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Abstract—This paper studies cache policies for transactional
caches. Different from conventional caches that focus on latency,
transactional caches are primarily used to augment database
systems and improve their transaction throughput by offloading
read load onto the cache. A read transaction commits on the
cache only if it is a consistent cache hit, i.e., all of its reads see a
consistent view of the database. We prove that conventional cache
policies are not competitive for transactions. We then show that
for the large class of batching-based transaction systems, one can
break the theoretical performance barrier of conventional cache
policies via transaction consistency aware cache policies, although
it is NP-complete to find the optimal ones. As a proof, we develop
a consistent cache policy that is theoretically competitive under
common cache schemes. To further exploit batching, we pro-
pose to reorder transactions within batches while guaranteeing
that each transaction sees data values with bounded staleness.
Using benchmarks and real-life workloads, we experimentally
verify that our policy improves the transaction throughput of
Memcached atop HBase by 126.95% on average, up to 479.27%
higher than existing cache policies adopted for transactions.

I. INTRODUCTION

Data caches such as Memcached [1], NCache [2] and
Redis [3] have found increasing popularity in large-scale data
systems, e.g., TAO [4], [5], LiveJournal [6], and MediaWiki [7].
Different from web caches that bring data closer to computation
to reduce latency, data caches are typically lightweight key-
value stores that are collocated with databases. They are
primarily used to improve the scalability and throughput of
databases for large volumes of concurrent requests. By shifting
reads from the database, data caches have shown effective in
alleviating database load and improving the performance of the
combined system for highly concurrent workloads [4], [5], [8].

Driven by emerging applications from social network [4], [5]
to online retailers [9] that generate transactional reads [10], [11],
[12], [13], [4], [14], [15], [16], [17], [18], [19], [20], [21], [22],
there has been recent effort in developing transactional caches
which add transactional guarantees to data caches oblivious
to transaction consistency, e.g., TxCache [8], Sundial [23],
COPS-SNOW [11], Facebook [5], IQ [24] and T-Cache [9].
Transactional cache deals with read transactions that demand
consistency: all data items seen by a transaction in the cache
are consistent, i.e., they come from a consistent snapshot of
the database. As shown in Fig. 1, transactional cache combines
cache invalidation and transaction commit protocols, such that
a transaction commits only when it is a consistent cache hit.

While transaction commit protocols have been developed
to assure that transactions committed on the cache are consis-
tent [8], [23], [9], little attention has been paid to cache policies

Transactional cache

App server cluster

cache invalidation

Write transaction Read transaction

distributed memory, e.g., Memcached [1], TxCache [8]

consistent cache hit: Commit

Transactional database

Fig. 1: Cache-augmented data store

that maintain transactional caches in response to transaction
workloads and database updates. Indeed, existing transactional
caches simply adopt conventional policies, e.g., LRU, which
completely overlook transaction consistency when updating
caches. This raises a number of questions. How does transaction
consistency play a role in cache performance for transactions?
How should it be accounted in the design of cache policies
to improve transaction throughput? How well do conventional
cache policies work for transactions? Are they optimal? Indeed,
Facebook has even listed the design of cache policies as a key
challenge for their Memcached-augmented database [25].

In this study, we answer all these questions.

Competitive analysis. We first model transaction caching with
consistent cache schemes, with which we then study how
conventional cache policies are adopted for transactional caches
and what limitations they have when used for transactions.
We consider three cache schemes w.r.t. commonly used cache
invalidation protocols, e.g., PURGE, FRESH or BAN [26].

We prove that conventional cache policies, when adopted for
transactional caches, do not perform well. In particular, we show
that no conventional cache policies are competitive under any of
the three cache schemes, where a cache policy is competitive if
it is a bounded approximation of the optimal offline policy [27].
Limitation. The analysis tells us that conventional policies like
LRU and its variants can perform poorly with transactional
caches; moreover, it is theoretically intractable to find better
alternatives. The root cause of the impossibility results is
their pure online nature, as they were originally developed
for CPU or web caches that focus on latency of individual read
request and are oblivious to transaction consistency. Instead,
transactional caches deal with both read and write, and target
transaction throughput. Writes generate multiple versions of
the same object, which imposes additional challenge to ensure
that a read transaction commits over cache only when it sees
a consistent view of the underlying database, while the cache
may be inconsistent. The throughput-oriented objective and
consistency requirement, intertwined with cache invalidation
between database and cache, make conventional cache policies
ill-fitted and not competitive for transactional caches.
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Therefore, to break the theoretical performance barrier of
transactional caches, one has to go beyond conventional cache
policies and explore characteristics pertaining to transactional
database systems. We show that this is attainable for transaction
systems that use batching, e.g., partitioning-based systems [28],
[29], [30] and deterministic database (cf. [31]), which are gain-
ing increasing popularity in both multicore and distributed trans-
action processing. Their key characteristic is that transactions
are processed in batches [29], [32] and are often in a pre-defined
total order [31] for higher throughput. Such a batching-based
design has been adopted by systems from both academia [32],
[33], [34], [35], [29], [28], [36], [37], [30], [38], [39] and indus-
try [40], [41], [42], [43]. We show that the use of batching in
these systems also benefits cache policy design for transactions.

Batch consistent caching. To demonstrate this, we study
consistent cache policies for transactional caches atop batching-
based databases. In contrast to conventional policies such as
LRU and LRU-k [44], they take into account transaction con-
sistency when evicting cached items upon overflows. Moreover,
they explore batching and the pre-determined order of transac-
tions, to defy the non-competitiveness of conventional policies.

We first show that, via batching, there exist cache policies
with which transactional caches can gain competitive perfor-
mance that is beyond the capability of conventional cache
policies. However, it is rather non-trivial to fully explore the
potential of batching due to the need to uphold transaction con-
sistency. Indeed, we prove that it is NP-complete to find optimal
transaction policies that maximize the transaction throughput
by offloading reads from the database on to the cache.

Nonetheless, we develop characterizations of optimal cache
policies for transactions, based on which we design linear to
linearithmic-time policies that are theoretically competitive for
transactional caches atop batching-based transaction databases
with major cache invalidation protocols. Moreover, when reads
in the transactions access values of the same size, e.g., integers
or fixed-size objects, our policies become optimal.

Staleness-bounded transaction reordering. To further exploit
the benefit of batching, we propose to incorporate transaction re-
ordering into cache policies. The idea is to reorder transactions
in the batch so that more transactions can commit on the cache.
However, naively reordering transactions would cause transac-
tions to read inordinately stale versions of data values that are
not supposed to be seen if they commit in the original order.

To this end, we constrain the scope of reordering with a
staleness parameter s such that each read in the reordered se-
quence is guaranteed to see a version of its requested value that
has staleness bounded by s. This guarantees that, although we
change the ordering of the transactions in the batch, transactions
still see a reasonably “live” view of the database via transac-
tional caches. By controlling the staleness bound, we allow
flexible trade-off between liveness and cache performance for
transactions. We show that it is NP-complete to find an optimal
reordering. Nonetheless, we develop effective heuristics that
further improve our policies via staleness-bounded reordering.

Prototype. We develop TCache, a prototype that implements

our cache policies and optimizations. Using real-life workload
and benchmarks, we found the following. (1) Compared to ex-
isting cache policies adopted for transactions, TCache improves
the throughput of Memcached atop HBase by 126.95% on
average, up to 479.27%. (2) Transaction reordering is effective
when the staleness bound s is set to as small as 4, improving
TCache by 46.78%; moreover, it still improves TCache by
21.45% even staleness is not allowed, i.e., s is set to 0.

Contributions & organization. To summarize, we initiate the
study of cache policies for transactional caches. Our main
contributions are listed as follows:

• We prove that existing cache policies are not competitive for
transactions, and make a case for batching in caching (§III).

• We settle down the complexity of batch consistent caching
and characterize competitive policies for transactions (§IV).

• We develop competitive and even optimal cache policies for
transactional caches under common cache schemes (§V).

• We study staleness-bounded transaction reordering to
further improve transactional caches (§VI).

• We develop TCache that improves transaction throughput
of Memcached with existing policies by 126.95% (§VII).

See full version [45] for all proofs and additional experiments.

Related Work. We categorize related work as follows.

Transactional data caches. Data caches [1], [2], [3] have been
extensively used to improve the throughput of real world
database systems [4], [6], [7], by shifting read load from
database to cache layer. They augment conventional database
systems with flexible, scalable and efficient auxiliary memory
to serve increasing volumes of read workload. Updates in
the databases are propagated to the caches via cache invali-
dation protocols [26]. Due to their lightweight design, they
naturally lack many heavy database operations like transaction
algorithms. Hence, database systems augmented with data
caches cannot maintain transaction consistency. To alleviate
this, transactional caches have been proposed [8], [9], [23], [11],
[24], which use distributed transaction commit protocols that
are aware of cache presence to ensure committed transactions
are consistent [9], [11], [24] or nearly consistent [8], [23].

Our work complements existing research on transactional
caches. (1) Instead of developing yet another cache-aware trans-
action protocol, we focus on cache policies for transactional
caches. (2) We show that simply adopting conventional cache
policies suffers fundamental limitations. We develop policies
specifically for transactional caches, with performance guaran-
tees that are beyond the capacity of conventional cache policies.
(3) Our study implies that existing systems have not exploited
the full potential of transactional caches due to restricted cache
schemes and policies, and can benefit from this study.

Batching. Batching-based transaction systems have been ac-
tively studied in academia [33], [34], [35], [32], [29], [28],
[36], [37], [30], [38], [46], [39] and practiced in industry [40],
[41], [42], [43]. They execute transactions in batches collected
via, e.g., a time-window [29] or an append-only log [32],
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and are often with a pre-defined order (cf. [31]). It also
allows transaction partitioning to reduce conflicts and simplifies
transaction protocols. In this work, we study transactional
caches on top of such batching-based systems, which allow us to
break the theoretical performance barrier of conventional cache
policies for transactions by taking the advantages of batching.

Cache policies. Caching has been well-studied for decades [47],
[48], [49], [44], [50], [51]. Cache policies decide how to evict
cache content upon cache overflows. Conventional policies such
as LRU, LFU, FIFO and their variants are online in nature, by
deciding which item to evict for requests coming online, one at a
time. This makes them easy to use in virtually all cache scenar-
ios. There has also been the work on offline caching [52], [53],
[54], [55], [56], [57], which makes eviction decisions with the
request sequence known beforehand. When cached items are
of unit size (a.k.a. paging), it is well known that the linear time
Belady’s rule [55], [56] is the optimal policy. The complexity
of generic caching has been an open problem for decades [52]
until the NP-completeness result of Chrobak et al. [53], [54].

Our work differs from these as follows. (1) In contrast to
conventional cache that deals with singleton reads, we study
cache policies for transactions, where cache decisions are
made per transaction. (2) Writes are often treated as a minor
extension of conventional cache policies. Indeed, we are not
aware of any cache analyses that take into account writes.
However, writes and cache invalidation play a central role
when caching transactions. (3) Cache policies for transactions
have to deal with cache-side consistency, which is heavily
intertwined with cache invalidation that is not considered by
conventional policies. (4) Instead of maximizing cache hit rate,
we aim to maximize transaction throughput. This, together with
transaction consistency, makes cache policy design a much
harder problem. Indeed, it is already NP-complete for uni-size
transactions, as opposed to trivially in PTIME for conventional
policies [55]. (5) Obsolete reads for transactions do not exist
for conventional cache and can be coNP-complete to identify.

Reordering. Request reordering has also been studied in web
caching, by ordering online requests within a sliding window
to improve cache hit rate [58], [59], [60], [61]. Different from
the context of web caching, we consider the reordering of
transactions instead of read requests. Moreover, we restrict
inordinate implications of reordering via a staleness parameter.

II. CACHING FOR TRANSACTIONS

We start with preliminaries of transaction databases (§II-A)
and consistent caching for transactions (§II-B).

A. Preliminaries

Cache-augmented databases. We consider cache-augmented
database systems, where an external data cache is added to
the database to serve transactions. The cache is typically a
lightweight distributed memory that is faster and easier to scale
out than a full-fledged database. We focus on look-aside cache
as illustrated in Fig. 1, which is adopted by e.g.,Facebook [5]
and Twitter [62], and is proven effective for read-heavy work-

loads particularly. For such systems, writes are committed to the
database and are propagated to the cache via cache invalidation.

While external caches enable faster reads and higher scal-
ability, their lightweight design brings new challenges when
serving transaction workloads. One immediate consequence is
that the augmented system may lose transaction correctness
guarantees that a database system is supposed to have. To
this end, transactional caches [4], [5], [9], [24], [8], [23], [11]
have been developed such that database systems extended with
caches would retain the desired transaction guarantees.

The research on transactional caches has been primarily
focusing on lightweight protocols to ensure that read trans-
actions commit on the cache only when they are guaranteed
correct. Instead of developing yet another transaction protocol
for caches, in this work we study the design of cache policies for
transactional caches. To delve into the problem, we start below
with necessary definitions of transaction correctness over cache,
referred to as cache-side transaction consistency [23], [8], [11].

Cache-side transaction consistency. We abstract a database
D as a set of pairs {(q1, v1), . . . , (qn, vn)}, where qi identifies
an item vi (we also refer to vi as the value of qi). A read query
(or simply read) r(qi) fetches the value vi of qi and a write
w(qi) updates the value vi. When executing write transactions
over D, we yield a series of different versions (i.e., snapshots)
of D, say D[0], . . . , D[k], . . . , where D[i] is updated from
D[i−1] when a write transaction commits. In practice, (qi, vi)
could be a key-value pair for NoSQL or (id, tuple) for relations;
a read r(qi) (or simply qi) retrieves the value pertaining to the
item indexed by qi. To remain focused on transactional caches,
we do not consider the internal structure of reads qi i.e., they
are atomic operations instead of complex queries which, in
practice, can typically be represented as a set of atomic reads.

A read transaction R is simply a set of reads. We consider
the general case where R may read values of different sizes, e.g.,
when they refer to objects of varying sizes. As a special case,
when all values read byR have the same size, e.g., integers or tu-
ples from the same relation, R is called an uni-size transaction.

A cache C is a set of pairs of D such that each pair (qi, vi)
is taken from some version of D (say, D[k]), determined by
when the item qi is cached in C. That is, (qi, vi) ∈ D[k] but it
is possible that (qi, vi) is not in the current D, i.e., the value vi
of qi in C may not always be the current version depending on
how updates to qi are propagated to C via cache invalidation.
We say that item qi is cached if C caches its value vi.

Consistent cache hit. A read transaction R is a consistent
cache hit over cache C if (a) all items read by R are cached
in C and (b) there exists version k of D such that the cached
values to items of R in C are from snapshot D[k]. Intuitively,
R is a consistent cache hit over C if R is a cache hit over C
as usual but additionally the cached values for the items read
by R must form a consistent view of the database at some
point of time, i.e., they exist in a snapshot D[k] of D.

It is widely adopted by transactional caches that a read trans-
action commits over the cache only when it is a consistent cache
hit [8], [11], [4], [5], [9], [24]. While the cache may be incon-
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sistent as it contains values from different database snapshots,
cache-side consistency guarantees that the answer to any read
transaction computed over cache is sensible in that it was cor-
rect at some point of time over the database. Depending on how
cache invalidation is implemented, transactions committed over
the cache may not always see the current database snapshot.

B. Consistent Cache Schemes for Transactions

We present consistent cache schemes to capture how transac-
tional caches operate and state the consistent caching problem.

As shown in Fig. 1, we consider the case where transactions
are coming online to the application server, where read
transactions are processed on a fixed-size cache C which holds
data up to a total size of b. Write transactions are executed at
the database server, which then propagates committed changes
to the cache via cache invalidation protocols.

A read transaction R may have three possible cases over C:

(a) R is a consistent cache hit on C;
(b) R is an inconsistent cache hit, i.e., all reads of R are

cached in C but are not from the same snapshot of D; or
(c) R is a cache miss, i.e., R reads a item q not in C.

Consistent cache schemes. A consistent cache scheme speci-
fies how C is maintained and used to process transactions, along
with the backend database. We consider three schemes below,
depending on how writes are propagated from the database to
cache C and how read transactions are processed over C.

PCC (Pessimistic consistent cache scheme). It employs the
PURGE cache invalidation protocol [26]. When the database
is updated, a PURGE message is sent to the cache with a
list of updated items. Upon receiving the message, C purges
all referenced items immediately. When processing a read
transaction R over C, the system checks whether all the reads
ofR are cached in C, if so it answers R. Otherwise, it fetches the
missing items from the database, caches them if there is room
in C, and answers R. If C has no room to hold the new items,
i.e., a cache overflow occurs, C has to evict sufficient number of
cached items so that it has the free space to cache the new ones.

ACC (Active consistent cache scheme). It is compatible with
the REFRESH invalidation protocol [26]. Under ACC, the cache
C works the same as under PCC when processing a read
transaction. When the database is updated, a REFRESH message
is sent to the cache, which triggers C to update its outdated items
referenced in the message by refetching from the database.

Observe that under both PCC and ACC the cache C is always
consistent as all the cached items are in their latest version
because of the cache invalidation protocols they employed.

LCC (Locally consistent cache scheme). It works with the BAN
invalidation protocol [26]. Under LCC, when the database is
updated, a BAN message is sent to the cache with a list of all
updated items. In contrast to PCC and ACC, when the cache
receives a BAN, it does not modify C as PURGE and REFRESH
do; instead, it only adds the referenced cached items to a ban
list, recording that they have just been updated. Hence, C may

q0 q1 q2 q3 q4 q5q0 q1 q2 q3 q4 q5

Database Cache

R2 R4
R5 )( W1 W3ℓ =

C
Fig. 2: Transactions and cache in Example 1

be inconsistent under LCC and one has to ensure cache-side
transaction consistency when answering read transactions.

By the turn a read transaction R is processed over C under
LCC, the cache decides whether R is a consistent cache hit.
(1) If R is a consistent cache hit, it answers R using C directly.
(2) If R is an inconsistent cache hit or a cache miss, it selects a
subset R′ of R, fetches R′ from the database to C, and answers
R over the updated C when R becomes a consistent cache hit.

Example 1: Consider a sequence ` of transactions as shown
in Fig. 2, where each Ri (resp. Wi) is a read (resp. write)
transaction. Assume that initially the cache C holds q0, . . . ,
q4, C has unlimited size, and all items in D are of unit size.
Note that write transactions generate 3 versions of D, say D[0]
before W1, D[1] after W1 and D[2] after W3.

(1) Under PCC. R2 is a cache miss as W1 purges q1 from C;
similarly forR4 and R5 due to W3. Hence any cache policy has
to read at least 4 items (q1, q3, q4, q5) to answer them with C.

(2) Under ACC. R2 is a consistent cache hit as q1 in C is
re-fetched after W1; similarly for R5. R4 is a cache miss.
Therefore, it takes 5 reads in total to re-fetch q0, q1, q3 and
q4 for W1 and W3 and fetch q5 for R4.

(3) Under LCC. When R2 is processed, q1 is stale in C since
there is a newer version in D updated by W1. However, q1
and q2 still form a consistent cache hit for R2: they are from
the same snapshot of D, i.e., D[0]. Hence R2 can be answered
consistently using C only without reading D. Instead, R4 is a
cache miss since q5 is not in C when R4 is processed. Hence R4

reads q5 from D; however, q3 is in D[0] while the newly fetched
q5 is from D[2], hence q3 will also be re-fetched by R4. For
R5, it looks like a cache hit since both q4 and q5 are in C by its
turn; however, they are not consistent due to W3. Indeed, q4 in
C appears in both D[0] and D[1], but not in D[2], while q5 in C
appears only in D[2]. Hence, R5 is a cache hit but inconsistent,
which requires to re-fetch q4. Hence, an ideal cache schedule
under LCC reads just 3 items from the database in total.

Example 1 shows that the performance of caching varies
over different schemes, depending on the cache invalidation
methods implemented. While many transaction caches employ
PCC by default, e.g., [5], [8], ACC and LCC are more often used
in web caches, e.g., Varnish [63]. Example 1 also illustrates
that transaction caches may benefit more from ACC or LCC
by using an alternative cache invalidation protocol.

Cache policies. A central problem in caching is the design of
cache replacement policies. We study consistent cache policies
for transactional caches C that decide, for each read transaction
R in a sequence ` of transactions, if R is a cache miss that
causes an overflow over C, which cached items in C to evict
in order to free space for R and make it a consistent cache hit.
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Here a cache overflow happens when R is a cache miss over
C and C has no available space to cache the missing reads in
R. The sequence of actions decided for each transaction in `
forms a consistent cache schedule for ` over C.

Intuitively, consistent cache policy are algorithms that operate
on transactional caches under one of the cache schemes, to
maintain cache data and serve transactions. As remarked in Sec-
tion I, conventional cache policies do not work well with writes.
Worse still, they cannot observe consistency for transactions.

The TCP problem. In light of the new challenges, in the sequel
we focus on the design and analysis of consistent cache policies,
stated as the transactional caching problem (TCP) below.

INPUT A cache C of size b, and a sequence ` of transactions,
OUTPUT A consistent cache schedule P for `.

OBJ Minimize cost(P), the total number of reads in the
transactions of ` to be fetched from the database.

Intuitively, TCP is to design a consistent cache policy for
transactional caches that maximize transaction throughput by
minimizing accesses to the backend database, i.e., cost(P). By
minimizing cost(P), we offload as much read load as possible
from the database on to cache so that the entire system could
serve more concurrent requests and increase throughput. Here
` contains both read and write transactions. In practice write
transactions appear as cache invalidation messages to the cache.

The quality of cache policies depends on the consistent cache
schemes (i.e.,PCC, ACC and LCC) employed. In addition, it is
also related to how the cache policy observes ` when generating
schedules. To start with, we assume that cache policies are
pure online, i.e., they make cache decisions for each read
transaction R in ` without knowing subsequent transactions in
`. This captures conventional cache policies that are designed
for e.g., web requests coming online one by one.

III. THE CASE FOR BATCHING

In this section, we prove that conventional cache policies
cannot be competitive for transactions and make a case for
batching to break the barrier of conventional policies.

Competitiveness. Following the study of online algo-
rithms [27], we use competitive ratio to analyze cache policies.

Consider a consistent cache policy P for problem TCP. We
denote by cost(P, `) the cost of the cache schedule generated
by P for `. We say that P is α-competitive (α ≥ 1) if for any
sequence ` of read and write transactions, we have cost(P, `)
≤ α · cost(OPT, `), where OPT is the offline optimal policy,
i.e., cost(OPT, `) is the cost of the optimal schedule for `
generated by OPT that knows the entire ` beforehand. A
policy is not competitive if it is not α-competitive for any α.
Intuitively, if P is α-competitive for some α ≥ 1, it means
P is comparable to the best policy one can hope for.

Analysis. We next analyze the competitiveness of conventional
cache policies when adopted for transactional cache. We
consider online policies captured in the class LM of Marker’s
algorithms (cf. [47], [27], [64]), which includes popular policies

like LRU and its variants. It is well known that all policies
in LM are competitive in the conventional cache setting [64].
We study them for transactional caches.

We first focus on LRU, which is adopted by virtually all
transactional caches, e.g., [8], [25], [5]. We start with a positive
result that shows why LRU is so popular. Consider sequences
` with uni-size transactions only, i.e., each read is of size 1 in
every transaction of `. Let m be the size of the cache C.

Proposition 1: Under PCC, if ` consists of uni-size transactions
only, then LRU is m-competitive.

Proposition 1 shows why LRU is often used with the PURGE
protocol. However, for general cases and other cache schemes,
all policies in LM , including LRU, are not competitive.

Theorem 2: (1) There exists no cache policy in LM that is
competitive under PCC, ACC or LCC.

(2) There exists no cache policy in LM that is competitive
under ACC even for uni-size transactions only.

Theorem 2 tells us that existing cache policies are not
competitive in most of the cases and it is impossible to improve
the situation if we stay with conventional cache policies.

Implication. The impossibility results motivate us to step back
and rethink the objective of transactional caches. One distinct
characteristic of transactional caches that stands out is the type
of workload, i.e., transactions. Instead of one read request at a
time, a read transaction contains multiple reads to be served at
the same time. Databases are also updated by write transactions.
Moreover, transactions are typically coming concurrently in
a large volume and the backend database system aims to
maximize the overall throughput with the help of transactional
caches. The bottleneck of the database is then often the
computation capacity instead of the latency of each read.

The case for batching. This naturally gives rise to the idea
of designing cache policies that can explore the characteristic
of concurrent transactions and the underlying database
systems. To this end, we specifically focus on the class
of batching-based transaction databases (e.g., deterministic
databases [31]), which batches transactions and executes each
batch in a pre-determined order ). It has found advantageous
in both distributed [32], [33] and multi-core databases [46],
[29], by exploring offline transaction workload partitioning.

While conventional cache policies are not competitive, via
batching we can have competitive policies for transactions.

Proposition 3: There exists consistent cache policies that are
competitive for batching-based databases under PCC and ACC;
moreover, they become optimal for uni-size transactions.

Proposition 3 justifies the benefits of incorporating transac-
tion batching, a technique that has already been exploited by
transaction databases, for caching. Below we characterize con-
sistent cache policies for batched transactions in §IV, based on
which we then give a constructive proof of Proposition 3 in §V.
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IV. THE FOUNDATION OF BATCH CONSISTENT CACHING

In this section, we lay the foundation of consistent caching
for batched transactions. We first settle down its complexity
(§IV-A) and then develop characterizations (§IV-B).

A. Complexity

We study the complexity of problem TCP (recall §II-B)
when the sequence ` is a transaction batch that is part of the
input known to the cache policies. This is to some extent similar
to the conventional caching in the offline setting where ` is
known beforehand. However, the presence of transactions and
the consistency requirement make it much more challenging.

For example, it is well-known that finding the optimal cache
schedule for offline paging is in PTIME via Belady’s rule [55],
which evicts the cached item whose next request time is furthest
in future. However, it is no longer optimal for transactions.

Example 2: Continue Example 1. Assume that W3 also
includes q0 and the cache C has a size limit of 5. Following
W1, . . . , R5, assume that there are 4 new transactions W6 =
{q0}, R7 = {q0, q5}, R8 = {q3, q4} and R9 = {q1}. Then by
the turn of R4, it incurs a cache overflow under both ACC and
LCC since q5 is not in C and C is full at the time.

(1) First consider ACC. By Belady’s rule which is to evict
from C the item whose next read time is the most distant in
the sequence at the time, we need to replace q1 in C with the
new item q5 for R4. The total number of reads required is 8:
q5 for R4, q1 for R9, and all items in the write transactions
except q5 of W3. However, if we replace q0 in C with q5 for
R4, we do not need to update q0 upon W6, yielding a better
cache schedule of 7 reads in total. This shows that the presence
of writes and invalidation impairs the optimality of Belady.

(2) LCC is even more intriguing. Belady’s rule would work
the same as under ACC. Hence, (a) by R4, it replaces q1 in C
with q5. Meanwhile, q3 is re-fetched as q5 is from D[2] while
q3 is from D[0], causing an inconsistent cache hit; (b) for the
same reason, it re-fetches q4 for R5 and q0 for R7; (c) R8 is
a consistent cache hit; (d) R9 is a cache miss and it fetches
q1. That is, a total of 5 reads are needed for Belady’s rule.

Now consider the cache schedule that replaces q0 (instead of
q1) in C with q5 for R4. Then for R4,R5 and R7, it acts exactly
the same as above. However, both R8 and R9 are now consis-
tent cache hits, witnessed by D[2] andD[0], respectively. Hence
the schedule incurs 4 reads in total under LCC, better than Be-
lady’s rule. This shows that under LCC transaction consistency
further complicates the optimality of cache policies.

This shows that optimal offline cache policy (Belady’s rule)
is no longer optimal for transactions, even for uni-size transac-
tions. Indeed, caching transactions is much more challenging.

Complexity. Consider the decision problem of TCP.

Theorem 4: (1) TCP is NP-complete under all three schemes.

(2) When all the reads in the transactions are of unit size,
(a) TCP becomes in PTIME under both PCC and ACC;
(b) however, it remains NP-hard under LCC.

Theorem 4 shows that caching transactions is much harder
than conventional caching. In contrast to TCP, we are not
aware of any existing variants of uni-size caching that are
NP-hard. We will constructively prove Theorem 4(2a) in §V.

B. Characterizations

We next develop characterizations for optimal consistent
cache policies for batched transactions.

Consider a sequence ` of transactions in the batch. For
convenience, we assume that transactions are mapped to time
indices in [1, |`|], where |`| is the number of transactions in `.

Example 3: Continue Example 2. Under LCC, both q0 and q4
in the cache C at time 4 (i.e., when answering R4) will never
be used by any transactions after time 4 (i.e., after R4 in `).
Hence, an optimal cache schedule for ` would evict or re-fetch
q0 and q4 after time 4 upon cache overflows.

Similarly, under PCC and ACC, q0 at time 4 in C is not
helpful for any transactions after R4 since q0 due to W6.

Example 3 shows that, due to intertwined cache invalidation
and transaction consistency, a cached read can be useless for any
transactions even it appears again. Hence, any optimal cache
schedule must evict these cached reads first upon a cache over-
flow. Below we formally capture such reads, based on which
we develop characterizations for optimal cache schedules.

Obsolete reads. Consider a sequence ` of batched read and
write transactions. Let C be the cache buffer at the current time
t. Denote by `t the suffix of ` starting from time t, i.e., the
part of ` that is yet to be processed.

A read r(q) (or simply q) is obsolete at time t for ` if

(a) q is in the cache C at time t; and
(b) for any consistent cache schedule for `t over C, the cached

q will not contribute to the committing of transactions in
`t, i.e.,q will have been re-fetched from the database to
answer any of the transactions in `t that contain r(q).

That is, when r(q) is obsolete, by the time the immediate next
read transaction R in `t that contains r(q) is processed, in any
consistent cache schedule (i) q must be stale in the cache, (ii)
R is an inconsistent cache hit or a cache miss, and (iii) q must
be updated in order to make R a consistent cache hit. In other
words, the cached copy of q will be replaced when answering
R, under any consistent cache schedule for `t over C. Note
that, q can be useful (i.e., not obsolete) even when q is stale
when R arrives and R is a cache miss or inconsistent cache hit.

Intuitively, if q is obsolete in cache at the current time, it will
for sure be updated by any consistent cache schedule before
being used to answer a transaction. Hence, keeping q in the
cache is by no means useful for the transactions. Therefore, at
all times obsolete reads should be evicted whenever the cache
buffer needs to squeeze space for caching new transactions. As
will be shown shortly, this observation allows us to characterize
competitive and even optimal cache schedules for transactions.

Characterizations. We first show that it is essential to evict ob-
solete reads at all times. We say that a consistent cache schedule
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P is optimal for ` if for any other schedule P′, cost(P, `) ≤
cost(P′, `). Denote by P[i] the cache replacement decision
made by P for read transaction R of ` that arrives at time i.

Lemma 5: Under PCC, ACC and LCC, for any consistent cache
schedule P, if P is optimal for `, then at any time i ∈ [1, |`|], af-
ter applying P[i] the cache will contain no obsolete reads.

Lemma 5 shows that the key to the design of a competitive or
even optimal cache policy is the capability of identifying obso-
lete reads for each read transaction in ` and evicting them with
the highest priority when an overflow occurs. This motivates
us to study the identification of obsolete reads for any given
sequence of batched transactions, under PCC, ACC and LCC.

(1) PCC and ACC. The following confirms that determining
obsolete reads under PCC and ACC can be done in linear time.

Consider cache buffer C, sequence ` of read and write
transactions, read r(q) that is cached in C at time t.

Proposition 6: Under PCC and ACC, r(q) is obsolete for `
at time t if and only if the next read time of q after t is later
than the time of the next write transaction with w(q).

By Proposition 6, under both PCC and ACC, it is in O(KC)-
time to tell whether a cached read q is obsolete at any given
time, where KC is the number of reads that cache C can hold.

(2) LCC. Due to the possibility that read transactions can still
be well served over cache C even C is inconsistent, it becomes
far more intriguing to decide obsolete reads under LCC.

Theorem 7: It is coNP-complete to decide whether r(q) is ob-
solete under LCC, even ` consists of uni-size transactions.

V. A COMPETITIVE CACHE POLICY FOR TRANSACTIONS

In light of Theorem 4, any practical cache policy for TCP
has to be approximate. Nonetheless, based on Lemma 5, we
develop a unified policy below for TCP that works under all
three cache schemes, with provable competitiveness guarantees.

The OFF policy. The policy, denoted by OFF (Obsolete First
then First-in-the-furthest), is presented in Algorithm 1. The
essential idea is to, upon a cache miss or an inconsistent cache
hit, first evict all those cached reads that are obsolete at the
time, and then process reads in the current transaction one by
one, using an extended Belady’s rule when a cache overflow
occurs. Since Belady’s rule only works for conventional cache
setting where reads are of unit size and processed one at a time,
we need to extend it to cope with the varying sizes of reads
in the form of transactions with consistency requirements.

OFF builds upon the techniques of conventional caching
with varying sizes [52]. It first classifies all reads in the transac-
tions of ` by their sizes. For each transaction R, if R is an incon-
sistent cache hit or cache miss,OFF refreshes staled reads in the
cache w.r.t. write transactions prior to R. If R is a cache miss,
OFF fetches the missing new reads and then answers R using
cache consistently; if a cache overflow occurs even all obsolete
reads have been evicted, OFF evicts one or two cached reads
from each class in the cache, which will guarantee that there

ALGORITHM 1: The OFF policy

Input: Cache C and transaction sequence `.

Upon processing a read transaction Rt in ` (at time t):
1 if isCCH(Rt, C) = true then // Rt is a consistent cache hit in C
2 answer Rt using C directly;

3 else // Rt is a cache miss or inconsistent cache hit
4 S ← findOB(C, `, t); // find reads in C obsolete at time t
5 C ← C \ S ; // evict obsolete reads currently in C
6 foreach q ∈ Rt that is either not in C or outdated in C do
7 if q is in C but outdated then update q in C; continue ;
8 if C has no room for q then
9 repeat dlog re + 1 times // r = maxi∈[1,blog kc+1] ri,

where ri is the ratio of the maximum i-read size over the
minimum i-read size

10 foreach i ∈ [1, blog kc+ 1] do
11 evict the most distant i-read in C

12 fetch and cache q in C;

are sufficient room to cache the new reads that incur overflow.

We next present OFF in details. Denote by Σ the set of
all distinct items read or written by transactions in `. OFF
first classifies all reads in the transactions into blog kc + 1
classes such that class i ∈ [1, blog kc + 1] contains reads of
size in the range [minq∈Σ |q| · 2i−1,minq∈Σ |q| · 2i), where k
=

maxq∈Σ |q|
minq∈Σ |q| in which |q| is the size of (the read item queried

by) q. We say that q is a i-read if its size falls in the i-th
class [minq∈Σ |q| · 2i−1,minq∈Σ |q| · 2i).

It then processes read and write transactions of ` one by
one as shown in Algorithm 1. When processing transaction
Rt at time t, it first checks whether it is a consistent cache hit
over cache C (via isCCH; see [45] for more); if so, it answers
(commits) Rt (lines 1-2). Otherwise, it first identifies all cached
reads that are obsolete at time t via findOB (line 4; more below)
and removes them from C (line 5). It then processes reads in
Rt one by one: if read q in Rt is in C but outdated due to write
transactions before t, it updates q in C with the latest version
from the database (line 7); otherwise if q is not yet cached, it
checks whether there is enough room in C to accommodate q
(line 8), and caches q if so (line 12); otherwise, it evicts 2 reads
(1 read if all reads are of unit size) from each class whose next
appearance time in ` is the furthest in the future (line 9-11).

Procedure findOB. We have already sorted out findOB under
PCC and ACC (Proposition 6 of §IV-B). We next focus on LCC.

In light of Theorem 7, it is practically infeasible to find ex-
actly all the obsolete reads under LCC. Nonetheless, we present
an efficient design of findOB under LCC, shown as Algorithm 2,
that warrants each and every read it identifies is obsolete for
certain. In other words, it is a sound method to efficiently iden-
tify obsolete reads under LCC with certainty: with it OFF will
never evict a good read by mistakenly recognizing it as obsolete.

For any given time t, findOB identifies reads in C that are
obsolete for ` at t. The key idea is to execute `t, the suffix of
` starting from time t, via a modified dry run of OFF over a
temporary cache buffer C′ of infinite size, during which findOB
marks reads in C that can be determined obsolete for certain.

More specifically, it first initializes C′ the same as C (line 1).
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ALGORITHM 2: The findOB Procedure
Input: Sequence ` of transactions, cache C at current time t.

1 C′ ← C; `t ← `[t,+∞]; // create a new buffer C′ without size limit
2 while `t 6= nil and C has unmarked reads do
3 Ri ← `t.pop(); // Ri: the transaction at time i ≥ t
4 if isCCH (Ri, C′) = true then
5 foreach q ∈ Ri do
6 if q is in C and unmarked then mark q as safe in C;

7 else
8 if Ri is a cache miss in C′ then
9 foreach q ∈ Ri and q 6∈ C do add q to C′ ;

10 if isCCH(Ri, C′) = true then
11 foreach q ∈ Ri do
12 if q is unmarked in C then mark q as safe in C;

13 continue
// lifet(q): duration at which q cached at t is also in the database.

14 Hl ← a max-heap of all q ∈ Ri by lower endpoints of lifet(q);
15 Hu ← a min-heap of all q ∈ Ri by upper endpoints of lifet(q);
16 q1 ← Hl.pop(); q2 ← Hu.pop();

/* let lifet(q1) = [lb1, ub1], lifet(q2) = [lb2, ub2] */
17 while lb1 > ub2 do
18 replace lifet(q2) with lifei(q2) and update Hl and Hu

accordingly;
19 if q2 ∈ C and unmarked then mark q2 as obsolete in C;
20 q1 ← Hl.pop(); q2 ← Hu.pop();

21 foreach q in Ri that is also in C do mark q as safe if not marked;

22 return all reads in C that are marked as obsolete;

It then examines transactions in `t one by one against C′, where
`t is the suffix of ` starting from time t. It marks reads in the
transactions as either safe or obsolete if they are also in C. The
process terminates when all reads cached in C are marked (or
all reads in `t are examined; lines 2-21), and findOB returns
those marked as obsolete in the end (line 22).

Each time findOB pops the front transaction remained in `t,
say Ri at time i (line 3). It checks whether Ri is a consistent
cache hit over C′ (line 4). If so, all reads in Ri that are also in C
are marked as safe if they have not been marked yet (lines 5-6).
Otherwise, Ri is either a cache miss or an inconsistent cache
hit over C′. If Ri is a cache miss over C′, findOB expands C′
by including reads of Ri that are missing in C′, so that Ri
becomes a consistent or inconsistent cache hit. If Ri is now
a consistent cache hit over C′, findOB marks all reads of Ri
that are also in C but are not yet marked as safe and moves
on to the next transaction in `t (lines 10-13).

If Ri remains an inconsistent cache hit over C′, it iteratively
examines pairs of reads in Ri and see whether they are incon-
sistent with each other and “refreshes” (dry-run) one of them to
make them consistent if they are not (lines 14-20); all refreshed
reads are marked obsolete in C if they are also contained in C
but not marked (line 19). findOB does this by maintaining two
heaps of reads in Ri: one is a max-heap Hl that sorts reads
by the lower end points of their lifet (life span in the database
snapshots; see Algorithm 2) ranges in descending order and the
other is a min-heap Hu that sorts reads by the upper endpoints
of their lifet ranges in increasing order (lines 14-15). Each
iteration, findOB pops the top read from Hl and Hu, denoted
by q1 and q2, respectively. It checks whether q1 and q2 have
overlapping lifespans. If so, q2 must have to be “refreshed” in

order to make Ri a consistent cache hit (lines 17-18). It marks
q2 as obsolete if it is in C and is not yet marked (line 19). The
iteration terminates if the pair of the head reads in Hl and Hu
become consistent (line 20). findOB marks all those reads in
Ri that also in C but are not yet marked as safe (line 21).
Proposition 8: Under LCC, for any read q found by findOB(C,
`, t), q must be an obsolete read in C at time t for `.

Complexity. OFF generates a consistent cache schedule within
O(KC ∗ ||`||+ |`| ∗TfindOB)-time under all three schemes, where
(a) KC is the number of classes that C is divided into (i.e., KC
= blog kc+1; recall that OFF groups reads in C into classes),
(b) |`| (resp. ||`||) is the total number of transactions (resp.
reads) in `, and (c) TfindOB is the complexity of findOB(C, `, t).
Under PCC and ACC, TfindOB is in O(KC)-time; under LCC,
TfindOB is in O(h ∗ log c)-time, where (i) h is the number of
transactions in `Ct , which is the shortest sub-sequence of ` that
starts from time t and covers reads in C, and (ii) c is the number
of reads a transaction may have, (typically small, e.g., 5).

Optimization. As an optimization of findOB, we also param-
eterize findOB for LCC such that one can specify an upper
bound h0 for the length of `Ct (i.e., h). We found that h0 = 10
can cover most of the obsolete reads in practice, which makes
findOB almost in constant time. Similarly for PCC and ACC.

Competitiveness. We next study the guarantees of OFF. Recall
the notion of competitiveness in §III. In particular, a policy P is
optimal if it is 1-competitive, i.e., it always generates consistent
cache schedule of the lowest cost for each and every sequence `.

Theorem 9: Under both PCC and ACC, OFF
(1) is 2 log k-competitive; and
(2) is optimal when the reads are of unit size.

Theorem 9 is constructive proof of Proposition 3. It shows
that, in contrast to conventional policies that are not competitive
for transactions, OFF is competitive and even optimal. As
will be shown in §VII, by evicting obsolete reads OFF does
consistently achieve higher throughput than conventional ones.

VI. TRANSACTION REORDERING FOR CACHING

In this section, we further improve the effectiveness of trans-
action caching via transaction reordering, which is naturally
enabled and supported by batched transactions.

Implications of transaction reordering. There are two impli-
cations of intra-batch transaction reordering on the performance
of the entire system: (a) an improved performance and (b) a less
“accurate” results for the read transactions. Here (a) is to some
extent natural since one can expect to improve cache-side trans-
action committing rate by improving data locality across adja-
cent transactions via reordering. However, (b) is somehow eas-
ily to be overlooked when employing batching and reordering.

Example 4: Continue Example 2. Assume initially C contains
{q0, q1, q2, q3, q4}. Then for the transaction sequence ` in Ex-
ample 2, OFF generates an optimal schedule that incurs 5 reads
under PCC. Consider a reordering `′ = (R2, R8, R9, R4, R5,
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R7,W1,W3,W6) of `. One can verify that (a) an optimal sched-
ule for `′ under PCC incurs only 1 read from database D, i.e.,
fetch q5 for R4; (b) `′ is the best reordering one can find for `;
however, (c) in ` R8 reads D[2] while it reads D[0] with `′.

Example 4 shows that reordering can help offload transac-
tions to the cache for better performance. While it may look
straightforward in the example to find the best reordering as we
have a perfect cache C that can hold almost all items (5 out of
6), it is however nontrivial in the generic case as, e.g., swapping
two transactions may improve the data locality of some items
while worsening the others. Furthermore, with reordering
transactions may see a stale view of the database that is different
from what they would observe in the original order. For many
applications such as stock trading [65], manufacturing [66] and
warehouses [67], transactions are time-sensitive and stale reads
are tolerated only when read values have bounded staleness.

Staleness-bounded reordering. This motivates us to study
transaction reordering subject to a controlled bound on the “stal-
eness” of the views that the transactions observe, stated (infor-
mally) as the staleness-bounded reordering problem (SBRP):

INPUT a sequence ` of transactions, a staleness bound
s (to be formalized below), a cache C of size b.

OUTPUT a reordering `′ of `.
CONSTRAINT each read in `′ observes a view of the database of

at most s-stale w.r.t. what it would observe in `.
OBJECTIVE minimize cost(P), where P is the optimal cache

schedule for `′ (recall cost() in §II-B).

Intuitively, SBRP is to find a reordering (`′) of ` to maximize
the benefit of caching for `, while ensuring that the transactions,
if committed in the order of `′, would observe a view that has
a bounded staleness distance from the one they would observe
in ` (we will formally define the notion of staleness shortly).

Note that, SBRP is not a restriction of the simpler reordering
setting without bounded staleness, since the latter is a special
case of SBRP where the bound s is large, e.g., greater than |`|.
Instead, it enables the option to apply intra-batch reordering in a
controlled way by specifying appropriate staleness parameter s.

Staleness. To complete the statement of SBRP, we define
the notion of staleness below. Denote by RVer(R.r[q], `) the
number of writes w[q] in transactions prior to R in `. The
staleness of read r[q] of R in the reordering `′ of `, denoted by
stale(R.r[q], `′), is defined as |RVer(R.r[q], `′)−RVer(R.r[q],
`)|. Intuitively, RVer(R.r[q], `) measures the version of q-values
R.r[q] would see if transactions were committed according to
the “natural” order of `, and stale(R.r[q], `′) quantifies the
difference between the versions that R.r sees in `′ and `. We
say that r[q] of R is at most s-stale in `′ if stale(R.r, `′) ≤ s.
Challenges. The problem is challenging. First, the staleness
bound imposes nontrivial restrictions on the search space of
valid reordering. Indeed, naive heuristics of grouping similar
transactions to improve cache locality may end up with reorder-
ing that never satisfies the staleness bound specified by the user.
Moreover, even for uni-size transactions and constant staleness

bounds, e.g., s = 1 is as small as 1, it is already intractable
to find best reordering of ` for caching, as shown below.

Theorem 10: SBRP is NP-complete under PCC, ACC or LCC.
It is NP-hard even s = 1 and ` consists of uni-size transactions.

Algorithm ReO. Despite the intractability, we develop an
efficient reordering heuristic, denoted by ReO, that always (a)
returns a reordering `′ of ` satisfying user-specified staleness
bound s and (b) improves cache performance for transactions.
Below we sketch the idea of ReO (see [45] for more details).
(1) It first creates a bipartite graph G`(V1, V2, E), where V1 and
V2 are the two vertex sets and E ⊆ V1×V2. Each vertex v in V1
encodes a write transaction W in ` and each v′ ∈ V2 encodes
a read transaction R. It orders V1 in the order as in `. An
edge (W,R) is in E if putting R next to W will not break the
staleness bound s. Note that since the order of write transactions
(V1) is fixed, the staleness of a read R.r[q] depends on write
transactions prior to R, irrelevant to other read transactions.

(2) It then computes a bipartite matching M ⊆ E of G` by
iteratively processing vertices of V1: each iteration it picks v ∈
V1 with the maximum degree and assigns all vertices v′ ∈ V2
connecting to it; once v′ is assigned to v, it also removes all
edges from E that connects v′ and other vertices of V1.

(3) The match M of step (2) assigns each read transaction of `
to exactly one gap between write transactions. ReO then itera-
tively reorders read transactions in each gap to maximize cache
performance. In each iteration, it picks |`|/k transactions with
reads that are mostly least recently requested on average. Here
k is a tunable constant that determines the ordering granularity.
Complexity. ReO can be implemented in O(|`| log |`|)-time,
where |`| is the total transaction size of ` (see [45] for details).

VII. IMPLEMENTATION AND EXPERIMENTAL STUDY

We experimentally evaluate the effectiveness of OFF and its
optimization for caching transactions. We start with a prototype
that implements OFF. We then present our evaluation findings.

Prototype. We have developed TCache, a prototype that
implements OFF and its optimizations on top of Memcached
for caching transactions. TCache inherits workflow of batching-
based transaction systems (e.g., [29], [31], [39]). For each batch
Bi of transactions, TCache generates a cache schedule for it
using OFF (§V) and the reordering optimization (§VI). It
instructs Memcached to use the generated schedule instead of
the default LRU to serve read transactions in Bi. TCache also
pipelines cache scheduling and transaction execution: when
the underlying database is executing transaction batch Bi,
it collects and generates cache schedule for the subsequent
batch Bi+1. In this way, the entire system can take further
advantages of the batching-based execution model of the
underlying databases for caching in a non-blocking way, i.e.,
cache schedule generation does not block transaction execution.

Evaluation Plan. Using benchmark and real-life datasets, we
evaluate (1) the effectiveness of OFF in improving transaction
throughput, (2) the feasibility of pipelining, (3) the effectiveness
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of transaction reordering optimization, and (4) the robustness
of cache performance over transaction batches of varying sizes.

Experimental Settings. We use the following settings.

Datasets. We used two benchmarks and one real-world trace.

(1) YCSB benchmark. We used the built-in core workload B
with a 95/5 reads and writes mix of the YCSB benchmark [68],
consistent with typical workloads that transactional caches
target in practice [4], [25], [69]. It has the below parameters.
(a) θ: the Zipfian distribution parameter used by YCSB to
emulate skewed access patterns, ranging from 0.4 to 1.2 (0.4
by default). A higher θ means more skewed access distribution.
(b) dsize: the size of YCSB database. We varied dsize in the
range [10GB, 30GB] by varying its number of keys from 10M
to 30M, consistent with previous studies [29], [36], [70].

(2) TCBench. To further evaluate cache policies for more
diverse transactions, we also implemented a micro-benchmark
TCBench that generates YCSB-compliant workloads with vary-
ing characteristics. It is controlled by the following parameters.
(a) θ: TCBench generates items in the transactions using
Zipfian, similar to YCSB built-in workloads. It varies the
Zipfian parameter θ in the range of [0.4, 1.2] (0.6 by default).
(b) #-items: number of distinct items in the transaction batch. It
varies in the range of [200, 1000] and is set to 600 by default.
(c) write%: the percentage of write transactions, which varies
from 5% to 25% and is set to 5% by default.

Given a configuration of the parameters, TCBench randomly
generates a sequence ` of read and write transactions that
conforms to the parameters. The size of the items in the trans-
actions follows the Facebook’s Memcached distribution [69].

(3) Real-life dataset (Wiki). We also used Wiki, a 14-day
Wikipedia CDN trace collected in 2018 [71]. We picked a
slice of 108 items, grouped them into transactions, each with
8 items. Each item has size specified by its “request object
size” property. Writes are randomly distributed in Wiki with
probability write% ∈ [1%, 20%] (1% by default).

Baselines. We also compared OFF with existing methods.

(a) Cache policies. We compared OFF with existing cache
policies. To do this, we configured TCache with major cache
policies adopted for transactions as competitors. Following
existing transactional cache protocols (e.g., [8]), a transaction
commits over the cache if it is a consistent cache hit; if it is
a cache miss, it fetches missing items from the database and
retries; if it is an inconsistent cache hit, it will abort; aborted
transactions will retry by re-fetching its requested items. Upon
cache overflows when updating the cache, cached items are re-
placed according to the specific cache policies used by TCache.
We compared OFF (with ReO) with the following methods:

• LRU: the default cache policy of Memcached [1].
• LRU-k: a modern variant of LRU based on LRU-k [44].
• Belady: the optimal offline policy for uni-size reads [55].
• LRU-txn: a variant of LRU that evicts the least recently used

cached transaction (instead of item) upon cache overflows.

• Belady-txn: a variant of Belady that evicts transactions at
a time upon cache overflows, similar to LRU-txn.

• OFF−: a variant of OFF that does not evict obsolete items
first upon overflows, following the paging policy in [52].

• OFF0: a plain version of OFF that does not employ ReO.

(b) Reordering policies. We also compared the reordering
optimization of OFF (ReO in §VI) with the below baselines:

• Random: transactions are randomly ordered;
• Readfirst: read transactions first then write transactions; and
• Writefirst: write transaction first then read transactions.

Note that these reordering policies do not comply with the
staleness bound s that OFF (ReO) is subject to (recall §VI).
This is in favour of the baselines as they have more room to
exploit transaction reordering for better throughput than ReO
does. By default, ReO is enabled for OFF with staleness bound
s = 0, i.e.,the most restrictive setting with no staleness allowed.

Configuration. The experiments were run on AWS EC2 [72].
We used HBase v2.2.4 on a m5.24xlarge EC2 instance as the
database server and Memcached v1.5.6 on 60 m5.8xlarge in-
stances as cache nodes with TCache deployed; each cache node
also serves as an application server node that receives/generates
transactions and gathers results. The cache size accounts for
an αcsize fraction of all the read/write items in the transaction
workloads, where αcsize varies from 20% to 40% (40% by
default). To measure the impact of parallelism, we also varied
the total number of transaction threads (#-thds) on the cache
nodes from 600 to 1400 (1000 by default). All nodes are in
the same EC2 region connected by 10 Gigabit intranet.

Following the practice of deterministic databases and batch-
based transaction systems, we process transaction workloads
in batches, each consists of 500 to 5000 transactions per thread
(1000 by default). To accurately evaluate the effectiveness of
cache policies via transaction throughput, we keep the system
saturated with a steady stream of transaction batches; each test
was run for at least 1 hour and was repeated for 3 times.

Experimental Results. We next report our main findings.

Exp-1: Throughput. We first evaluated the effectiveness of
all cache policies in improving transaction throughput. We
compared the throughput of the entire system with different
cache policies over all three datasets. When varying a parameter,
all the other parameters were set to the default.
(1) Overall performance. We first compared the throughput
of all methods with the baseline that does not use cache
(nocache). As shown in Fig. 3a, caching does improve the
overall throughput, for all cache polices, e.g., over YCSB, OFF,
OFF−, Belady and LRU improve nocache by 7.01, 4.79, 4.84
and 2.80 times, respectively. This also confirms previous studies
on the benefit of cache for transactions.

We also compared the average throughput of all cache
policies with varying workload parameters (θ and write%). Key
results are reported in Figures 3b-3f; see [45] for more). We
found that, with OFF the overall throughput is consistently the
best among all. Over YCSB under LCC, the throughput with
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Fig. 3: Experimental results for Exp-1 and Exp-4

OFF is on average 159.26%, 195.71%, 57.51%, 182.20%,
183.71% and 58.92% higher than with LRU, LRU-k, Belady,
LRU-txn, Belady-txn and OFF−, respectively. The improve-
ment under PCC is 132.07%, 109.89%, 25.35%, 164.62%,
156.88% and 17.31%, respectively; similarly for ACC.
(2) Read load. To understand why OFF allows higher
transaction throughput, we tested the database load with
different cache policies measured as #-read, the number
of read operations (per 1K transactions) that are carried
out at HBase. We found that with OFF higher percentage
of read load is shifted to Memcached nodes due to more
cache-side transaction commits. For instance, under LCC,
over Wiki, on average OFF reduces 66.47% and 71.97% of
the #-read of Belady and LRU, respectively; similarly over
TCBench (Figures 3g-3h; more in [45]). This is because
#-read is heavily related to cache-side transaction aborts due
to inconsistencies, which in turn depend on how well obsolete
queries are dealt with by the cache policies. With findOB,
OFF eliminates most of obsolete queries while others cannot.
(3) Obsolete reads. Obsolete items have an evident impact on
the performance of TCache and findOB of OFF and OFF0

are effective in identifying them. This is reflected by the larger
improvement of OFF and OFF0 over other cache policies under
LCC than under PCC and ACC (see Figures 3d and 3f). Indeed,
under LCC, transactions can make higher use of cached items
by allowing consistent cache hit over possibly stale items. This
can lead to higher throughput as long as the cache can identify
and evict obsolete items as many and early as possible, for
which OFF does much better than the other cache policies.

(4) ReO optimization. We found that OFF0 (OFF without
ReO) also consistently outperforms all other baselines, e.g.,
over TCBench its throughput is 103.81%, 114.23%, 28.50%,
126.83%, 129.08% and 29.80% higher than LRU, LRU-k,
Belady, LRU-txn, Belady-txn and OFF−, respectively. On aver-
age, ReO contributes to nearly half of the speedup that OFF has
over the baselines. However, for workloads with higher write%,
the effectiveness of ReO reduces noticeably and evicting
obsolete items accounts for most of the improvement for OFF.

(5) Impact of configurations. We also tested the impact of sys-
tem configurations (αcsize, dsize, and #-thds) on throughput.

(a) Varying cache & database size. The throughput of all
cache policies increases with larger cache size, e.g., over YCSB
under LCC, OFF, OFF−, Belady and LRU improve by 63.94%,
41.09%, 45.93% and 27.43% when αcsize increases from 20%
to 40% (Fig. 3i; see more in [45]). By contrast, all policies are
not quite sensitive to database size (dsize) as shown in Fig. 3j,
partially due to that cache hit rate is determined by the cache
size, transaction workloads and cache policies only, and the
cost of read operations on the database side (HBase) is also
insensitive to database size because of the key-value design.

(b) Varying threads (#-thds). Surprisingly, we found that not all
cache policies benefit from increased threads. For instance, on
Wiki under LCC, with LRU and LRU-k the throughput initially
increases with more threads until #-thds reaches 1000, after
which their performance even degrades (Fig. 3k; more in [45]).
This is because, when compared to OFF, LRU and LRU-k have
higher rate of cache miss or inconsistent cache hit; with larger
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Fig. 4: Experimental results for Exp-2 and Exp-3

#-thds the increasing amount of reads executed at database
causes higher contention that outweighs the increased cache
hit. By contrast, OFF benefits most from increased threads
consistently, with highest throughput in all cases.

Additionally, we also found that the gap between OFF and
nocache (without caching) increases noticeably with added
threads. For instance, under LCC over Wiki, OFF improves
nocache by 10.53 times with 600 threads while the gap in-
creases to 49.63 times with 1400 threads (see [45] for a detailed
report). This further justifies the benefit of caching with OFF.

Exp-2: Pipelining. To justify the feasibility of pipelining
across transaction batches, we evaluated the overhead of cache
scheduling. More specifically, we tested the ratio of the runtime
of cache scheduling to the transaction execution time per batch
for OFF, denoted by OverheadR. The results over TCBench
with varying batch sizes are shown in Fig. 4a (see [45] for
more). The average OverheadR of OFF under ACC, PCC
and LCC is 33.09%, 36.76% and 34.90%, respectively, and is
consistently below 50% in all cases when batch size varies from
500 to 5000. This validates that, via pipelining cache scheduling
does not block transaction execution. We remark that pipelining
naturally requires dedicated cores for scheduling, which is
typically not a problem for applications in the cloud e.g., EC2.

Exp-3: Staleness-bounded transaction reordering. We next
examined the effectiveness of ReO for OFF in more detail.
(1) Overall performance. We first evaluated (a) the throughput
with each reordering method and (b) the maximum staleness
that a read observes after reordering. To favour competitors, we
restrict that the staleness bound of ReO is 2, while all the com-
petitors have unrestricted staleness. In all tests, OFF is set as
the default cache policy and each batch has 5000 transactions.
(a) As shown in Fig. 4b, although ReO is subject to bounded
staleness, it still gives OFF the highest throughput, e.g., on
average 39.20%, 34.89%, 36.46% and 42.45% higher than
Random, Readfirst, Writefirst, and no reordering, respectively.
(b) While having higher throughput, as shown in Fig. 4c, ReO
strictly complies with the specified staleness bound (i.e., 2) and
is much smaller than the observed staleness by all competitors.
(2) Impact of staleness bound. We further tested the impact of
the staleness bound s on the effectiveness of ReO, by varying s
from 0 to 4. The results over YCSB are reported in Fig. 4d (see
[45] for Wiki and TCBench, which are similar). Over Wiki, on
average ReO improves the throughput of OFF (without reorder-
ing) by 24.11% with s = 0, i.e., no staleness is allowed; and

this increases to 51.39% with s = 4. Indeed, with larger s, ReO
is given more room to increase cache-side transaction commits
via reordering, yielding better throughput. It demonstrates that
ReO enables flexible trade-offs between the performance and
the “quality” of transaction execution over cache.
Exp-4: Robustness against transaction batch size. Finally,
we evaluated the impact of transaction batch size on the
performance of cache policies. In particular, we want to know
whether the throughput is robust against transaction batches of
varying sizes. To this end, we evaluated the average throughput
over batches with 500 to 5000 transactions, using the same
setting as in Exp-1. The results over YCSB are shown in Fig. 3l
(see [45] for similar results over Wiki and TCBench) We found
that OFF is quite robust and stable with transaction batches of
varying sizes. For instance, over YCSB, its average throughput
is 0.42 M/s over batches of size 5000, while it is 0.41 M/s
when the batches are of size 1000; similarly for other datasets.
Summary. We find the following on average. (1) OFF consis-
tently performs better than other policies in all case. (2) Using
OFF the transaction throughput of HBase and Memcached is
improved by 155.79%, 103.23%, and 115.78% over existing
cache policies under LCC, PCC and ACC, respectively. (3)
OFF has moderate overhead which makes pipelining feasible.
(4) The reordering method of OFF achieves 38.71% higher
transaction throughput than baselines while ensuring staleness
bound that others cannot comply with. (5) The performance
of OFF is robust against transaction batches of varying sizes.

VIII. CONCLUSION

We have made a first attempt to study consistent cache
policies for transactional caches. In contrast to conventional
caching, consistent caching aims to answer read transactions
consistently over caches. We have proved that existing cache
policies are not competitive for transactions. Instead, we have
proposed batch consistent cache policies for batching-based
transaction systems, characterized and settled down their com-
plexity, and developed a consistent cache policy that works with
common cache invalidation protocols with provable guarantees.
We have also developed reordering optimization to further im-
prove cache performance, with bounded staleness. Our experi-
mental study has shown that the policy is effective in improving
transaction throughput of systems extended with caches.

This work aims to initiate the study of consistent caching. We
are currently extending the study from batch-based transaction
systems to databases that directly use CC without batching.
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