

Edinburgh Research Explorer

Neural Network Ambient Occlusion

Citation for published version:
Komura, T 2016, Neural Network Ambient Occlusion. in SA '16 SIGGRAPH ASIA 2016 Technical Briefs., 9,
ACM, SIGGRAPH ASIA 2016 Technical Briefs, Macao, 5/12/16. https://doi.org/10.1145/3005358.3005387

Digital Object Identifier (DOI):
10.1145/3005358.3005387

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
SA '16 SIGGRAPH ASIA 2016 Technical Briefs

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 18. Sep. 2024

https://doi.org/10.1145/3005358.3005387
https://doi.org/10.1145/3005358.3005387
https://www.research.ed.ac.uk/en/publications/2d052fdc-2b02-4114-86f3-fdd36e2d1a4c

Neural Network Ambient Occlusion

Daniel Holden�
University of Edinburgh

Jun Saitoy
Method Studios

Taku Komuraz
University of Edinburgh

Figure 1: Comparison showing Neural Network Ambient Occlusion enabled and disabled inside a game engine.

Abstract

We present Neural Network Ambient Occlusion (NNAO), a fast, ac-
curate screen space ambient occlusion algorithm that uses a neural
network to learn an optimal approximation of the ambient occlu-
sion effect. Our network is carefully designed such that it can be
computed in a single pass allowing it to be used as a drop-in re-
placement for existing screen space ambient occlusion techniques.

Keywords: neural networks, machine learning, screen space am-
bient occlusion, SSAO, HBAO

Concepts: �Computing methodologies! Rasterization;

1 Introduction

Ambient Occlusion is a key component in the lighting of a scene
but expensive to calculate. By far the most popular approximation
used in real-time applications is Screen Space Ambient Occlusion
(SSAO), a method which uses the depth buffer and other screen
space information to calculate occlusions. Screen space techniques
have seen wide adoption because they are independent of scene
complexity, simple to implement, and fast.

Yet, calculating effects in screen space often creates artifacts, as
complete information about the scene is unavaliable. The exact be-
haviour of these artifacts can be dif�cult to predict but by using
machine learning we can learn an SSAO algorithm that minimises
these errors with respect to some cost function.

Using a database of camera depths, normals, and ground truth am-
bient occlusion as calculated using an of�ine renderer, we train a
neural network to learn a mapping from the depth and normals sur-
rounding the pixel to the ambient occlusion of that pixel. Once

�email:contact@theorangeduck.com
yemail:junsaito@siggraph.org
zemail:tkomura@ed.ac.uk

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or af�liate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
SA ’16 Technical Briefs ,, December 05 - 08, 2016, , Macao
ISBN: 978-1-4503-4541-5/16/12
DOI: http://dx.doi.org/10.1145/3005358.3005387

trained we convert the neural network into an optimised shader
which is more accurate than existing techniques, has better perfor-
mance, no user parameters other than the occlusion radius, and can
be computed in a single pass allowing it to be used as a drop-in
replacement for existing techniques.

2 Related Work

Screen Space Ambient Occlusion Screen Space Ambient Occlu-
sion (SSAO) was �rst introduced by Mittring [2007] for use in
Cryengine2. The approach samples around the depth buffer in a
view space sphere and counts the number of points which are in-
side the depth surface to estimate the occlusion. This method has
seen wide adoption but often produces artifacts such as dark halos
around object silhouettes or white highlights on object edges. Fil-
ion and McNaughton [2008] presented SSAO+, an extension which
samples in a hemisphere oriented in the direction of the surface nor-
mal. This removes the white highlights around object edges and
reduces the required sampling count but still sometimes produces
dark halos. Bavoil et al. [2008] introduced Horizon Based Ambient
Occlusion (HBAO). This technique predicts the occlusion by esti-
mating the openness of the horizon around the sample point. Rays
are marched along the depth buffer and the difference in depth is
used to calculate the horizon estimate. This was extended by Mit-
tring [2012] who improved the performance with paired samples.
HBAO produces a more realistic effect but does not account for the
fact that the camera depth map is an approximation of the true scene
geometry. McGuire et al. [2011] introduced Alchemy Screen-Space
Ambient Obscurance (ASSAO), an effect which substitutes a �xed
falloff function into the general lighting equation to create a more
physically accurate integration over the occlusion term. ASSAO
produces a physically based result, but still does not deal directly
with the errors introduced by the screen space approximation.

Machine Learning for Screen Space Effects So far machine
learning has seen very limited application to rendering and screen
space effects. In of�ine rendering Kalantari et al. [2015] used ma-
chine learning to �lter the noise produced by Monte Carlo render-
ing at low sample rates. Ren et al. [2015] used neural networks to
perform image space relighting of scenes, allowing users to virtu-
ally adjust the lighting of scenes even with complex materials. Fi-
nally Johnson et al. [2011] used machine learning alongside a large
repository of photographs to improve the realism of renderings -
adjusting patches of the output to be more similar to corresponding
patches of photographs in the database.

http://dx.doi.org/10.1145/3005358.3005387

3 Preprocessing

To produce the complex scenes required for training our network
we make use of the geometry, props, and scenes of the Open Source
�rst person shooter Black Mesa [Crowbar-Collective 2015]. We
take several scenes from the game and add additional geometry
and clutter to ensure a wide variety of objects and occlusions are
present.

We produce �ve scenes and select 100-150 viewpoints using dif-
ferent perspectives and camera angles. From each viewpoint we
use Mental Ray to render scene depth, camera space normals, and
global ambient occlusion at a resolution of 1280� 720. From each
image we randomly pick 1024 pixels and perform the following
process to extract the input features used in training. Experimen-
tally we found these features to produce the best results.

Given a pixel’s depth we use the inverse camera projection matrix
to calculate the position of the pixel as viewed from the camera
(the view space position). We then take w � w samples in a view
space regular grid centered around this position and scaled by the
user given AO radius r. We reproject each sample into the screen
space using the camera projection matrix and sample the GBuffer
to �nd the corresponding pixel normal and depth. For each sample
we take the difference between its normal and that of the center
pixel. Additionally we take the difference between its view space
depth and that of the center pixel. These values we put into a four
dimension vector. We then calculate the view space distance of the
sample to the center pixel, divide it by the AO radius r, subtract
one, and clamp to the range [0; 1]. Using this value we scale the
four dimensional input vector. This ensures that all samples outside
of the occlusion radius have a value of zero and cannot in�uence the
output. We concatenate the values from each of these samples into
one large vector. This represents a single input data point x 2 Rw24

where in this work w = 31. We then take the ambient occlusion
value of the center pixel as the corresponding output data y 2 R1.

Once complete we have a �nal dataset of around 500000 data
points. We then normalise the data by subtracting the mean and
dividing by the standard deviation.

4 Training

Our network is designed such that it can be computed by a shader
in a single pass. We therefore use a simple four layer neural net-
work where the operation of a single layer �n(x) is given by the
following

�n(x) = PReLU(Wn x + bn; �n; �n) (1)

where PReLU(x; �; �) = � max(x; 0) + � min(x; 0) is a vari-
ation of the Parametric Recti�ed Linear Unit �rst proposed by
[He et al. 2015] with an additional scaling term � for the pos-
itive activation. The parameters of our network are as follows
� = fW0 2 Rw24�4;W1 2 R4�4;W2 2 R4�4;W3 2
R4�1;b0 2 R4;b1 2 R4;b2 2 R4;b3 2 R1; �0 2 R4; �1 2
R4; �2 2 R4; �3 2 R1; �0 2 R4; �1 2 R4; �2 2 R4; �3 2 R1g.

The cost function of our network consists of the mean squared re-
gression error and a small regularisation term scaled by which in
this work we set to 0:01. Here x is the input features extracted in
the preprocessing stage and y is the corresponding ambient occlu-
sion of the pixel.

Cost(x;y; �) = ky � �3(�2(�1(�0(x))))k2 + j�j (2)

Figure 2: Top: overview of our neural network. On the �rst layer
four independent dot products are performed between the input and
W0 represented as four 2D �lters. The rest of the layers are stan-
dard neural network layers. Bottom: the four �lter images extracted
from W0.

We pick random elements from our dataset in mini-batches of
16 and evaluate the above cost function. The parameters of
the network are then updated using derivatives calculated by
Theano [Bergstra et al. 2010], and the adaptive gradient descent
algorithm Adam [Kingma and Ba 2014]. To avoid over-�tting, we
use a Dropout [Srivastava et al. 2014] of 0.5 on the input layer.
Training is performed for 100 epochs and takes around 10 hours on
a NVIDIA GeForce GTX 660 GPU.

5 Runtime

After training the data preprocessing and neural network operation
need to be reproduced in a shader for use at runtime. The shader
is mostly a straight forward translation but has a few exceptions
which are detailed below. The full shader and network weights are
provided in the supplementary material.

As the total memory required to store the network weight W0 ex-
ceeds the maximum memory reserved for local shader variables it
cannot be stored in the shader code. Instead we observe that multi-
plication by W0 can be described as four independent dot products
between columns of the matrix and the input x. As the input x is
produced by sampling in a 2D grid, we can compute these dot prod-
ucts in 2D, and store the weights matrix W0 as four 2D textures we
call �lters. These 2D textures are then sampled and multiplied by
the corresponding components of the input vector (see Figure. 2).

Performing the dot product in 2D allows us to approximate the mul-
tiplication by W0. We can compute the dot product between the
input and the �lters in just a few sample locations and rescale the
result using the ratio between the number of samples taken and the
full number of elements in W0. We use strati�ed sampling - regu-
larly picking every nth pixel of the �lters and taking the dot product
with the corresponding input sample, �nally multiplying the total
by n. We also introduce a small amount of 2D jitter to the sampling
locations to spread the approximation in the screen space. This al-
lows us to accurately approximate the multiplication of W0 at the
cost of some noise in the output. As with other SSAO algorithms,
the output is therefore post processed using a bilateral blur.

6 Results

In Figure. 3 we visually compare the results of our method to
SSAO+ (16 samples), HBAO (64 samples), and the ground truth.
HBAO produces good results in general but requires almost twice

Figure 3: Comparison to other techniques. From left to right: SSAO+, HBAO, NNAO (Our Method), Ground Truth.

the runtime of our method (See Figure. 4) and in many places cre-
ates areas which are too dark. See: under the sandbags, behind the
furniture, inside the car, between the railings, on the stairs. In these
cases our method is more conservative as it tries to minimise the
mean squared error. This may also be why our method appears less
contrasted than other methods.

In Figure. 1 we implement our method in a game engine. This
shows our network generalises beyond the training data and ad-
ditionally that it works in interactive applications. Please see the
supplementary video for a longer demonstration.

In Table. 1 we perform a numerical comparison between our
method and previous techniques. Our method has a lower mean
squared error on the test set with comparable or better performance.
All measurements are taken at half resolution (640 � 360) on a
NVIDIA GeForce GTX 660 GPU. Due to the unpredictability in
measuring GPU performance runtimes may vary in practice.

7 Discussion

In Figure. 5 we visualise what is being learned by the neural net-
work. We show the activations of the �rst three �lters using the
cyan, yellow, and magenta channels of the image. Each �lter learns
a separate component of the occlusion with cyan learning unoc-
cluded areas, magenta learning the occlusion of horizontal surfaces
and yellow learning the occlusion of vertical surfaces.

Our method is capable of performing many more samples than other
methods in a shorter amount of time because it samples in a regular
grid. This gives it very good cache behaviour. There is also no
data dependency between samples which gives our method a greater
level of parallelism. Each sample is re-used by each of the four
�lters, resulting in less noise. On the other hand, while our method
may have better IO performance than other methods, it does require
signi�cantly more computational and so this can become the new
bottleneck.

Figure 4: Given similar runtimes, our algorithm performs more
samples in a shorter time, producing less noise and a better qual-
ity output in comparison to HBAO, which appears blotchy at low
sampling rates.

Algorithm Sample Count Runtime (ms) Error (mse)
SSAO 4 1.20 1.765
SSAO 8 1.43 1.558
SSAO 16 14.71 1.539
SSAO+ 4 1.16 0.974
SSAO+ 8 1.29 0.818
SSAO+ 16 14.46 0.811
HBAO 16 3.53 0.965
HBAO 32 4.83 0.709
HBAO 64 8.50 0.666
NNAO 64 4.17 0.510
NNAO 128 4.81 0.486
NNAO 256 6.87 0.477

Table 1: Numerical comparison between our method and others.

7.1 Limitations & Future Work

Our method is not trained on data that includes high detail nor-
mal maps in the GBuffer. Although our method can be used on
GBuffers with detailed normals (see Figure. 1) it is likely our
method would perform better if trained on this kind of data. Re-
ducing the sampling count of our method below 64 does not reduce
the runtime very much. In this case further control over the perfor-
mance would be desirable. Our technique produces ambient occlu-
sion but we believe it could also be applied to other screen space
effects such as Screen Space Radiosity, Screen Space Re�ections
and more.

7.2 Conclusion

We present a technique for performing screen space ambient oc-
clusion using neural networks. After training we create an opti-
mised shader that reproduces the network forward pass ef�ciently
and controllably. Our method produces fast, accurate results and
can be used as a drop-in replacement to existing screen space am-
bient occlusion techniques.

References

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In ACM SIGGRAPH 2008

Figure 5: The activations of the �rst three �lters represented by
the cyan, yellow, and magenta channels of the image.

Talks, ACM, New York, NY, USA, SIGGRAPH ’08, 22:1�22:1.

BERGSTRA, J., BREULEUX, O., BASTIEN, F., LAMBLIN, P.,
PASCANU, R., DESJARDINS, G., TURIAN, J., WARDE-
FARLEY, D., AND BENGIO, Y. 2010. Theano: a CPU and GPU
math expression compiler. In Proc. of the Python for Scienti�c
Computing Conference (SciPy). Oral Presentation.

CROWBAR-COLLECTIVE, 2015. Black mesa. http://www.
blackmesasource.com/.

FILION, D., AND MCNAUGHTON, R. 2008. Effects & techniques.
In ACM SIGGRAPH 2008 Games, ACM, New York, NY, USA,
SIGGRAPH ’08, 133�164.

HE, K., ZHANG, X., REN, S., AND SUN, J. 2015. Delving deep
into recti�ers: Surpassing human-level performance on imagenet
classi�cation. CoRR abs/1502.01852.

JOHNSON, M. K., DALE, K., AVIDAN, S., PFISTER, H., FREE-
MAN, W. T., AND MATUSIK, W. 2011. Cg2real: Improving the
realism of computer generated images using a large collection of
photographs. IEEE Transactions on Visualization and Computer
Graphics 17, 9 (Sept), 1273�1285.

KALANTARI, N. K., BAKO, S., AND SEN, P. 2015. A Ma-
chine Learning Approach for Filtering Monte Carlo Noise. ACM
Transactions on Graphics (TOG) (Proceedings of SIGGRAPH
2015) 34, 4.

KINGMA, D. P., AND BA, J. 2014. Adam: A method for stochastic
optimization. CoRR abs/1412.6980.

MCGUIRE, M., OSMAN, B., BUKOWSKI, M., AND HENNESSY,
P. 2011. The alchemy screen-space ambient obscurance algo-
rithm. In Proceedings of the ACM SIGGRAPH Symposium on
High Performance Graphics, ACM, New York, NY, USA, HPG
’11, 25�32.

MITTRING, M. 2007. Finding next gen: Cryengine 2. In ACM
SIGGRAPH 2007 Courses, ACM, New York, NY, USA, SIG-
GRAPH ’07, 97�121.

MITTRING. 2012. The technology behind the �unreal engine 4
elemental demo�. In ACM SIGGRAPH 2012 Talks, ACM, New
York, NY, USA, SIGGRAPH ’12.

REN, P., DONG, Y., LIN, S., TONG, X., AND GUO, B. 2015. Im-
age based relighting using neural networks. ACM Trans. Graph.
34, 4 (July), 111:1�111:12.

SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A., SUTSKEVER,
I., AND SALAKHUTDINOV, R. 2014. Dropout: A simple way to
prevent neural networks from over�tting. J. Mach. Learn. Res.
15, 1 (Jan.), 1929�1958.

http://www.blackmesasource.com/
http://www.blackmesasource.com/

