p.Q66K Missense variant. Change tolerated by protein function but possibly damaging to protein structure 

c.2641A>G p.M881V Missense variant. Change tolerated by protein function but possibly damaging to protein structure 

c.3046A>G p.M1016V Missense variant. Change tolerated by protein function but possibly damaging to protein structure 

c.31C>A p.L11M Missense variant. Change tolerated by protein function but possibly damaging to protein structure 

c.1612C>G p.R538G Missense variant. Change tolerated by protein function with benign impact on protein structure 

c.1769G>A p.G562E Missense variant. Change tolerated by protein function with benign impact on protein structure 

c.3946C>G p.Q1316E
Missense variant. Change tolerated by protein function, likely benign some evidence of possibly 
damaging protein structure 

c.1537-2A>G Potential frameshift variant and splice acceptor variant with high impact 

c.1537–2delA Potential frameshift variant and splice acceptor variant with high impact 

c.1121-2dupA
p.G374_N429
delinsD

Splice acceptor variant, intronic variant leading to retained intron. High impact variant. 

c.1382-1G>C Splice acceptor variant, intronic variant leading to retained intron. High impact variant. 

c.2194-1G.A
Splice acceptor variant, intronic variant leading to retained intron. High impact variant. Also potential 
regulatory region variant leading to open chromatin structure 

D
ow

nloaded from
 http://ahajournals.org by on July 20, 2022



c.553-2A>G
Splice acceptor variant, intronic variant leading to retained intron. High impact variant. Also potential 
regulatory region variant leading to open chromatin structure and altered downstream gene 
regulation. Potential 3' UTR variant 

c.1990+1G>A Splice donor variant with high impact. Possible retained intron 

c.3406 + 1G>T
Splice donor variant with high impact. Potential impact on both upstream and downstream gene 
regulation 

c.2716 + 1G>A Splice donor variant with high impact. Potential impact on downstream gene regulation 

c.2716+ G>T Splice donor variant with high impact. Potential impact on downstream gene regulation 

c.2716+2T>C Splice donor variant with high impact. Potential impact on downstream gene regulation 

c.2458+1G>A
Splice donor variant, high impact. Possibly retained intron and downstream gene regulation 
modification 

c.1A>T
Start lost, but seems to be tolerated by protein function but possibly damaging to protein structure. 
Possible impact on upstream gene regulation 

c.739C>T p.Q247* Stop gained, high impact. Possible modifier of downstream gene regulation 

c.607G>T p. G203R Stop gained, high impact. Potential 3'UTR regulatory variant 

c.4875C>A p.Y1625* Stop gained, likely deleterious, high impact 

c.4887C>A p.Y1629X Stop gained, likely deleterious, high impact 

c.1870G>T p.G624* Stop gained, likely deleterious, high impact. Possible modifier of downstream gene regulation 

D. COL4A2 

Genetic 
mutation 

Protein 
change 

Variant information 

c.1396G>A p.G466S Missense variant with moderate impact. Probably damaging to protein structure and deleterious to protein 
function. Possible intron variant causing alteration to lncRNA influencing gene AS2 

c.1776+1G>A Splice donor variant with high impact. Possible retained intron and impact to lncRNA influencing gene AS2. 
Pathogenic but also reported to have uncertain clinical significance 

c.1810G>C p.G604R Missense variant, moderate impact and potential modifier of upstream and downstream gene regulation. 
Probably damaging to protein structure and likely to have deleterious effect on protein function. Potenital 
influence on promoter refulation and lncRNA influencing AS2 
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c.1856G>A p.G619D Missense variant, moderate impact and potential modifier of upstream and downstream gene regulation. 
Probably damaging to protein structure and likely to have deleterious effect on protein function. Potenital 
influence on promoter refulation and lncRNA influencing AS2. Likely pathogenic 

c.2105G>A p.G702D Missense variant with moderate impact. Probably damaging to protein structure and deleterious to protein 
function 

c.2399G>A p.G800E Missense variant with moderate impact. Probably damaging to protein structure and deleterious to protein 
function. With possible impact on upstream gene regulation and promoter regions 

c.2821G>A p.G941R Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein structure and 
deleterious to protein function. Possible retained intron. 

c.3110G>A p.G1037E Missense variant, moderate impact and potential modifier of downstream gene regulation. Probably damaging to 
protein structure and likely to have deleterious effect on protein function. Pathogenic 

c.3368A>G p.E1123G Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein structure and 
deleterious to protein function. Likely benign clinical significance but possible risk factor 

c.3448C>A p.Q1150K Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein structure and 
tolerated to protein function. Likely benign clinical significance but possible risk factor 

c.3455G>A p.G1152D Missense variant, splice region variant. Probably damaging to protein structure and deleterious to protein 
function. Pathogenic 

c.3490G>A p.R1164G Missense variant with moderate impact. Probably damaging to protein structure and deleterious to protein 
function. Pathogenic 

c.4129G > A p.G1377R Missense variant, moderate impact and potential modifier of upstream gene regulation, possible impact on 
lncRNA influencing AS2. Probably damaging to protein structure and likely to have deleterious effect on protein 
function. Pathogenic 

c.4147G>A p.G1383R Missense variant, moderate impact and potential modifier of upstream gene regulation, possible impact on 
lncRNA influencing AS2. Probably damaging to protein structure and likely to have deleterious effect on protein 
function. Likely pathogenic 

c.4987G>A p.G1663S Missense variant, moderate impact and potential modifier of both upstream and downstream gene regulation, 
possible impact on lncRNA influencing AS2. Probably damaging to protein structure and likely to have deleterious 
effect on protein function. Conflicting clinical significane, reported both likely benign and likely pathogenic 

c.5068G>A p.A1690T Missense variant, non-coding exon variant with moderate impact. Possibly damaging to protein structure and 
tolerated to protein function. Likely benign clinical significance but possible risk factor 
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E. TREX1 

Genetic mutation Protein 
change 

Variant information 

c.703dup p.V235GfsX6 Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.822delT p.P275Qfsx2 Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.830-
833dupAGGA

p.D278fs Intronic variant. Potential 3'UTR variant with downstream gene variation. Possible influence on ATRIP 
and nonsense mediated decay of SHISA5 

c.829A>T p.K277* Stop gained, high impact. Possible modifier of downstream gene regulation. Likely pathogenic. 

c.828_831dupGA
AG

p.D278EfsTer
48

Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.703dupG p.V235Gfs Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.685A>G p.Arg229Gly Missense variant, moderate impact and potential modifier of downstream gene regulation. Benign 
impact on protein structure and tolerated by protein function 

c.690G>T p.Lys230Asn Missense variant, moderate impact and potential modifier of downstream gene regulation. Benign 
impact on protein structure and could have deleterious effect on protein function, but tolerated also 
reported 

c.581delC p.Ala194fs Frameshift variant with high impact, possible downstream gene regulation of ATRIP and SHISA5. 
Pathogenic 

c.742_745dupGTC
A

p.T249fs Intronic variant. Potential 3'UTR variant with downstream gene variation. Possible influence on ATRIP 
and nonsense mediated decay of SHISA5 

c.734dupC ? Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 

c.911_912delCA p.T304Nfs*12 Intronic variant. Potential 3'UTR variant with downstream gene variation. Possible influence on ATRIP 
and nonsense mediated decay of SHISA5 

c.703_704insG p.V235GfsX6 Frameshift mutation with high impact. Potentially leading to premature stop. Possible impact on 
downstream gene regulation of ATRIP and SHISA5 (non-mediated decay) 
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