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Abstract 

A novel square-planar diimine-dithiolate non-linear optical (NLO) chromophore, the complex 

[Ni(o-phen)(bdt)] (1), is reported in this paper (o-phen = dianion of 1,2-phenylendiamina; bdt = 

1,2-benzenedithiolate). This compound has been fully characterized by single crystal X-ray 

diffraction, UV-vis-NIR spectroscopy, cyclic voltammetry, DFT and TD-DFT calculations. 1 

crystalizes in the P21 space group and shows an almost planar molecule. The cyclic voltammetry 

measurements present an irreversible anodic peak at 0.87 V and reversible and quasi-reversible 

reduction waves at −0.35 and −1.13 V, respectively. A medium-intense (ε = 1.91∙104 

mol−1dm3cm−1) absorption with a maximum at 728 nm appears in the UV-vis-NIR spectrum. The 

molecular second-order NLO properties of 1 have been measured by Electric Field Induced 

Second-Harmonic generation technique in DMF solution, giving values of −1000∙10−48 esu for 

µβ1.907 and −356∙10−48 esu for µβ0. Furthermore, remarkable solid-state responses have been 

measured for polymeric films of 1. Indeed, this complex has been embedded into poly-methyl 

methacrylate poled films showing high NLO response (d33 = 1.90 ± 0.38 pm/V), higher than those 

previously reported for similar push-pull metal complexes. Moreover, 1 represents the first 

example of a diimine-dithiolate chromophore incorporated into a NLO-active film. 
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Introduction 

Since the development of lasers several nonlinear optical (NLO) effects, such as second- and 

third-harmonic generation, stimulated scattering, self-focusing, etc., have been discovered or 

experimentally proved.1-3 Materials showing NLO properties have been extensively investigated 

in the last decades because of their potential use in telecommunication technologies, optoelectronic 

and photonic devices.1-10  

Molecule-based materials exhibiting second-order NLO properties (β and χ(2) at molecular and 

bulk level, respectively) have received great attention because of their large and fast NLO response 

and easy processability.4-10 So far, different classes of molecular NLO chromophores have been 

reported in the literature, both “full” organic3,11-14 and inorganic. In particular, the latter class 

comprises push-pull and octupolar complexes of different transition metals showing remarkable 

β values.5-10,15,16 Moreover, different types of reversible switching of the NLO property have been 

achieved in the case of several complexes.17   

For symmetry reasons, only materials without inversion center exhibit second-order NLO effects 

(β and χ(2) ≠ 0). 

Among the molecular second-order NLO chromophores, many square-planar push-pull 

complexes showing remarkable values of β have been reported, in particular dithione-dithiolate18-

24 and diimine-dithiolate5,25-31 compounds. These complexes are formed by a metal ion bound to 

two ligands with different electron-withdrawing capability. Indeed, the push ligand presents 

electrondonor groups, which raise the energy level of its orbitals, whereas those of the pull ligand 

are stabilized by the electron-withdrawing effect due to its substituents. In general, the pull ligand 

contributes more to the HOMO while the LUMO is predominantly formed by the push ligand 

(HOMO = highest occupied molecular orbital, LUMO = lowest unoccupied molecular orbital). 
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Because of these features, the solvatochromic HOMO-LUMO transition, which falls in the visible 

region with a medium molar absorption coefficient and plays a crucial role in the second harmonic 

generation (SHG, β at the molecular level), has a charge transfer (CT) character.18-31 By choosing 

properly the substituents at the periphery of the ligands it is possible to tune the dipole moment of 

the molecule and the energy of the CT transition, as well as the electronic structure of the frontier 

orbitals (FOs).  

Although the molecules of push-pull complexes are noncentrosymmetric (β ≠ 0), very often they 

crystalize in a centrosymmetric space group preventing the second-order effects occurring at the 

bulk level (χ(2)
 = 0). The centrosymmetric arrangement in diimine-dithiolate and dithione-

dithiolate complexes, is favored by their intrinsic polarity, due to the different electronic properties 

of the two ligands. Moreover, even if the crystal packing is non-centrosymmetric, if the molecules 

show a pseudo-centrosymmetric packing, the χ(2) value is close to zero.32 For these reasons, no 

dithiolate containing square-planar push-pull complexes showing solid state second-order NLO 

properties have been reported to date. However, because of the paramount importance of NLO 

response in the solid state for technological applications, in order to overcome this problem, the 

strategy to incorporate NLO-active molecules in polymeric33-37 or hybrid organic-inorganic38,39 

poled films has been developed and successfully applied to pure organic33,34,38,39 and 

organometallic35-37 chromophores. 

Surprisingly, despite high first hyperpolarizability values exhibited by the dithiolate square-

planar unsymmetrical complexes, NLO studies in bulk of films containing any of these compounds 

have not been reported in the literature so far, although platinum diamine-dithiolate complexes 

[Pt(R2bipy)(dmipi)] (dmipi = 4,5-dimercapto-l,3-dithiol-2-propargylimino and R = H, t-Bu) have 

been covalently bound to hydrogen-terminated silicon (100) surfaces.40 In this paper we report the 
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first example of a film incorporating a chromophore of this class of molecules: the novel [Ni(o-

phen)(bdt)] (1) complex (o-phen = dianion of 1,2-phenylendiamina; bdt = 1,2-benzenedithiolate). 

This compound has been embedded into a poly-methyl methacrylate (PMMA) matrix showing 

remarkably high NLO response. Moreover, 1 has been fully characterized by single crystal X-ray 

diffraction, UV-vis-NIR spectroscopy, cyclic voltammetry, DFT and TD-DFT calculations. The 

second-order NLO response of 1 were also measured in solution by the Electric Field Induced 

Second-Harmonic (EFISH) generation technique. 

 

Experimental Section  

All the reagents and solvents were purchased from Aldrich and used without further purification. 

The complex [Ni(o-phen)2] was prepared as previously described,41 whereas [Ni(bdt)2] was 

synthetized following the same procedure used to prepared the analogue complex42 of 3,5-

ditertiarybutyl-1,2-benzenedithiolate ligand (yield 80%). 

Preparation  

[Ni(o-phen)(bdt)] (1). Synthesis: 210 mg (0.62mmol) of [Ni(bdt)2] in 40 mL of warm DMF, 

green solution, was added drop-wise to a warm solution of [Ni(o-phen)2] (80 mg, 0.30 mmol) in 

the same solvent (40 mL). The resulting solution was refluxed 4 hours and then allowed to cool to 

room temperature (R.T.); after 18 hours of stirring at R.T., the solvent was roto-evaporated and 

the crude product was partially dissolved with acetone, giving a purple solution. A green-brown 

solid (49 mg), insoluble in acetone, was separated from the solution by centrifugation. The acetone 

solution was concentrated until a precipitate appeared and, after the addition of 30 mL of n-hexane, 

the evaporation of the acetone was completed. A purple microcrystalline solid was collected by 

centrifugation, washed three times with n-hexane and air-dried (yield 128 mg, 0.42mmol; 70%). 
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Analytical results are in accordance with the formula [Ni(bdt)(o-phen)]. Elemental Analysis: 

calculated for C12H10N2S2Ni (305.04): C 47.25, H 3.30, N 9.18; found: C 47.34, H 3.36, N 9.21. 

MS (EI): m/z (%) 304.0 (100.00%) [M+]. UV-vis [in DMF; λ, nm (ε, dm3⋅mol−1⋅cm−1)]: 728 

(1.91⋅104); 499 (4.04⋅103); 355, sh. FT–IR (KBr): νmax/cm−1 3260(m); 3090(vw); 3073(vw); 

3043(w); 3007(vw); 1600(mw); 1564(w); 1524(w) 1515(mw); 1453(m); 1419(mw); 1382(s); 

1367(mw); 1321(w); 1283(mw); 1238(w); 1204(w); 1149(w); 1130(w); 1123(w); 1096(w); 

802(vs); 782(mw); 768(m); 726(s); 680(mw); 623(m); 560(w); 450(m). 

Elemental Analyses were performed with a Carlo Erba CE1108 Elemental Analyser. MS were 

carried out on ThermoElectron MAT 900 by electron impact ionization technique. The UV-vis-

near-IR spectra were recorded with a Jasco V-670 spectrophotometer using a quartz cell of path 

length 1 cm. IR measurements (4000-400 cm−1) were performed with a spectrophotometer FT-IR 

Bruker Tensor27 on KBr pellets. Cyclic voltammograms were recorded on an μAUTOLAB Type 

III potentiostat, driven by the GPES electrochemical software; using a conventional three-

electrode cell consisting of a platinum wire working electrode, a platinum wire as counter-

electrode and Ag/AgCl in saturated LiCl Ethanol solution as reference electrode. The experiments 

were performed at R.T., in dry and argon-degassed DMF containing 0.1 mol dm−3 Bu4NPF6 as 

supporting electrolyte, at 25-200 mV s−1 scan rate. Data are quoted against Ag/AgCl; the E1/2 for 

ferrocene/ferrocenium couple (internal standard) is +0.54 V under the above reported conditions. 

Single crystal data were collected at 120 K on an Agilent Technologies SuperNova diffractometer 

(λ = CuKα, 1.54184 Å). Absorption corrections were done by multi-scan methods using 

CrysAlisPro;43 the structure was solved using Patterson direct charge flipping methods 

(Superflip)44 and refined on F2 with full-matrix squares (SHELXTL).45  Non hydrogen atoms were 

refined anisotropically. All H atoms were located in a difference Fourier map and freely refined. 
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Graphical material was prepared with ORTEP46 and Mercury47 programs. CCDC 1449051 contains 

the supplementary crystallographic data for this paper.  

DFT calculations  

Density Functional Theory (DFT)48 studies on the ground-state electronic structure of 1 were 

performed using the GAUSSIAN 0949 software package. B3LYP,50,51 CAM-B3LYP52 (see SI) and 

PBE1PBE53 (SI) were used throughout this investigation as functionals; moreover, the valence 

triple-zeta 6-311+G(d,p)54,55 was employed as basis set for all atoms. More details are given in the 

SI.  

NLO characterization 

Solution. The NLO response of 1 in solution was measured by EFISH experiments56,57 as 

described in ref. 30, using a freshly prepared 10−3 M solution of the NLO-phore in DMF (see SI 

for more details). Solid-state SHG by Kurtz–Perry measurements58 were performed as reported 

in59 and summarized in the SI. 

Films. Details on materials, methods and preparation of the films of 1 in Poly(methyl 

methacrylate) (PMMA), along with the Corona Poling setup, are reported in SI  

Maker Fringe Measurement. The absolute second order NLO coefficient matrix values dij were 

obtained by following the standard Maker fringe technique60 as described in ref 61. 

Results and discussion 

Complex 1 has been synthetized in a good yield by refluxing [Ni(bdt)2] and [Ni(o-phen)2] in 

DMF as shown in Scheme 1.  

 

Scheme 1. Schematic depiction of the synthesis of 1. 
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Structural results 

 

 

Figure 1. (A) Ortep diagram of [Ni(bdt)(o-phen)] (1) with atom labeling and thermal ellipsoids 

drawn al the 50% probability level; (B) close C—H∙∙∙π and N—H∙∙∙π interactions between adjacent 

molecules. 

 

Blade-shaped crystals suitable for single crystal X-ray diffraction analysis, were obtained by slow 

evaporation of a dichloromethane solution. A summary of data collection and structure refinement 

is reported in Table 1. [Ni(bdt)(o-phen)] crystalizes in the P21 space group, which is a non-

centrosymmetric group. As discussed in the Introduction, this feature is an essential requirement 
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for a material to exhibit solid-state second-order NLO properties (χ(2) ≠ 0). Unfortunately, in this 

complex the second-order NLO susceptibility is close to zero (vide infra). A representation of a 

molecule of 1 is reported in Figure 1A; the molecule is almost planar, indeed all non-H atoms are 

co-planar to within 0.05 Å and the angles between the plane determined by S2NiN2 atoms and 

those of the benzene rings of the dithiolene and diamine  moieties are 5.06° and 2.35°, respectively 

(Figure S1). The bond distances (see Table 2) are similar to those reported in the literature for 

other nickel complexes of the same ligands.42,62-64 The C—N bond distances are 1.313 and 1.315 

Å; these values are smaller than those found for the free ligand (1.406−1.408 Å)65 and also than 

those reported for other diimine-dithiolate  

  

 

  

 

 

 

 

 

 

 

 

 

 

 

Table 1. X-ray crystallographic data for 1. 

Empirical formula C12H10N2NiS2 
Formula weight 305.05 
Colour, habit blue-purple 
Crystal size, mm 0.40 x 0.06 x 0.04, needle 
Crystal system Monoclinic 
Space group P21 
a, Å 6.0974(1) 
b, Å 7.3037(1) 
c, Å 12.9730(2) 
β, deg. 90.681(1) 
V, Å3 577.70(2) Å3 
Z 2 
T, K 120 
ρ (calc), Mg/m3 1.754 
µ, mm−1 5.585 
θ range, deg. 3.4 to 73.8 
No.of rflcn/unique 4717/2117 
GooF 1.058 
R1a 0.0171   
wR2b 0.0463 

aR1 = Σ||Fo|-|Fc||/Σ|Fo|; bwR2 = [Σ[w(Fo2-Fc2)2]/ 
Σ[w(Fo2)2]]½, w = 1/[σ2(Fo2) + (aP)2 + bP], where P = 
[max(Fo2,0) + 2Fc2]/3 
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complexes (1.350−1.368 Å).30,31,66 These data strongly support a behavior as diimine of the o-phen 

ligand in complex 1. 

Electrochemical studies 

The DMF cyclicvoltammogram of 1 (Figure 2) presents an irreversible anodic peak at 0.87 V (0 

→ +1) and reversible (ic/ia ≅ 1) and quasi-reversible reduction waves at −0.35 (0 ς −1) and −1.13 

V (−1 ς −2), respectively. These values show that the electrochemical properties of 1 are in 

between those of the corresponding homoleptic complexes. Indeed, in the case of [Ni(o-phen)2], 

the oxidation and the first reduction processes are both reversible and fall at 0.18 and −0.83 V,67 

whereas for [Ni(bdt)2]− the peaks corresponding to the same processes fall at 1.40 and 0.17 V, 

respectively.68 

 

Table 2.  Comparison of experimental and B3LYP calculated bond lengths 

(Å) and angles (°) for 1. 

Ni(1)-S(1) 2.1226(5)/2.152 S(1)-Ni(1)-S(2) 92.60(2)/92.66 
Ni(1)-S(2) 2.1175(5)/2.152 S(1)-Ni(1)-N(2)              92.83(5)/92.22 
Ni(1)-N(1) 1.863(2)/1.878 S(1)-Ni(1)-N(1)    176.03(5)/175.1

 Ni(1)-N(2) 1.873(2)/1.878 S(2)-Ni(1)-N(1) 91.36(5)/92.23 
C(1)-S(1) 1.747(2)/1.748 N(1)-Ni(1)-N(2)     83.22(7)/82.89 
C(2)-S(2) 1.744(2)/1.748 Ni(1)-S(1)-C(1)  105.06(6)/104.5

 C(1)-C(2) 1.405(3)/1.413 Ni(1)-N(1)-C(7)            115.9(1)/115.7 
N(1)-C(7) 1.313(2)/1.325 S(1)-C(1)-C(2)     118.6(1)/119.1 
N(2)-C(8) 1.315(2)/1.325 N(1)-C(7)-C(8)     112.7(2)/112.8 
C(7)-C(8)                    1.465(3)/1.458   
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Figure 2. Cyclic voltammograms of 1 recorded at different scan rates in a DMF solution. 

UV-vis-NIR measurements 

The UV-vis-NIR spectrum of 1 is shown in Figure 3a. It presents a shoulder at 355 nm and a 

medium and a medium-intense absorption (dm3⋅mol−1⋅cm−1) at 499 (4.04⋅103) and 728 nm 

(1.91⋅104), respectively. The latter band, which is the most important in NLO property generation, 

corresponds to a HOMO-LUMO transition and shows a moderate negative (hypsochromic shift) 

solvatochromic effect (Figure 3b), confirming the CT character of this transition in agreement with 

the computational results (vide infra). In 1 the solvatochromic effect is remarkably smaller (26 

nm) than those found for other diimine-dithiolate30,31,69 and dithione-dithiolate20,21 complexes (80-

140 nm). Furthermore, the energies of the maxima of the solvatochromic bands present a linear 

behaviour vs solvent polarity parameters (r2 > 0.939) as proposed by Eisenberg for several Pt-

diimine-dithiolate compounds69  (Figure S6a); as expected, the solvatochromic shift, obtained from 

the plot’s slope, is smaller (0.074) than those reported in ref. 69 and for other push-pull 

compounds20,21,30,31  in agreement with the smaller solvatochromic effect exhibited by 1. Similar 

trend (r2 > 0.938) is also observed when Reichardt’s solvent polarity parameters are used (Figure 

S6b).70   
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Figure 3. (A) UV-vis-NIR spectrum of 1 in DMF; (B) Solvatochromic effect of complex 1 in 

DMF/CS2 mixtures with different ratios. 

Computational studies 

The electronic structure of 1 has been investigated by DFT calculations at B3LYP/6-311+G(d,p) 

level of theory. The optimized geometry in the gas-phase is depicted in Figure S7. The calculated 

structure is planar, and both bond distances and angles are in very good agreement with the 

crystallographic data (see Table S2). The molecular orbitals of 1 calculated in the gas-phase are 

shown in Figure 4. The frontier orbitals (FOs) and the HOMO−1 present a π-symmetry, while the 

LUMO+1 is a σ-type orbital. The calculated fragment contributions to the FOs (see Table 3) show 

an electronic delocalization extended over the two ligands. Indeed, the  
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Figure 4. Molecular orbitals for 1 (contour value 0.040). 

 

contributions to the HOMO from the o-phen (push) and from the bdt (pull) are 30.1 and 67.1%, 

respectively. In the LUMO orbital these contributions are 29.5% from the dithiolate and 58.5% 

from the diimine; moreover, also the metal’s contribution to this MO is important (12.0%). 

Although each FOs has remarkable contributions from all the different fragments, the HOMO-

LUMO transition has a significant CT character, more precisely, a ligand-to-mixed-metal-ligand 

CT character. The contributions calculated for 1 are significantly different from those found for 

other diimine-dithiolate complexes30,31,66 (84.2−77.2% to the HOMO and 91.4−79.8% to the 

LUMO from the dithiolate and diimine ligand, respectively). The more extended delocalization 

presented by 1, seems to stabilize both the FOs in comparison with those of the above cited 

diimine-dithiolate compounds (−5.54 vs −4.50/−4.96 eV and −3.85 vs −2.93/−3.39 eV for HOMO 

and LUMO, respectively). These complexes show a solvatochromic effect stronger than 1, 

according to a more pronounced CT character presented by their HOMO-LUMO transitions.30,31,66 

The smaller dipole moment (µ) calculated for 1 (4.42 D) is also in agreement with the differences 

in the electronic structures observed between this compound and other diimine-dithiolate 

complexes (µ = 8.07−11.15 D).30,31 
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With the aim to evaluate the effect of the solvation on the electronic structure of 1, DFT 

calculations in DMF, modelled by the CPCM, have been done. These studies show that, in 

comparison with the gas-phase, the solvation induces a greater polarization in the molecule, as  

evinced from the composition of the frontier orbitals (Table 3) and the calculated µ (10.22 D). 

Moreover, the solvation also affects the energy of the orbitals (Table 3) although not in the same 

manner; indeed it stabilizes the HOMO more than the LUMO increasing the energy gap. The 

charge redistribution associated to the solvent-induced polarization, is evident by comparison of 

the electrostatic potentials, mapped on electron density isosurfaces, calculated for 1 in the gas 

phase and DMF (Figure S8). Indeed, the solvation affects the charge separation between the two 

ligands, increasing the negative charge over the dithiolate one. Time dependent DFT calculations 

have been performed in order to investigate the electronic transitions of 1 in both, gas phase and 

DMF. The calculated electronic spectrum in DMF is in very good agreement with the experimental 

one, measured in the same solvent (Figure S9). The transition at 728 nm presents a molar extinction 

coefficient (1.91⋅104 dm3⋅mol⋅cm−1) remarkably higher than those found for other compounds of 

the same class (2.50⋅103−6.00⋅103 dm3⋅mol⋅cm−1).30,31,66 This finding is strongly in agreement with 

the calculated values of the oscillator strength (f) which is related to the intensity of the electronic 

Table 3. Comparison of calculated fragment contributions and energy levels of the FOs in gas-

phase and DMF of complexes 1.  

Phase HOMO LUMO 

 Energy 
(eV) 

bdt 
(%) 

diimine 
(%) Ni (%) Energy 

(eV) bdt (%) diimine 
(%) Ni (%) 

Gas −5.544 67.1 30.1 2.8 −3.852 29.5 58.5 12.0 

DMF −5.737 77.9 17.8 4.3 −3.891 19.9 69.5 10.6 
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transition. Indeed, f calculated in DMF is 0.433 for 1 whereas it ranges between 0.130 and 0.155 

for the other complexes.30,31 

NLO properties 

The 2ndorder NLO properties of 1 have been investigated by the EFISH method,56 with 

measurements performed in DMF using an incident laser beam at 1.907 µm of wavelength. EFISH 

experiments give a measure of the scalar product µβλ, where µ is the molecular dipole moment 

and βλ the vector part of the quadratic hyperpolarizability tensor; βλ depends from the frequency 

of the incident light. The static quadratic hyperpolarizability β0, is the extrapolated value to zero 

frequency and can be calculated taking into account the wavelength of the maximum of the 

absorption of the CT transition of the chromophore. The NLO response of 1 was −1000·10−48 esu 

for µβλ which corresponds to a value of −356·10−48 esu for µβ0. The negative value is in agreement 

with the observed negative solvatochromism. More notably, despite the small solvatochromic 

effect exhibited by 1 in comparison with those of the above cited diimine-dithiolate complexes,30,31 

the NLO response of 1 is quite high. For example, it appears higher than those reported for the 

first examples of Ni(II) diimine-dithiolate complexes28 and comparable to that reported by some 

of us for [Ni(4,4’-dimethylcarboxy-bpy)(bdt)], carrying an electron-withdrawing group.30 An 

explanation of this finding can be obtained taking into account a simplified model, the two-state 

one71-74 (equation 1) which provides a relationship between β0 (the static quadratic 

hyperpolarizability), λmax
 (the maximum of the HOMO-LUMO transition), f and the difference 

between the ground and excited-state dipole moments (∆µge). 

                                 β0 = 1.617 λmax
3f ∙∆µge                     (1) 

The two-state model, even though is a simplification, furnishes a qualitatively good correlation 

between the characteristic of the molecules and their second-order NLO properties, as 
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demonstrated for other push-pull chromophores both, organic11 and inorganic.18-21,30,66,75,76 In the 

case of complex 1, the high value of the oscillator strength (see above) seems to play a crucial role 

in determining the NLO response of this complex, partially compensating the small difference of 

the dipole moment between the ground and excited-state (∆µge is related to the solvatochromic 

effect). 

Because 1 crystallizes in a non-centrosymmetric space group, its second-order NLO properties 

have been investigated also at the solid state by Kurtz–Perry measurements58. Unfortunately, 

despite its symmetry, 1 is incapable of SHG in the crystal form; this is probably due to the 

molecular packing with a pseudo-centrosymmetric arrangement, which induces an almost null 

value for χ(2).32 

NLO properties of the PMMA films 

The 2nd-order NLO response of 1 in the solid state was achieved incorporating the chromophore 

into a poled PMMA film. Through the corona wire poling process at high temperature a non-

centrosymmetric alignment of 1 in the PMMA film was reached, monitoring the SHG signal in 

situ during the poling and at RT after the electric field was switched off. The PMMA film was 

obtained by spin-coating. After the deposition of the film onto the glass substrate, the latter was 

rinsed with acetone on the side not containing the film, so to remove any residue left by the 

deposition phase. Before poling, the film was stored in the dark in air. Before and after poling, the 

electronic absorption spectrum of the 1/PMMA film was recorded (Figure S10). The shape of the 

main absorption band is very similar to that obtained in DMF solution (Figure 3), thus confirming 

that in the film there are no aggregates and that the PMMA matrix has no influence on the 

electronic structure of the NLO-phore. Comparing the spectra before and after poling, no 

perceivable Stark shift of the main absorption band is observed, while the decrease of the intensity 
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of the band after poling can be due to dichroism effect,77,78 caused by the reorientation of the NLO-

phore molecules in the polymeric matrix, given that no significant sublimation is detected during 

the poling experiments. 

As already reported in the literature,79-81 a linear relationship between the d33 coefficient (the 

figure of merit of the electro-optical properties) and the loading of a NLO chromophore in a 

PMMA film exists. However, in the present investigation a low loading (4%) was chosen to 

prevent aggregations of the NLO-phores. As a consequence, the d33 value of the composite PMMA 

films investigated were very low. 

For the poling experiments a Q-switched Nd:YAG laser (producing a 1064 nm incident 

wavelength) was used and the SHG signal was recorded in situ. The standard Maker fringe 

technique afforded a quantitative evaluation of the d33 coefficient. The thickness of the poled films 

was measured by profilometry. Before poling, three vacuum-nitrogen cycles were applied to the 

film, placed inside a specially built dry-box, so to lower the oxygen level as much as possible. In 

the poling process the ozone produced by the high electric field could quickly lead to a rapid and 

irreversible degradation of the film. For this reason performing the measure under nitrogen 

atmosphere is mandatory. The corona wire poling dynamic of the SHG of the investigated PMMA 

films are depicted in Figure 5. The SHG was negligible at room temperature. After application of 

the electric field, at the beginning the signal remained very low, but after 25 min it abruptly 

increased reaching its maximum value after 40 min. After the plateau was reached, the temperature 

was decreased to 20°C, and the loss of the SHG signal was only 20%. 
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Figure 5. In situ corona wire poling dynamic of the SHG of the PMMA film containing the 

complex 1. 

However, the most notable observation is that after removal of the applied electric field the SHG 

signal remained almost constant, showing a decrease only when the sample was moved from 

nitrogen to air atmosphere. At this stage, the decreasing of the SHG signal is expected due to the 

decrease of the local surface electric field.82 The second order NLO coefficient matrix value d33 

for poled films was obtained by following the standard Maker fringe technique60  (Figures S11-

S13), obtaining a remarkable value of 1.90 ± 0.38 pm/V, higher than those previously reported for 

similar push-pull metal complexes.36,37 Moreover, it is noteworthy that these compounds show 

NLO responses at the molecular level (β) higher than that exhibited by 1.36,37 

Conclusions 

We prepared and characterized 1, a novel push-pull diimine-dithiolate NLO chromophore. The 

X-ray data show a square-planar molecular structure and bond distances in agreement with a 

depiction of this compound as a diimine-dithiolate complex. Spectroscopic and computational 

studies have shown that the optical absorption at 728 nm arises from a HOMO-LUMO transition. 

Although with different contributions from the two ligands, both of the frontier orbitals are 

delocalized over the all molecule reducing the CT character of this transition, in agreement with 
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the observed small solvatochromic effect. Despite these findings, 1 presents a good NLO response 

which can be explained taking into account the two-state model (equation 1) and the high value of 

f related to the HOMO-LUMO electronic transition. The molecular second-order NLO properties 

of 1 were measured by EFISH method, giving values of −1000 and −356∙10−48 esu for µβ1.907 and 

µβ0, respectively. This complex has been also incorporated into PMMA poled films exhibiting 

remarkably high NLO response (d33 = 1.90 ± 0.38 pm/V), higher than those showed by similar 

push-pull metal complexes. Notably, 1 represents the first example of diimine-dithiolate 

chromophore incorporated into a NLO-active film. Encouraged by these results, we will prepare 

films incorporating diimine-dithiolate complexes showing values of β significantly higher than 

1,25-31 with the aim to achieve better solid-state NLO responses and to elucidate the structure-

properties relationship. 
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