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Abstract
We consider the following surveillance problem: Given a set P of n sites in a metric space and a
set R of k robots with the same maximum speed, compute a patrol schedule of minimum latency for
the robots. Here a patrol schedule specifies for each robot an infinite sequence of sites to visit (in the
given order) and the latency L of a schedule is the maximum latency of any site, where the latency
of a site s is the supremum of the lengths of the time intervals between consecutive visits to s.

When k = 1 the problem is equivalent to the travelling salesman problem (TSP) and thus it
is NP-hard. For k ⩾ 2 (which is the version we are interested in) the problem becomes even more
challenging; for example, it is not even clear if the decision version of the problem is decidable, in
particular in the Euclidean case.

We have two main results. We consider cyclic solutions in which the set of sites must be
partitioned into ℓ groups, for some ℓ ⩽ k, and each group is assigned a subset of the robots that
move along the travelling salesman tour of the group at equal distance from each other. Our first
main result is that approximating the optimal latency of the class of cyclic solutions can be reduced
to approximating the optimal travelling salesman tour on some input, with only a 1 + ε factor
loss in the approximation factor and an O

(
(k/ε)k

)
factor loss in the runtime, for any ε > 0. Our

second main result shows that an optimal cyclic solution is a 2(1 − 1/k)-approximation of the overall
optimal solution. Note that for k = 2 this implies that an optimal cyclic solution is optimal overall.
We conjecture that this is true for k ⩾ 3 as well.

The results have a number of consequences. For the Euclidean version of the problem, for instance,
combining our results with known results on Euclidean TSP, yields a PTAS for approximating an
optimal cyclic solution, and it yields a (2(1 − 1/k) + ε)-approximation of the optimal unrestricted
(not necessarily cyclic) solution. If the conjecture mentioned above is true, then our algorithm is
actually a PTAS for the general problem in the Euclidean setting. Similar results can be obtained
by combining our results with other known TSP algorithms in non-Euclidean metrics.
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1 Introduction

We study the following problem, motivated by the problem of monitoring a fixed set of
locations using autonomous robots: We are given a set P = {s1, · · · , sn} of n sites in a
metric space as well as a set R = {r1, · · · , rk} of k robots. We assume the robots have the
same maximum speed, called the unit speed, and their task is to repeatedly visit (i.e., survey)
the sites such that the maximum time during which any site is left unmonitored is minimized.
More precisely, we wish to compute a patrol schedule; that is, an infinite sequence of sites
to visit for each robot, of minimum latency. Here the latency of a site si is the supremum
of the length of the time intervals between consecutive visits of si, and the latency of the
patrol schedule is the maximum latency over all the sites.

Related Work. For k = 1, the problem reduces to the Traveling Salesman Problem. To see
this, consider the time interval [0, 3L], where L is the optimal latency, and observe that every
site is visited at least twice by the robot in this time interval. Let L′ ⩽ L be the maximum
length of time between two consecutive visits of a site. Then there exists a site that is
visited at times t0 and t0 + L′ and all other sites are visited at least once in the time interval
(t0, t0 + L′). Hence, if an optimal solution has latency L, there is a TSP tour of length at
most L. The converse is clearly true as well – by repeatedly traversing a TSP tour of length L

we obtain a patrol schedule of latency L – and so the TSP problem is equivalent to the patrol
problem for a single robot. Since TSP is NP-hard even in the Euclidean case [16] we will
focus on approximation algorithms. There are efficient approximation algorithms for TSP
and, hence, for the patrolling problem for k = 1. In particular, there is a (3/2)-approximation
for metric TSP [5] (which was slightly improved very recently [10]) and a PTAS for Euclidean
TSP [4, 15]. However, it seems difficult to generalize these solutions to the case k ⩾ 2,
because it seems non-trivial to get a grip on the structure of optimal solutions in this case.
We will mention some of the major challenges shortly.

There has been a lot of work on such surveillance problems in the robotics community [7,
9, 14, 21, 17, 18]. Most previous work, however, focused on either practical settings or aspects
of the problems other than finding the best approximation factor. There are two papers that
provide theoretical guarantees for the weighted version of the problem, where sites of higher
weight require more frequent patrols. Alamdari et al. [2] provided a O(log n)-approximation
algorithm for the weighted problem for k = 1. (Due to existence of weights, a TSP tour may
no longer be optimal for k = 1.) Afshani et al. [1] studied the problem for k ⩾ 1 and they
present an O(k2 log wmax

wmin
)-approximation algorithm, where wmax and wmin are the maximum

and the minimum weights of the sites.

Related Problems. As already mentioned, the TSP problem can be viewed as a special case
of the problem for unweighted sites and for k = 1. Another related problem is the k-path cover
problem where we want to find k paths that cover the vertices of an edge-weighted graph such
that the maximum length of the paths is minimized. This problem has a 4-approximation
algorithm [3]. Another problem is the problem of covering all the sites with k trees that
minimize the maximum length of the trees; this problem is known as the min-max tree cover
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problem and it has constant-factor approximation algorithms [3, 13] with 8/3 being the
current record [20]. The k-cycle cover problem is similar, except that we want to use k cycles
(instead of paths or trees); again constant-factor approximation algorithms are known, with
16/3 being the current record [20]. If the goal is to minimize the sum of all cycle lengths,
there is a 2-approximation for the metric setting and a PTAS in the Euclidean setting [11, 12].
Our problem is also related to (but different from) the vehicle routing problem (VRP) [6],
which asks for k tours, starting from a given depot, that minimize the total transportation
cost under various constraints; see the surveys by Golden et al. [8] or Tóth and Vigo [19].

Our Results. All covering problems mentioned above are obviously decidable. The question
of decidability for the patrolling problem seems non-trivial. However, since patrol schedules
are infinite sequences and thus it is not even clear how to guess a solution1. To tackle this
issue, we consider the class of cyclic solutions. In a cyclic solution the set P of sites is
partitioned into ℓ ⩽ k subsets P1, · · · , Pℓ, and each subset Pi is assigned ki robots, where∑ℓ

i=1 ki = k. The ki robots are then distributed evenly along a TSP tour of Pi, and they
traverse the tour at maximum speed. Thus, the latency of the sites in Pi equals ∥Ti∥/ki,
where ∥Ti∥ is the length of the TSP tour of Pi.

The significance of this definition is that in Section 3 we prove that (in any metric
space) the best cyclic solution is a 2(1 − 1/k)-approximation of the optimal solution in
terms of maximum latency. We do this by transforming an optimal solution to a cyclic
one, with only a 2(1 − 1/k) factor loss in the approximation ratio. This proof is highly
non-trivial and involves a number of graph-theoretic arguments and carefully inspecting the
coordinated motion of the k robots, cutting them up at proper locations, and re-gluing the
pieces together to form a cyclic solution. In combination with this, in Section 4 we prove
that, given a γ-approximation algorithm for TSP, for any fixed k and ε > 0, we can obtain
a (1 + ε)γ-approximation of the best cyclic schedule in polynomial time. Therefore, in the
Euclidean setting, we can use a known PTAS to obtain a (1 + ε)-approximation to the best
cyclic solution and in the general metric setting, we can use known approximation algorithms
for TSP [10] to get a 1.5-approximation to the best cyclic solution. Together with the results
in Section 3 these lead to a (2 − 2/k + ε)-approximation algorithm for the Euclidean case,
and a (3 − 3/k)-approximation for general metrics.

We conjecture that the best cyclic solution is in fact the best overall solution. If this is
true, then our algorithm in Section 4 already gives a PTAS in the Euclidean setting. Observe
that a corollary of our result in Section 3 is that the conjecture holds for k = 2. We remark
that there is an easy proof showing the existence of a cyclic 2-approximation solution (See
Section 2.2). Our new bound 2(1 − 1/k) is a significant improvement when k is a small
constant. For example, for k = 3, we get that a cyclic 4/3 approximate solution exists, and
for k = 2 –as mentioned above– that there is a cyclic optimal solution.

2 Challenges, Notation, and Problem Statement

2.1 Notation and Problem Statement
Let (P, d) be a metric space on a set P of n sites, where the distance between two sites si, sj ∈
P is denoted by d(si, sj). Following Afshani et al. [1], we model the metric space in the
following way. We take the undirected complete graph G = (P, P ×P ), and we view each edge

1 If we assume that all distances are integers and we want to decide whether the latency is at most a
given integer ℓ, then we can guess a solution. These assumptions, however, do not hold in the Euclidean
case, even if the coordinates of sites are rational.

SoCG 2022
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(si, sj) ∈ P ×P as an interval (that is, a continuous 1-dimensional space) of length d(si, sj) in
which the robot can travel. This transforms the discrete matric space (P, d) into a continuous
metric space C(P, d). From now on, and with a slight abuse of terminology, when we talk
about the metric space (P, d) we actually mean the continuous metric space C(P, d).

We allow the robots to “stay” on a site for any amount of time. This implies it never
helps if a robot moves slower than the maximum speed: indeed, the robot may as well move
at maximum speed towards the next site and stay a bit longer at that site. Also, it does not
help to have a robot start at time t = 0 “in the middle” of an edge, so we can assume all
robots start at some sites at the beginning. A schedule of a robot rj is defined as a continuous
function fj : R⩾0 → C(P, d), where fj(t) specifies the position of rj at time t. The unit-speed
constraint implies that a valid schedule must satisfy d(fj(t1), fj(t2)) ⩽ |t1 − t2| for all t1, t2.
A schedule for the collection R of robots, denoted by σ(R), is a collection of schedules fj ,
one for each robot rj ∈ R. Note that we allow robots to be at the same location at the same
time.

We say that a site si ∈ P is visited at time t if fj(t) = si for some robot rj . Given a
schedule σ(R), the latency Li of a site si is defined as follows.

Li = sup
0⩽t1<t2

{|t2 − t1| : si is not visited during the time interval (t1, t2)}

We only consider schedules where the latency of each site is finite. Clearly such schedules exist;
e.g., a robot can repeatedly traverse a TSP tour of the sites. Given a metric space (P, d) and a
collection R of k robots, the (multi-robot) patrol-scheduling problem is to find a schedule σ(R)
minimizing the latency L := max

i
Li, the maximum latency of any site.

2.2 Challenges
The problem of scheduling multiple robots is quite challenging and involves several subtleties,
caused by the fact that patrol schedules are infinite sequences. For example, the time intervals
between consecutive visits of any given site might increase continuously, and so we have to
define the latency of a site using the notion of supremum rather than maximum. Moreover,
for k > 1, it is not even clear if the problem is decidable: Given a set of n points in the
Euclidean plane, an integer k > 1, and a value L, is it decidable if there exists a patrol
schedule for the k robots such that the maximum latency is bounded by L? As already
mentioned, a corollary of our results in Section 3 is that for k = 2 there exists an optimal
cyclic solution and thus for k = 2 the answer to the above question is yes.

A severe challenge is that, since patrol schedules are infinite sequences, it is difficult to
rule out chaotic solutions where the robots visit the sites in a way that avoids any sort of
repeated pattern. Indeed, optimal solutions can behave so chaotically that they require an
infinite sequence of bits to describe. For instance, consider the left situation in Figure 1,

A

B

C

D

r1
r2r3

(a) (b)

r1

r2

Figure 1 (a) Four points A, B, C, and D form a short and wide rectangle. Robots r1, r2, and r3

can have infinite “unpredictable” optimal patrol schedules. (b) Robots r1 and r2 can move to the
other diagonal in two different ways.



P. Afshani et al. 2:5

where we have three robots and four points A, B, C, D that are the vertices of a thin rectangle.
To obtain the optimal latency, it suffices that r1 moves back and forth between A and B,
and r2 moves back and forth between C and D. Since r3 cannot be used to decrease the
latency – it will take r3 too much time to go from A, B to C, D – it can behave as chaotically
as it wants, thus causing the description of the patrol schedule to be arbitrarily complicated.
This is even possible using only two robots: Consider four sites that form a unit square
and two robots placed on opposite corners of the square; see the right situation in Figure 1.
An optimal schedule is then an infinite sequence of steps, where in each step both robots
move counterclockwise or both move clockwise. Such a schedule need not be cyclic and,
hence, may require an infinite sequence of bits to describe. Of course, in both cases we know
optimal cyclic solutions exist, and such solutions can be described using finitely many bits.
We conjecture that this should be true in general:

▶ Conjecture 1. For the k-robot patrolling problem with min-max latency, there is a cyclic
solution that is optimal.

It is easy to see that there exists a cyclic solution that is a 2-approximation: take an
optimal schedule with latency L, and at time L move the robots back to their respective
starting positions at time 0, and repeat. The challenge lies in getting an approximation
factor smaller than 2, which we achieve in Section 3 where we show that there is a cyclic
solution that is a 2(1 − 1/k) approximation.

3 Turning an Optimal Solution into a Cyclic Solution

The main goal of this section is to prove the following theorem.

▶ Theorem 2. Let L be the latency in an optimal solution to the k-robot patrol-scheduling
problem in a metric space (P, d). There is a cyclic solution with latency at most 2(1 − 1/k)L.

We prove the theorem by considering an optimal (potentially “chaotic”) solution and
turning it into a cyclic solution. This is done by first identifying a certain set of “bottleneck”
sites within a time interval of length L, then cutting the schedules into smaller pieces,
and then gluing them together to obtain the final cyclic solution. This will require some
graph-theoretic tools as well as several new ideas (see Appendix in the full-version paper).

Below we sketch the main ideas of the proof; the full proof can be found in Appendix of
the full-version paper.

3.1 Bidirectional sweep to find “bottleneck” sites
Consider an optimal patrol schedule with latency L, and consider a time interval I :=
[t0, t0 + L] for an arbitrary t0 > 2L. By our assumptions, every site is visited at least once
within this time interval. We assign a time interval Ii ⊆ I to every robot ri. Initially Ii = I.
To identify the important sites that are visited by the robots, using a process that we will
describe shortly, we will shrink each Ii. Shrinking is done by moving the left and right
endpoints of Ii “inward” at the same speed. This will be done in multiple stages and at the
end of each stage, an endpoint of some intervals could become fixed; a fixed endpoint does
not move anymore during the following stages. When both endpoints of Ii are fixed, we
have found the final shrunken interval for ri. Initially, all the endpoints are unfixed. For an
interval Ii = [ti, t′

i], shrinking Ii by some value ε ⩾ 0 yields the interval [ti + εφ1, t′
i − εφ2]

where φ1 (resp. φ2) is 1 if the left (resp. right) endpoint of Ii is unfixed, otherwise it is 0.
Note that an interval [x, y] with x > y is considered empty (i.e., an empty set) and thus
shrinking an interval by a large enough value will yield an empty interval (assuming at least
one endpoint is unfixed).

SoCG 2022



2:6 On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

The invariant. We maintain the invariant that at the beginning of each stage of the shrinking
process, all the sites are visited during the shrunken intervals, i.e., for every site s ∈ P , there
exists a robot ri, and a value t ∈ Ii such that fi(t) = s. Observe that the invariant holds at
the beginning of the first stage of the shrinking process.

The shrinking process. Consider the j-th stage of the shrinking process. Let εj ⩾ 0 be the
largest (supremum) number such that shrinking all the intervals by εj respects the invariant.
If εj is unbounded, then this is the last stage; every interval Ii that has an unfixed endpoint is
reduced to an empty interval and we are done with shrinking, meaning, the shrinking process
has yielded some k′ ⩽ k intervals with both endpoints fixed, and k − k′ empty intervals.
Otherwise, εj is bounded and well-defined as the invariant holds for εj = 0. With a slight
abuse of the notation, let I1, · · · , Ik be the intervals shrunken by εj . See Figure 2(left).

Since εj is the largest value that respects our invariant, it follows that there must be at
least one interval Iij

and at least one of its endpoints tj such that at time tj , the robot rij

visited the site fij (tj) and this site is not visited by any other robot in the interior of their
time intervals. Now this endpoint of Iij

is marked as fixed and we continue to the next stage.
For a fixed endpoint A, let ℓ(A) be the distance of A to the corresponding boundary of

the unshrunk interval. More precisely, if A is a left endpoint then the position of A on the
time axis is t0 + ℓ(A), and if A is a right endpoint then this position is t0 + L − ℓ(A). With
our notation, if A was discovered at stage j, then ℓ(A) = ε1 + · · · + εj .

Lt0 t0 + L

ε1 ε1

Ii1

I1...

...

Ik

Lt0 t0 + L

ε1 ε1

Ii1

I1...

...

Ik

Ii2

...

ε2 ε2

Lt0 t0 + L

I1

A1 B1

`(A1)

No robot
visits f1(A1)

A robot must
visit f1(A1)

2`(A1)

r1

`(B2)

r2A2 B2

A

`(A) `(A)

B

`(B) `(B)

f1(A1)

≤ `(A1)

A

Figure 2 (left) A is fixed at stage 1. (middle) B is fixed at stage 2. (right) By the property of
the shrinking process, the site visited at A1 is not visited by any robot within the red time interval
but since the site has latency at most L, it must be visited by some robot in the blue interval.

3.2 Patrol graph, shortcut graph, and bag graph
Shortcutting idea. Figure 2 (right) explains the crucial property of our shrinking process:
Robot r1 visits the site p = f1(A1) at time A1 (which corresponds to the left endpoint of the
interval I1) but to keep the latency of p at most L, p must be visited by another robot, say
r2, sometime in the interval [t0 + L − ℓ(A1), t0 + L + ℓ(A1)], shown in blue in the figure. For
the moment, assume the right endpoint of the interval of r2 is a fixed point B2 and r2 visits
a site p′ = f2(B2) at time B2. This implies that the distance between p and p′ is at most
ℓ(A1) + ℓ(B2). Now observe that we can view this as a “shortcut” between endpoints p and
p′: for example, r2 can follow its own route from A2 to B2, then take the shortcut to A1, and
then follow r1’s route to B1. The extra cost of taking the shortcut, which is ℓ(A1) + ℓ(B2),
can also be charged to the two “shrunken” pieces of the two intervals (the purple intervals in
the picture). Our main challenge is to show that these shortcuts can be used to create a
cyclic solution with only a small increase in the latency.

To do that, we will define a number of graphs associated with the shrunken intervals. We
define a patrol graph P , a bag graph B and a shortcut graph S. The first two are multigraphs,
whereas the shortcut graph is a simple graph.



P. Afshani et al. 2:7

For examples see Figure 3 on page 7 and its discussion on page 8.
We start with the bag graph and the shortcut graph. We first shrink the intervals as

described previously. To define these graphs, consider 2k conceptual bags, two for each
interval (including the empty intervals). More precisely, for each interval we have one left bag
and one right bag. The bags are the vertices of the bag graph B (Figure 3(b)). The vertices
of the shortcut graph S are the endpoints of the non-empty intervals. To define the edges of
the two graphs, we use placements. We will present the details below but basically, every
endpoint of a non-empty interval will be placed in two bags, one in some left bag β1 and
another time in some right bag β2. After this placement, we add an edge in the bag graph
between β1 and β2. Once all the endpoints have been placed, we add edges in the shortcut
graph between every two endpoints that have been placed in the same bag (Figure 3(c)).

Lt0 t0 + L

I5

I2

I3

I4

I1
A1

A2

A2

A3

B4

B3

B2

B1

(a) After the shrinking process (b) The bag graph

A1

A1

B1

B1

A2

A2B2 B2 A3

A3 B3

B3A4B4 B4 A4

I2

I3

I4

I1
A1

A2

A3

A4 B4

B3

B2

B1

(c) The shortcut graph

I2

I3

I4

I1
A1

A2

A3

A4 B4

B3

B2

B1

(d) The patrol graph

A2, B2

A1 B1 A3 B3 A4

B4

(e) After contracting the blue edges

A2, B2

A1 B1 A3 B3 A4

B4

(f) Eulerized

Figure 3 Examples of bag, shortcut and patrol graph.
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2:8 On Cyclic Solutions to the Min-Max Latency Multi-Robot Patrolling Problem

An example of a bag and shortcut graphs. An example is shown in Figure 3. In part (a),
we have four non-empty intervals I1 = [A1, B1], I2 = [A2, B2], I3 = [A3, B3], I4 = [A4, B4]
and an empty interval I5 (we will later explain the second appearance of each endpoint in
this picture and for now the reader can ignore the “floating” endpoints). An example of a
bag graph is shown in Figure 3(b): Every endpoint is placed twice (once in some left bag
and one is some right bag). E.g., A1 is placed in the top-left bag and the bottom-right bag
and thus the two bags are connected in the bag graph. Similarly, B1 is placed in two bags,
once at the top-right bag and the other time at the mid-left bag. In part (c) of the figure,
one can see the shortcut graph in which two endpoints are connected if and only if they are
placed in the same bag. Also, this is a simple graph and despite the fact that A4 and B4 are
placed together in two different bags, they are still connected once in the shortcut graph.

Initially, all the bags are empty. For every non-empty interval I1 = [A1, B1], we place
the left endpoint of I1 in its own left bag and the right endpoint of I1 in its own right
bag. This is the first placement. For the second placement, consider a non-empty interval
Ii1 and its left endpoint A. The position of A on the time interval is t = t0 + ℓ(A). See
Figure 2(right). By our assumptions, the robot ri1 visits the site p = fi1(t) at time t.
Consider the stage of our shrinking process when A gets fixed. For this to happen, the
site p cannot be visited by any robot in the time interval (t0 + ℓ(A), t0 + L − ℓ(A)) (the
red interval in Figure 2(right)), as otherwise, we could either shrink all the intervals by an
infinitesimal additional amount or some other endpoint would have been fixed. On the other
hand, this site has latency at most L, so it must be visited by another robot in the time
interval (t, t + L] = (t0 + ℓ(A), t0 + ℓ(A) + L]. This means that the robot rj that visits p

earliest in this interval must do so within the time interval [t0 + L − ℓ(A), t0 + L + ℓ(A)] (the
blue interval in Figure 2(right)). Note that rj could be any of the robots, including ri1 itself.
We now place A in the right bag of Ij .

A very similar strategy is applied to the right end point of I1; for details see Appendix of
the full-version paper, where we also prove the following properties.

▶ Lemma 3. The bag graph B and the shortcut graph S have the following properties.
(a) B is a bipartite graph.
(b) S is isomorphic to the line graph of B
(c) Let B′ be a connected component of B. If none of the vertices of B′ belong to empty-

intervals, then the number of vertices of B′ is equal to its number of edges.
(d) Let S ′ be a connected component of S. If S ′ has a vertex v of degree one, then it must be

the case that v corresponds to an endpoint of a non-empty interval that has been placed
(alone) in a bag of an empty interval.

The patrol graph. The above lemma, combined with the graph theoretical tools that we
outline in Appendix allows us to define the patrol graph P. Here, we only give an outline,
and for the full details see Appendix of the full version paper. An example of a patrol graph
is shown in Figure 3(d). Initially, the patrol graph, P, consists of k′ isolated black edges,
one for each non-empty interval. Observe that both P and the shortcut graph S have the
same vertex set (endpoints of the non-empty intervals). We add a subset of the edges of the
shortcut graph to P. Let us consider an “easy” case to illustrate the main idea.

An easy case. Assume B is connected and that it has an even number of edges. In this case,
we can in fact prove that an optimal cyclic solution exists. Recall that S is the line graph of
B and it is known that the line graph of a connected graph with even number of edges, has a
perfect matching. Thus, we can find a perfect matching M as a subset of edges of S. Add M

to P as “blue” edges. Now, every vertex of P is adjacent to a blue and a black edge and thus
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P decomposes into a set of “bichromatic” cycles, i.e., cycles with alternating black-blue edges.
With a careful accounting argument, we can show that this indeed yields a cyclic solution
without increasing the latency of any of the sites. We have already mentioned the main idea
under the “shortcutting idea” paragraph, at the beginning of the section. Specifically, we
will use the following lemma.

▶ Lemma 4. Consider two adjacent vertices v and w in the shortcut graph. This means that
there are two non-empty intervals I1 and I2 such that v corresponds to an endpoint A of I1
and w corresponds to an end point B of I2 and A and B are placed in the same bag. Let
s1 be the site visited at A during I1 and s2 be the site visited at B on I2. Then, we have
d(s1, s2) ⩽ ℓ(A) + ℓ(B).

Black edges represent the routes of the robots, and blue edges are the shortcuts that
connect one route to another. So in this easy case, once the patrol graph has decomposed into
bichromatic cycles, we turn each cycle into one closed route (i.e., cycle) using the shortcuts.
All the robots that correspond to the black edges are placed evenly on this cycle. Since by
our invariant all the sites are visited at some time on the black edges, it follows that the
robots visit all the sites. A careful accounting argument shows that the cost of taking the
shortcuts is upper bounded by the value ℓ(·) of the end points involved. Since the values ℓ(·)
correspond to the length of the sub-paths of the robots that is missing due to our shrinking
process, one can show that the latency does not increase at all.

Unfortunately, B can have connected components with odd number of edges. Nonetheless,
in all cases we can build a particular patrol graph, P, with the following properties.

▶ Lemma 5. The patrol graph P consists of k′ pairwise non-adjacent black edges and a
number of blue edges. Any blue edge (v, w) in P corresponds to an edge in the shortcut graph
S. Furthermore, the set of blue edges can be decomposed into a matching and a number of
triangles. In addition, any vertex of P that is not adjacent to a blue edge can be charged to a
bag of an empty interval.

The idea covered in the above “easy case” works because it covers the black edges of P
with bichromatic edge-disjoint cycles and each cycle becomes a cyclic route. Unfortunately,
in general P might not have the structure that would allow us to do this. Here, we only
outline the steps we need to overcome this: we consider each connected component, Pi, of
P. We first contract blue edges of Pi to obtain a contracted patrol graph, Pc

i , (Figure 3(e))
then we eulerize it (Figure 3(f)), meaning, we duplicate a number of black edges such that
the resulting graph is Eulerian. This yields us an Eularized contracted patrol graph, PEc

i

(Figure 4(a)). Next, we put the contracted blue edges back in PEc
i which gives us the final

patrol graph (Figure 4(b)). In this final graph, we can show that we can cover the black edges
using bichromatic edge disjoint cycles where each connected component of the final graph
turns into one cycle (Figure 4(c)); this yields us a cyclic solution. However, the duplicated
black edges represent routes of robots that need to be traversed twice to obtain the cyclic
solution. This leads us to the final challenge: how to allocate the robots to the resulting
cycles to minimize the latency. With some careful accounting and considering a few cases, we
can show that this can be done in such a way that the resulting cyclic solution has latency
at most 2L(1 − 1/k). We do this in Appendix of the full-version paper, proving Theorem 2.

4 Cyclic Solutions

In this section we show how to approximate an optimal cyclic solution to the patrol scheduling
problem for k robots in a metric space (P, d). We start with some notation and basic
observations.
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Figure 4 (a) An Eularized contracted patrol graph (ECPG). Duplicated edges are drawn with
dashed lines. The edges are directed and numbered according to an Euler tour. (b) The same ECPG
after “uncontracting” the blue edges. The duplicated routes (i.e., the routes that will be traversed
twice) are shown with dashed lines. The corresponding Euler tour is marked and numbered. The
shortcuts are taken in the correct direction. (c) The bichromatic cycle gives us a cyclic route. It
shows how the robots can travel along it.

For a subset Q ⊆ P , let TSP(Q) denote an optimal TSP tour of Q and let tsp(Q) denote
its total length. Let MST(Q) denote a minimum spanning tree of Q. Now consider a partition
Π = {P1, . . . , Pt} of P , where each subset Pi is assigned ki robots such that

∑t
i=1 ki = k. A

cyclic solution for this partition and distribution of robots is defined as follows. For each Pi

there is a cycle Ci such that the ki robots assigned to Pi start evenly spaced along Ci and
then traverse Ci at maximum speed in the same direction. Hence, the latency L of such a
cyclic solution satisfies L ⩾ maxi(tsp(Pi)/ki), with equality if Ci = TSP(Pi) for all i.

To prove the main theorem of this section we need several helper lemmas. Let Π =
(P1, . . . , Pt) be a partition of P and let E ⊆ P × P be a set of edges. The coarsening of Π
with respect to E is the partition Π′ of P given by the connected components of the graph
(
⋃

i MST(Pi)) ∪ E.

▶ Lemma 6. Let S be a cyclic solution with partition Π = (P1, . . . , Pt) and latency L. Let
Π′ = (P ′

1, . . . , P ′
t′) be the coarsening of Π with respect to an edge set E of total length ℓ. Then

there is a cyclic solution S′ with partition Π′ and latency L′ such that L′ ⩽ L + ℓ.

Proof. Let C1, . . . , Ct be the cycles used in S. Consider a subset P ′
i ∈ Π′, and assume

without loss of generality that P ′
i is the union of the subsets P1, . . . , Ps from Π. Then there

is a set Ei ⊆ E of k − 1 edges such that
(⋃s

j=1 Cj

)
∪ Ei is connected. Moreover, there is

a cycle C ′
i covering all sites in P ′

i traversing the edges of each Cj once and the edges of Ei

twice. Hence,

∥C ′
i∥ =

s∑
j=1

∥Cj∥ + 2 · ∥Ei∥,

where ∥ · ∥ denotes the total length of a set of edges. Since the latency in S is L, we know
that ∥Cj∥ ⩽ kjL. Hence, using

∑s
j=1 kj ⩾ 2 robots for the cycle C ′

i, the latency for the sites
in P ′

i is at most

∥C ′
i∥∑s

j=1 kj
=

∑s
j=1 ∥Cj∥ + 2 · ∥Ei∥∑s

j=1 kj
⩽

∑s
j=1 kjL + 2 · ∥Ei∥∑s

j=1 kj
⩽ L + ∥Ei∥ ⩽ L + ℓ.

Thus the latency for any subset P ′
i ∈ Π′ is at most L + ℓ. ◀
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▶ Lemma 7. Let L∗ be the latency of an optimal cyclic solution. For any ε > 0, there exists
a cyclic solution with partition Π = (P1, . . . , Pt) and latency L < (1 + ε)L∗ such that for any
pair i ̸= j we have d(Pi, Pj) > ε · L∗/k, where d(Pi, Pj) := min{d(x, y) : x ∈ Pi and y ∈ Pj}.

Proof. Let S∗ be an optimal solution with partition Π∗ = (P ∗
1 , . . . , P ∗

q ), where q ⩽ k. Let
Eshort be the set of all edges of the complete graph of the metric space with length at
most εL∗/k. Let Π = (P1, . . . , Pt) be the partition obtained by coarsening Π∗ with respect
to Eshort, and let E∗ ⊆ Eshort be a minimal subset such that coarsening Π∗ with E∗ gives
the same partition Π. Observe that as q ⩽ k, we have |E∗| ⩽ k − 1. Lemma 6 implies that
there is a cyclic solution S with partition Π and latency at most

L∗ + |E∗| · (εL∗/k) < (1 + ε)L∗.

Moreover, since Π is a coarsening of Π∗ with respect to Eshort, the pairwise distance between
any two sets of Π is larger than εL∗/k. ◀

▶ Lemma 8. Suppose there is a cyclic solution of latency L for a given metric space (P, d)
and k robots. Then MST(P ) has fewer than k(1 + 1/α) edges of length more than αL, for
any 0 < α ⩽ 1.

Proof. Let C1, . . . , Cq be the cycles in the given cyclic solution of latency L, let ki denote
the number of robots assigned to Ci, and let Pi ⊂ P be the sites in Ci. Let E be a subset of
q − 1 ⩽ k − 1 edges from MST(P ) such that (

⋃q
i=1 Ci) ∪ E is connected. Then

q∑
i=1

∥Ci∥ > ∥MST(P )∥ − ∥E∥ = ∥MST (P ) \ E∥

Since ∥Ci∥ ⩽ kiL, we have
∑q

i=1 ∥Ci∥ ⩽ kL. Hence, ∥MST(P ) \ E∥ < kL, which implies
that MST(P ) \ E contains less than k/α edges of length more than αL. Including the edges
in E, we thus know that MST(P ) has less than k(1 + 1/α) edges of length more than αL. ◀

▶ Theorem 9. Suppose we have a γ-approximation algorithm for TSP in a metric space (P, d),
with running time τγ(n), and an algorithm for computing an MST that runs in time T ′(n).
Then there is a (1 + ε)γ-approximation algorithm for finding a minimum-latency cyclic patrol
schedule with k robots that runs in T ′(n) + (O(k/ε))k · τγ(n) time.

Proof. Let L∗ be the latency in an optimal cyclic solution. By Lemma 7 there is a solution S

with latency (1 + ε)L∗ and partition Π = {P1, . . . , Pt} such that d(Pi, Pj) > εL∗/k for all
i ̸= j. Let E be the set of edges of MST(P ) with length more than εL∗/k, and let T1, . . . , Tz

be the forest obtained from MST(P ) by removing E. Let V (Tj) denote the sites in Tj . For
any j we have V (Tj) ⊆ Pi for some i. Otherwise, there would exist two sites p, q ∈ V (Tj)
that are neighbors in Tj but stay in different sets in Π. This would lead to a contradiction:
the former implies d(p, q) ⩽ εL∗/k while the later implies d(p, q) > εL∗/k. Thus Π is a
coarsening of {V (T1), . . . , V (Tz)} with respect to some subset of E.

By Lemma 8, the number of edges of MST(P ) longer than εL∗/k is at most k
(
1 + k

ε

)
.

That is, the heaviest k
(
1 + k

ε

)
edges of MST(P ) are a superset of the set E from above. Thus

we can find the partition Π from above by first computing MST(P ), removing the heaviest
k

(
1 + k

ε

)
edges, and then trying all coarsenings determined by subsets of the removed edges.

Given a γ-approximation for TSP, below we argue how to get a γ-approximation to the
optimal cyclic solution for a given partition Π. Running this subroutine for each of the
above determined partitions and taking the best solution found will thus give latency at
most (1 + ε)γL∗.
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Observe that the optimal cyclic solution on a given partition Π = {P1, . . . , Pt} uses
cycles determined by TSP(Pi), and chooses ki, the number of robots assigned to Pi, so as to
minimize maxi tsp(Pi)/ki. Thus we can compute a γ-approximation of the optimal solution
on Π by first computing a γ-approximation to TSP(Pi) for all i, where tsp(Pi) denotes its
corresponding value, and then selecting k′

1, . . . , k′
t so as to minimize maxi tsp(Pi)/k′

i. The
latter step of determining the k′

i can be done in O(k log k) time by initially assigning one
robot to each Pi, and then iteratively assigning each next robot to whichever set of the
partition currently has the largest ratio. The latency of the solution we find for Π is thus

max
i

{
tsp(Pi)

k′
i

}
⩽ max

i

{
tsp(Pi)

ki

}
⩽ max

i

{
γ · tsp(Pi)

ki

}
= γ·[optimal cyclic latency for Π],

where the last inequality follows from the fact that tsp(Pi) ⩽ γ · tsp(Pi) for all i.
It remains to bound the running time. For each partition Π we approximate TSP(Pi) for

all i, and then run an O(k log k) time algorithm to determine the robot assignment. Thus
the time per partition is bounded by τγ(n), where n is the total number of sites. Here we
assume that τγ(n) = Ω(n log n) and that τγ(n) upper bounds the time for the initial MST(P )
computation.

The number of partitions we consider is determined by the number of subsets of size at
most k of the longest k(1 + k/ε) edges of MST(P ), which is bounded by(

k(1 + k/ε)
k

)
· 2k,

as the first term bounds the number of subsets of size exactly k, and for each subset the
second term accounts for the number of ways in which we can pick at most k edges from
that subset. We have the following standard upper bound on binomial coefficients.(

N

K

)
⩽

(
N · e

K

)K

.

Therefore, the total number of partitions we consider is at most(
k(1 + k/ε)

k

)
· 2k ⩽

(
k(1 + k/ε) · e

k

)k

· 2k = (2e(1 + k/ε))k = (O(k/ε))k
.

Thus the total running time is (O(k/ε))k · τγ(n) as claimed. ◀

Recently, Karlin et al. [10] presented a (3/2 − δ)-approximation algorithm for metric TSP,
where δ > 10−36 is a constant, thus slightly improving the classic (3/2)-approximation by
Christofides [5]. Furthermore TSP in Rd admits a PTAS [4, 15]. Thus we have the following.

▶ Corollary 10. For any fixed k, there is polynomial-time (3/2)-approximation algorithm for
finding a minimum-latency cyclic patrol schedule with k robots in arbitrary metric spaces,
and there is a PTAS in Rd for any fixed constant d.

Theorem 2 in Section 3 and Corollary 10 together imply the following.

▶ Theorem 11. For any fixed k and ε > 0, there is a polynomial-time (3(1 − 1/k) + ε)-
approximation algorithm for the k-robot patrol-scheduling problem in arbitrary metric spaces,
and a polynomial-time (2(1 − 1/k) + ε)-approximation algorithm in Rd (for fixed d).
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5 Conclusion and Future Work

This is the first paper that presents rigorous analysis and approximation algorithms for
multi-robot patrol scheduling problem in general metric spaces. There are several challenging
open problems. The first and foremost is to prove or disprove the conjecture that there is
always a cyclic solution that is optimal overall. Proving this conjecture will immediately
provide a PTAS for the Euclidean multi-robot patrol-scheduling problem. It would also imply
that the decision problem is decidable. Another direction for future research is to extend the
results to the weighted setting. As has been shown for the 1-dimensional problem [1], the
weighted setting is considerably harder.
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