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ABSTRACT

As graph databases become widespread, JTC1—the committee in joint charge of information technology standards for
the International Organization for Standardization (ISO), and International Electrotechnical Commission (IEC)—has
approved a project to create GQL, a standard property graph query language. This complements a project to extend
SQL with a new part, SQL/PGQ, which specifies how to define graph views over an SQL tabular schema, and to run
read-only queries against them.

Both projects have been assigned to the ISO/IEC JTC1 SC32 working group for Database Languages, WG3, which
continues to maintain and enhance SQL as a whole. This common responsibility helps enforce a policy that the identical
core of both PGQ and GQL is a graph pattern matching sub-language, here termed GPML.

The WG3 design process is also analyzed by an academic working group, part of the Linked Data Benchmark Council
(LDBC), whose task is to produce a formal semantics of these graph data languages, which complements their standard
specifications.

This paper, written by members of WG3 and LDBC, presents the key elements of the GPML of SQL/PGQ and GQL in
advance of the publication of these new standards.
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1 INTRODUCTION

Graph databases are becoming widely used [46]. Many applications require graph-structured data for
analysis: they are found in a variety of scientific domains, such as biology and chemistry[29]. Machine
learning increasingly centres on graph networks [26, 33]. Business transaction records, and derived metrics
and control data, are viewed as graphs to detect fraud patterns, understand market trends and customer
behaviours, and to model data lineage and complex access control rules.
Graphs appeal to many kinds of users because the graph data model is akin to conceptual models,

which reflect our intuitive view of information as the properties of entities and their relationships. Human
knowledge, when gathered incrementally as linked data items, naturally falls into the shape of a graph: this
is visible in open-source knowledge graphs, such as Wikidata and DBpedia, and in the internal knowledge
bases that big tech companies build in order to inform their decision and service-oriented tasks.

Two of the most popular ways of representing graphs are the Resource Description Framework (RDF) [18],
and property graphs [3]. In RDF, the data is modelled as a directed edge-labelled graph. On the other hand,
property graph models the data as a mixed (that is, partially directed) multigraph. Both nodes and edges
can be labelled, and also attributed (that is, associated with property/value pairs). In this paper we focus on
property graphs.
The property graph data model has gained adoption in many commercial database systems. Examples

include AgensGraph, Amazon Neptune, ArangoDB, CosmosDB, DataStax Enterprise Graph, HANA Graph,
IBMDb2 Graph, JanusGraph, Neo4j, Oracle Server and PGX, RedisGraph, Sparksee, Stardog, and TigerGraph.
Unlike RDF with its query language SPARQL [27], which is a W3C standard, property graph systems possess
disparate storage models and querying facilities, present either in the form of APIs like Gremlin, or, since
2010, in the form of declarative graph query languages including Cypher from Neo4j [23], GSQL from
TigerGraph [47], and PGQL from Oracle [30], as well as industry/academia prototypes such as G-CORE
[2]. Pre-existing property graph data languages overlap substantially in core features, but each has also
introduced unique innovations. The 2015 openCypher project has led to a widening industrial use of Cypher
as a language for property graphs, but did not succeed on its own in establishing a standard.
As graph data management has expanded as a product category, the lack of a standard query language

(and associated sub-languages for schema definition) for property graphs has been felt more strongly. The
situation resembles the early days of the relational/tabular data model, which led to the standardization of
SQL, a hugely successful lingua franca. In 2019 the Joint Technical Committee 1 of ISO/IEC, which defines
information technology standards for the International Organization for Standardization, and International
Electrotechnical Commission, approved a project to create GQL, a standard property graph query language
with full CRUD (create/read/update/delete) and catalog capability. GQL builds on prior graph languages, as
well as a new part 16 of SQL, in development since 2017, called SQL/PGQ. PGQ (short for property graph
queries) specifies how to define graph views over an SQL tabular schema, and to run read-only queries over
such views, that can be projected by an SQL SELECT statement.
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GQL and SQL/PGQ share a common data model, and a common graph pattern matching language,
called GPML throughout the paper. Both language projects have been assigned to the ISO/IEC JTC1 SC32
(Subcommittee 32) Working Group for Database Languages (WG3) which continues to be responsible for
maintaining and enhancing SQL as a whole. This structure serves a policy that GPML be kept identical in
GQL and SQL/PGQ. The common GPML sublanguage is the central subject of this paper.

Graph query languages extract data from a graph that matches a graph pattern. In GPML a graph pattern
is a collection of path patterns, which when applied to a property graph, results in a set of path bindings,
each mapping variables in the expression to graph elements (node and edges) forming a path in the graph.
These variable bindings can be used to refer to the graph elements and the values of their properties. The
way in which path bindings are projected to produce query results varies between SQL/PGQ and GQL, but
the set of path bindings matching a path pattern for a given graph (prior to result projection) will be the
same for both languages.
The standards process for both languages is governed by WG3, whose expert members represent the

national standards bodies of China, Denmark, Finland, Germany, Japan, Korea, the Netherlands, Sweden, the
UK, and the USA. In addition WG3 has a liaison relationship with Linked Data Benchmark Council (LDBC).
LDBC is a consortium of industrial companies, research institutes, academic researchers and consultants.
LDBC defines benchmark standards for graph data workloads, but also supports the work of WG3 on GQL
and SQL/PGQ by adding the expertise of its members to suggest improvements, or new ideas that may
ultimately be incorporated in the official standards (for example, the Property Graph Schema Working
Group in LDBC). As part of this process, an academic group was created under the auspices of LDBC, called
FSWG (Formal Semantics Working Group). Members of this group previously provided a complete formal
semantics of Cypher features [23]. The group’s goal was to scrutinize and comment on the design of the
GPML sublanguage, and to suggest improvements.

This paper gives an accessible summary of the GPML of GQL and SQL/PGQ. It does so before these two
standards are published, and before vendors (including those which are represented in the author list) have
released implementations of the features of GPML—but at an advanced stage of consensus on its scope and
design.

The paper is organized as follows. In Section 2 we review the property graph model and in Section 3 we
give a brief overview of pattern matching facilities in existing languages and survey related work. Section
4 describes the main functionalities of the GPML of GQL and SQL/PGQ. In Section 5 we explain how the
language ensures finiteness of outputs, as there could be infinitely many cyclic paths in a graph. Section
6 provides a detailed explanation of the pattern-matching algorithm by means of an example. Section
7 describes future plans in terms of the Standard release, industrial implementations, and new research
questions that the GPML poses.
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Fig. 1. A property graph with information on bank accounts, their location, and financial transations.

2 PROPERTY GRAPHS

To describe property graphs, we use a common application scenario involving banking and financial
transactions (used, e.g., for fraud detection). Figure 1 is an example of a property graph containing in-
formation about bank accounts, their location, their associated phone numbers and IP addresses, and
financial transactions between them. The graph contains nodes, which are connected by edges. Nodes and
edges are identified by node identifiers (a1, . . . , a6, c1, c2, p1,. . . ,p4, ip1, ip2) and edge identifiers (t1,. . . ,t8,
li1,. . . ,li6,hp1,. . . ,hp6,sip1,sip2), respectively. Furthermore, both nodes and edges can carry labels (e.g.,
Account, City, Transfer, isLocatedIn) and property/value pairs (e.g., owner/Mike, isBlocked/no). In figures,
we will depict node information in solid boxes, and edge information in dashed boxes. We use the umbrella
term element to refer to nodes or edges. When clear from the context, we do not distinguish between node
identifiers and nodes (similarly for edges).

In graph-theoretic literature, graphs are usually defined as pairs ⟨𝑉 , 𝐸⟩ of vertices𝑉 and edges 𝐸 which are
either two-element subsets of 𝑉 for undirected graphs, or pairs of vertices for directed graphs. In contrast,
property graphs are multigraphs (there can be multiple edges between two endpoint nodes); pseudographs
(there can be an edge looping from a node to itself); they are mixed, or partially directed: an edge can be
undirected, or can have source and target nodes, in which case it is directed from the source to the target.
They are also attributed: graph elements can have attributes (a disjoint union of labels and properties).

This is summarized in the following definition. Assume that L, P, and Val are countably infinite sets,
containing labels, property names, and property values, respectively.

Definition 2.1 (Property Graph). A property graph is defined as a tuple 𝐺 = (𝑁, 𝐸, 𝜌, _, 𝜋) where:

• 𝑁 is a finite set of node identifiers;
• 𝐸 is a finite set of edge identifiers; such that 𝑁 ∩ 𝐸 = ∅;
• 𝜌 : 𝐸 → (𝑁 × 𝑁 ) ∪ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑁 } is a total function mapping edges to ordered or unordered
pairs of nodes;
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Account
ID owner isBlocked

a1 Scott no
a2 Aretha no
a3 Mike no
. . .

Transfer
ID A_ID1 A_ID2 date amount

t1 a1 a3 1/1/2020 8M
t2 a3 a2 2/1/2020 10M
t3 a2 a4 3/1/2020 10M
. . .

signInWithIP
ID A_ID s_ID

sip1 a1 ip1
sip2 a5 ip2

Country
ID name

c1 Zembla

CityCountry
ID name

c2 Ankh-Morpork

Fig. 2. Excerpts of five tables of the tabular representation of the property graph in Figure 1. The tables Transfer and
signInWithIP represent edges, the others represent nodes.

• _ : (𝑁 ∪ 𝐸) → 2L is a total function mapping node and edge identifiers to sets of labels (including
the empty set);

• 𝜋 : (𝑁 ∪ 𝐸) × P ⇀ Val is a partial function mapping elements and property names to property values.

We call an edge 𝑒 directed if 𝜌 (𝑒) ∈ 𝑁 × 𝑁 and undirected if 𝜌 (𝑒) ∈ {{𝑢, 𝑣} | 𝑢, 𝑣 ∈ 𝑁 }. In both cases we
say that 𝑒 connects 𝑢 and 𝑣 . Notice that both directed and undirected edges allow 𝑢 = 𝑣 , in which case the
edge is a self-loop. Furthermore, the definition allows both directed and undirected edges to carry labels and
data. Indeed, _ and 𝜋 can be defined for directed and undirected edges. The definition does not preclude
having two different edges connecting the same nodes. For more details we refer the reader to [24].
A property graph has a graph representation, which is illustrated in Figure 1, but it also has a tabular

representation, which is illustrated in Figure 2. In the graph representation, we depicted the nodes in red
and the edges in blue. We depicted the properties and values associated to nodes in grey rounded rectangles
(which are dashed for edges) and most of the labels in white rectangles. To avoid clutter however, we have
omitted the labels on some edges (namely isLocatedIn, hasPhone, and signInWithIP). The tabular
representation has a relation for every combination of labels that appears on some node or edge in the
graph. For instance, every label that appears in Figure 1 is a relation name in the tabular representation,
except City, which does not appear by itself. It does appear together with Country (on node c2), so the
tabular representation has a relation named CityCountry, which contains node c2.
A path is an alternating sequence of nodes and edges such that: (1) it starts and ends with a node;

and (2) subsequent nodes in the sequence are connected by the edge between them.1 We write paths as
path(c1,li1,a1,t1,a3,hp3,p2) indicating a path from node c1 to node p2 that first follows edge li1 in
reverse direction, then the edge t1 in forward direction, and then the undirected edge hp3.
1As is usual in the graph database literature [8, 38, 40, 49], we use the term path to denote what is called walk in the graph theory
literature [12].
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isBlocked = yes

𝑥 : Account

isBlocked = yes

𝑥 : Account

isBlocked = no

𝑦 : Account

date = 3/1/2020

𝑒 : Transfer

isBlocked = no

𝑥 : Account

isBlocked = yes

𝑦 : Account

:Transfer
+

(a)

(b)

(c)

Fig. 3. Node pattern, edge pattern, and a path pattern.

3 GRAPH PATTERN MATCHING TODAY

As identified in a recent survey of modern graph query languages [3], when querying graph databases,
one usually starts by selecting atomic graph elements, such as nodes, edges, or paths. Coming back to our
example from Figure 1, basic elements we might want to select are, for instance:

• All the nodes representing a blocked account;
• All the edges representing a money transfer from a blocked to a non-blocked account that occurred
on a specific date;

• All the paths whose edges represent money transfers, and that start in a non-blocked account, but
end in a blocked one.

In an abstract sense, we could represent these elements as patterns shown in Figure 3. In addition to
standard elements of a property graph, these graph patterns also attach variables 𝑥 , 𝑦, 𝑒 , etc. to different
parts of the patterns. To match such a pattern in a property graph, we need a mapping that links the node
patterns to nodes in the graph, and similarly with edge and path patterns. For instance, the pattern (a) from
Figure 3 matches to an Account node such that the value of the property isBlocked is set to yes. Similarly,
the pattern (b) of Figure 3 matches the node variables 𝑥 and 𝑦 to two accounts (the first one blocked, and
the second one not), while 𝑒 matches an edge of type Transfer connecting these two nodes, with the value
of date set to 3/1/2020.

The most interesting pattern, shown in Figure 3(c), specifies a path of arbitrary length. Starting from [37],
specifying paths via regular expressions over edge types has been well established both in the research
community [3, 8, 15, 49] and in the industry [23, 30, 42, 47]. Several ways of defining valid paths (simple,
arbitrary, etc.) have been proposed [23, 38]; we discuss them in later sections.
With these basic building blocks at hand, we can define more complex graph patterns. For instance,

assume that in the property graph from Figure 1, we want to identify all pairs of owners with accounts
that are located in Ankh-Morpork, and are connected by a path of (arbitrarily many) money transfers.
Additionally, we might want to stipulate that the first account is blocked, while the second one is not
blocked. Following our graphical representation, one can visualize this query as the graph pattern in Figure
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name = Ankh-Morpork

:City

isBlocked = no

𝑥 : Account

:isLocatedIn

isBlocked = yes

𝑦 : Account

:isLocatedIn

:Transfer
+

Fig. 4. Pattern of fraudulent accounts in Ankh-Morpork.

4. Notice that the pattern only specifies what we want to match in the graph, not what we want to output
(the owners of x and y).

In general, a graph pattern specifies a set of nodes and their connections via edges and paths, filtered
according to labels and values of some of their properties. Such a graph-shaped query gets matched to the
graph database to obtain a (collection of) result(s). Graph patterns form the core of most existing graph
query languages, and have been present in academic research (under the name of conjunctive regular path
queries, or CRPQs [8, 14, 49]), in W3C recommendations (e.g. SPARQL [42]), and in existing property graph
engines [23, 30, 40, 47]. We next summarize the support for graph patterns in SPARQL, Neo4j’s Cypher,
Oracle PGQL, and TigerGraph’s GSQL. For historical reasons, we begin with SPARQL.
The SPARQL standard [42] prescribes graph pattern matching on edge-labeled graphs represented as a

single ternary relation. Neither labels nor properties are present in SPARQL, and matching is done only
between nodes and constants. Path queries are supported by means of property paths [27] that permit
full 2RPQs [15] under arbitrary path semantics. In order to avoid infinite results when cycles are present,
SPARQL prescribes that one can only check for the existence of a path between a pair of nodes, but cannot
count the number of such paths, or try to reconstruct them [6, 32]. A much simplified version of the query
from Figure 4 in SPARQL (assuming cities are identified by their names), would be the following:

SELECT ?x, ?y

WHERE { ?x isLocatedIn "Ankh−Morpork".

?y isLocatedIn "Ankh−Morpork".

?x Transfer+ ?y }

The most common query language for property graphs is Cypher [23] that originated at Neo4j and has
since been implemented by vendors such as Amazon, Agens Graph, Katana Graph, Memgraph, RedisGraph,
and SAP HANA [41]. The owners of the accounts in the query from Figure 4 can be found with Cypher as
follows:

MATCH (a:Account {isBlocked:'no'})−[:isLocatedIn]−>

(g:City {name:'Ankh−Morpork'})<−[:isLocatedIn]−

(b:Account {isBlocked:'yes'}),

p = (a)−[:Transfer*1..]−>(b)

RETURN a.owner, b.owner
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The query first matches the variables a and b to an unblocked and a blocked account located in Ankh-
Morpork, using its “ASCII-art” syntax for specifying edges. It then matches p to a whole path of transfers of
arbitrary length from a to b, and returns the owners. Unlike SPARQL, Cypher allows returning paths: we
can return p simply by including it in the RETURN clause.

Cypher’s patternmatching hasmultiple other features. It permits label disjunctions and inline predicates in
variable-length path patterns: MATCH (a)−[:X|Y*{weight:1}]−>(b). It supports testing for the presence
or absence of a path relative to an element specified in a match: MATCH (a:Person)−>(:Cat) WHERE NOT

(a)−>(:Dog). It also allows custom graph traversals by calling user-defined procedures via CALL, and
complex predicates involving nested data, especially paths. Cypher also allows additional operations on
matched paths such as returning a single shortest or all shortest paths, returning all nodes or edges in a
path, the length of a path, as well as the number of paths found.
PGQL (Property Graph Query Language) [48] is an SQL-like graph pattern matching query language

that is open-sourced by Oracle. Where features overlap, PGQL follows SQL’s syntax and semantics, such as
in SELECT, WHERE, GROUP BY, HAVING, and ORDER BY, as well as for functions, aggregations, predicates,
existential and scalar subqueries. The core of a PGQL query is the graph pattern, which is spread over
multiple MATCH clauses that are syntactically placed inside the FROM clause. The owners of the accounts of
query in Figure 4 can be found as follows.

SELECT x.owner AS A, y.owner AS B

FROM

MATCH (x:Account)−[:isLocatedIn]−>

(g:City)<−[:isLocatedIn]−(y:Account),

MATCH ANY (x)−[e:Transfer]−>+(y)

WHERE x.isBlocked='no' AND y.isBlocked='yes'

AND g.name='Ankh−Morpork'

We can return the whole path of Transfer edges between x and y by replacing the first line of the query
with SELECT x.owner AS A, y.owner AS B, LISTAGG(e.ID, ’, ’), assuming that e.ID is the ID of
edge e. Here, the variable e is treated as a group variable that matches subsequent edges of the path and can
be used to aggregate data along paths of variable length. For example, one can compute the length of the path
using COUNT(e), or filter out paths with repeated edges using WHERE COUNT(e) = COUNT(DISTINCT e).
The aggregate LISTAGG(e.ID, ’, ’) produces a comma-separated list of values encoded as a single string
of characters. ANY is used to obtain an arbitrary single path from x to y. PGQL supports also ANY SHORTEST,
ALL SHORTEST, TOP k SHORTEST, ANY CHEAPEST, and TOP k CHEAPEST, allowing for retrieving multiple
paths between a pair of nodes. ALL gives all paths but requires an upper bound on the path length, e.g.,
{1,4} instead of +.

The design philosophy behind TigerGraph’s GSQL (Graph SQL) language [19, 47] is to flatten the learning
curve for the largest community of potential adopters, namely SQL programmers. Like PGQL, GSQL
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supports SQL-style SELECT, WHERE, GROUP BY, HAVING, LIMIT and ORDER BY clauses, aggregation, and
graph patterns in the FROM clause. The running example query from Figure 4 is expressed in GSQL as
follows, using table T to hold the result.

SELECT x.owner AS A, y.owner AS B INTO T

FROM Account:x −(isLocatedIn>)− City:g

−(<isLocatedIn)− Account:y,

:x −(Transfer>+)− :y

WHERE x.isBlocked='no' AND y.isBlocked='yes'

AND g.name='Ankh−Morpork'

GROUP BY A, B

GSQL’s default semantics is ALL SHORTEST, hence there is no upper bound on the + quantifier. While
supporting group and path variables is on the near-future roadmap for GSQL, this is merely a matter of
adding syntactic sugar as they are currently expressible using a GSQL-specific aggregation paradigm based
on accumulators. These are containers that can be attached at query time to the vertices and written to
during the pattern matching phase. Accumulator inputs are aggregated via pre- or user-defined binary
operators. Accumulator-based aggregation was shown to enjoy expressivity and efficiency benefits over
SQL-style aggregation [20].

4 GRAPH PATTERN MATCHING LANGUAGE

Recall that we use the acronym GPML to denote the common graph pattern matching language that is
shared by SQL/PGQ and GQL. In the database domain there is no standard or product by those initials to
our knowledge; it is just a convenient abbreviation for this paper. This section is devoted to explaining how
GPML works. In general, a GPML pattern is an expression of the form:

MATCH Pattern

where Pattern is a pattern specifying the parts of our input property graph we want to explore. The MATCH
clause may be optionally followed by a WHERE clause to filter the results; we discuss it later in the section.
For example, the following expression retrieves all the accounts in our graph from Figure 1 that are not
blocked:

MATCH (x:Account WHERE x.isBlocked='no')

Intuitively, this pattern, which is an example of a node pattern, binds to x all the nodes in the graph which
have the label Account, and whose isBlocked property has the value no. Another basic pattern, called
the edge pattern extracts edges from our graph. For instance, the following pattern asks for all the edges
which represent transfers with a value of more than 5 million:

MATCH −[e:Transfer WHERE e.amount>5M]−>
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We shall use shorthands such as 5M for readability. The variable e gets bound to an edge in our graph,
giving us access to its data. We later explain how one can also retrieve the endpoints of the edge. Generally,
node and edge patterns retrieve graph elements – nodes and edges – and can then be combined in more
complex ways to define paths and patterns present in our graph. In what follows we specify how all of this
is supported in GPML. We start by expanding on our definition of node and edge patterns.

4.1 Accessing Nodes and Edges

Node patterns. The most basic query pattern allows the user to fetch nodes inside a property graph. For
instance, to extract all of the nodes of the graph, the user can write the following2

MATCH (x)

The variable x here is called an element variable, since it binds to a graph element. In the case of x, it
will be bound to a node in the graph, since it is placed inside the ( ) braces, which signify that we are
talking about a node. For instance, if evaluated on the property graph from Section 2, this query will return
bindings that map x to accounts, cities, phones, and IPs.3

Of course, one rarely wants to obtain all the nodes in a graph, and usually will want to restrict the
obtained results in some way. A natural way to do this is to look only for nodes with a specific label. GPML
does this via label expressions. For instance, to return nodes that correspond to accounts, one writes:

MATCH (x:Account)

Here the label is explicitly specified, and only nodes with the label Account will now be bound to x.
More generally, label expressions allow conjunctions (&), disjunctions (|), negations (!), and grouping of
individual labels by using parentheses. For instance, to capture all the nodes that are either accounts, or
IP addresses, we would write MATCH (x:Account|IP). There is also a wildcard symbol % matching any
label; e.g., pattern (:!%) matches nodes that have no labels.
Further filters on a node restrict the values of some of its properties. As seen earlier, if we

are interested only in those accounts that are not blocked, the pattern (x:Account) changes to
(x:Account WHERE x.isBlocked='no'). The WHERE clause can be put outside MATCH to be used as a
postfilter for produced matches:

MATCH (x:Account)

WHERE x.isBlocked='no'

The WHERE clause can support a host of search conditions, and these may be combined into logical statements
using AND, OR, and NOT.

2The ascii art () used for nodes is meant to be suggestive of how nodes are usually drawn as circles in visual representation of a
graph.
3For now we model query evaluation as a process taking a property graph and a query pattern as input, and producing as output a
multiset of bindings from the set of variables to the set containing graph elements and property values. In Section 6 we extend this to
capture more advanced objects such as arbitrary length paths.
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We note that each of the restricting elements in a node pattern (e.g. the variable, the label specification,
or the WHERE condition) is optional. That is, any of them can be either present or absent. This makes the
following the simplest possible node pattern: MATCH (). Since there is no variable, there is no syntax to
reference the nodes bound to this pattern; consequently it is of little use standing alone as the sole element
pattern as in this example. However, below we explain how such a pattern can be combined with edge
patterns in order to extract paths and patterns in the graph. Intuitively, this construct will allow us to have
a placeholder for any node in the graph, thus allowing us to link it with other graph elements. It is of more
use when concatenated with edge patterns, as in

MATCH (x)−[:Transfer]−>()−[:isLocatedIn]−>(y)

In the preceding example, the user is only interested in the bindings to x and y, consequently the user
omitted the variables from the two edge patterns and the middle node pattern.

Edge patterns. These let us explore an edge connecting two nodes. A basic way of doing this is via the
pattern4

MATCH −[e]−>

which searches all the directed edges in the graph, and binds them to the element variable e. That is, the
bindings generated by this pattern will map e to any identifier of a directed edge in the graph. If we wish to
use specific types of edges (e.g. undirected), this can be done by special symbols used in the edge pattern.
For example, all undirected edges can be recovered by MATCH ~[e]~.

The full specification of possible edge direction restrictions and their combinations is provided in Figure 5.
In the figure, spec is an optional element of the form e:labelExpr WHERE condition, where labelExpr
and condition are as in node patterns above; when spec is omitted, the abbreviated version can be used.
As an example, if we want edges that are either undirected, or directed from right to left, we could write
<<<~[e]~.

Similarly to node patterns, we can restrict which edges we wish to return by specifying their labels,
or using the WHERE clause, as was shown earlier with the example that restricted Transfer edges to
those with the amount exceeding 5 million. Both label expressions and the WHERE clause can use the same
constructs as in the case of node patterns. Similarly to node patterns, edge patterns need not specify an
element variable. This will become useful later on when defining more complex patterns.

4.2 Building Path Patterns by Concatenation

Node and edge patterns can be chained together to form a path pattern. The most natural way to do this is
to ask for edges in the graph, together with their source and target nodes, as in:

MATCH (x)−[e]−>(y)

4Here again we use the ascii art −[]−> to mimic how one draws an edge in a graph.
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Orientation Edge pattern Abbreviation

Pointing left <−[ spec ]− <−
Undirected ~[ spec ]~ ~
Pointing right −[ spec ]−> −>
Left or undirected <~[ spec ]~ <~
Undirected or right ~[ spec ]~> ~>
Left or right <−[ spec ]−> <−>
Left, undirected or right −[ spec ]− −

Fig. 5. Table of edge patterns.

The bindings generated by this pattern will map e to an edge in the property graph, and x and y to
its source and target node, respectively. If we do not specify direction and write (x)−[e]−(y), then
each edge will be returned twice, once for each direction in which it is traversed. Edge direction, edge
(un)directedness, or any filter on nodes/edges can be used as in the examples above. For instance, to ask for
a source account of every transfer that reaches an account with the owner equal to 'Aretha', we write:

MATCH (y WHERE y.owner='Aretha')<−[e:Transfer]−(x)

Even if the edge pattern is ambiguous about the orientation of e, we may wish to refer to this orientation in a
postfilter.We can do this using the predicates e IS DIRECTED, s IS SOURCE OF e, and d IS DESTINATION OF
e.

One can keep on alternating edge and node patterns to create more complex path patterns. For instance,
the query

MATCH (s)−[e]−>(m)−[f]−>(t)

extracts all directed paths of length two in the graph. Variable s is bound to the id of the source node of
the path, t is bound to the id of the target node, and m to the middle node. Similarly, variables e and f are
bound to the two edge ids of the path, respectively. Executed on the graph in Fig. 1, one of the returned
bindings is:

s ↦→ a1, e ↦→ t1, m ↦→ a3, f ↦→ t2, t ↦→ a2.

We can still use the constructs previously described (filters, orientation, labels) in each individual edge or
node pattern; for example:

MATCH (p:Phone WHERE p.isBlocked='yes')

~[e:hasPhone]~(a1:Account)

−[t:Transfer WHERE t.amount>1M]−>(a2)

It searches for substantial transfers from accounts into which a login attempt was made from a blocked
phone. The query still extracts paths of length two, but the first edge is undirected and the second is directed
and in forward orientation. Hence, each returned binding maps p, a1, a2 to nodes 𝑛1, 𝑛2, 𝑛3, and e, t to
edges 𝑒1, 𝑒2, such that 𝑒1 links 𝑛2 and 𝑛1, while 𝑒2 goes from 𝑛2 to 𝑛3.
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Moreover, one may use the same variable multiple times in order to impose topological constraints on
the matched paths via an implicit equi-join on the repeated variable. For instance in the query below, the
variable s is used twice; hence this query finds "triangles" of accounts involved in money transfers; the
reuse of variable s ensures that one starts and ends in the same node:

MATCH (s)−[:Transfer]−>(s1)−[:Transfer]−>(s2)−[:Transfer]−>(s)

Path patterns permit the use of path variables: in the returned bindings, such a path variable is bound to
a whole path. In

MATCH p = (s)−[:Transfer]−>(s1)−[:Transfer]−>(s2)−[:Transfer]−>(s)

the variable p will be bound to paths of length three of Transfer edges that start and end in the same node.
This variable p could be returned, or used to compute a more complex value, for instance an aggregate over
the bound path.
As in previous examples, the presence of variables in node or edge patterns is not compulsory. For

instance, the query

MATCH (p:Phone)~[:hasPhone]~(s:Account)−[t:Transfer]−>

(d:Account)~[:hasPhone]~(p)

extracts the transfers between accounts that were accessed from the same phone. Since the hasPhone
edges have no additional property, there is no need to return them. It thus returns two bindings:

p ↦→ p1, s ↦→ a5, t ↦→ t8, d ↦→ a1

p ↦→ p2, s ↦→ a3, t ↦→ t2, d ↦→ a2

4.3 Graph Patterns

Graph patterns combine several path patterns together. As an example, consider the fraud detection query
looking for substantial transfers from accounts into which a login attempt was made from a blocked phone.
It could be alternatively written as

MATCH (p:Phone WHERE p.isBlocked='yes')~[:hasPhone]~(s:Account),

(s)−[t:Transfer WHERE t.amount>1M]−>()

by splitting the path into two edges and reusing the variable s to indicate that these edges share a node. In
general, we can put arbitrarily many path patterns together. For example, we can modify the above query
by adding a condition that another login attempt into an account was made that did not use a phone:

MATCH (s:Account)−[:SignInWithIP]−(),

(s)−[t:Transfer WHERE t.amount>1M]−>(),

(s)~[:hasPhone]~(p:Phone WHERE p.isBlocked='yes')
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Quantifier Description

{m,n} between m and n repetitions
{m,} m or more repetitions
* equivalent to{0,}
+ equivalent to{1,}

Fig. 6. Table of quantifiers

This pattern looks for three edges coming out of s which is cumbersome to write as a single path. In such
graph patterns, each path pattern produces a set of mappings, which are then joined using variables that
are shared between them.

4.4 Quantifiers and Group Variables

GPML includes quantifiers similar to those in Perl and other common “regex” tools. Figure 6 lists the
quantifiers of GPML. Quantifiers are written as postfix operators on either a single edge pattern or a
parenthesized path pattern (a path pattern enclosed in parentheses or square brackets with an optional
WHERE clause). For example, a path of length 2 to 5 of Transfer edges can be sought as follows:

MATCH (a:Account)−[:Transfer]−>{2,5}(b:Account)

As an example using a parenthesized path pattern, consider the problem of finding paths of 2 to 5
Transfer edges between accounts with the same owner:

MATCH [(a:Account)−[:Transfer]−>(b:Account) WHERE a.owner=b.owner]{2,5}

The pattern does not provide a strict alternation of node and edge patterns; it will be unrolled two to five
times, to obtain a sequence of bindings of variables a b a b. . . The WHERE clause here applies to each such
pair of a and b bindings separately. As variables a and b will occur multiple times in such a sequence, the
notion of binding an element variable to a unique node or vertex is insufficient in this case, and must be
expanded to embrace path bindings in which each variable in that sequence is mapped to a graph element. In
addition, at the transition between groups, the previous binding of b must be the same as the next binding
of a. More about the exact mechanism of such bindings will follow from the detailed example in Section 6.

As for a quantifier on a bare edge pattern, this is understood by supplying anonymous node patterns to
its left and right. For example, if we are interested in pairs of accounts involved in a chain of large transfers
of length between 2 and 5 we could write

MATCH (a:Account)

[()−[t:Transfer]−>() WHERE t.amount>1M]{2,5}

(b:Account)

Variable references are categorized as either singleton or group. For example, in predicates such as
x.isBlocked='yes', the variable x is referenced as a singleton. Intuitively, a reference is group if you
have to cross a quantifier to get from the reference to the declaration of the variable. To explain this, consider
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a modification of the above example where we are only interested in chains of transfers with the total value
over 10 million:

MATCH (a:Account)

[()−[t:Transfer]−>() WHERE t.amount>1M]{2,5}

(b:Account)

WHERE SUM(t.amount)>10M

In this example, the predicate in the edge pattern references t as a singleton, since one does not have to
cross the quantifier {2,5} to reach its declaration which is in the same edge pattern. The predicate in the
final WHERE clause, used here as a postfilter, references t in the aggregate SUM. In this location one has to
cross the quantifier to reach the declaration of t, making it a group reference.

4.5 Path Pattern Union & Multiset Alternation

In GPML there are two forms of union, called path pattern union (with set semantics) andmultiset alternation
(withmultiset semantics). Path pattern union is indicated by an infix vertical bar, whereasmultiset alternation
uses |+| as its infix operator. An example of path pattern union is

MATCH (c:City) | (c:Country)

In the sample graph, there are two Country nodes (c1 and c2) and one City node (c2). Thus the first
operand produces two results c ↦→ c1 and c ↦→ c2 and the second operand produces the single result
c ↦→ c2. Thus the operands produce a duplicate binding to c2, which will be reduced to a single solution in
the final result, which has one binding to c1 and one binding to c2.
Rewriting this example with multiset alternation, we have

MATCH (c:City) |+| (c:Country)

This pattern returns three results, one result binding c1 and two results binding c2.
Another example of deduplication using path pattern union is overlapping quantifiers, as in this example:

MATCH −>{1,5} | −>{3,7}

The two quantifiers overlap between 3 and 5; consequently when the results are deduplicated the query is
equivalent to:

MATCH −>{1,7}

Using multiset alternation would not deduplicate the overlap in the quantifiers.
While this particular example is easy to deduplicate at compile time, a general algorithm to simplify

arbitrary path pattern unions in the language that includes WHERE clauses, restrictors, nested quantifiers,
etc., is not so clear and is likely to have a very high complexity, making it an unattractive option for the
implementer. Run-time deduplication is also expensive, and from a user perspective, it may be acceptable
to get a result that is a multiset, rather than waiting a long time for a set result. This is akin to the SQL
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situation with UNION ALL chosen for its speed over UNION DISTINCT guaranteeing set semantics. For these
reasons GPML provides both path pattern union and multiset alternation.

4.6 Conditional Variables

Consider the following query.

MATCH [(x)−>(y)] | [(x)−>(z)]

Node variable x will be bound if either operand of the path pattern union binds. Variables y and z, on the
other hand, are only bound by one operand but not by the other. We say that x is an unconditional singleton
whereas y and z are conditional singletons.

Implicit equi-joins on conditional singletons are disallowed, because they lack intuitive semantics. For
instance, in the illegal query

MATCH [(x)−>(y)] | [(x)−>(z)], (y)−>(w)

does the fact that y must bind in the second path pattern imply that y must bind in the path pattern union,
thereby effectively excluding the results of the second operand? Implicit equi-joins on conditional singletons
were forbidden in order to eliminate such doubts.

Conditional singletons are also introduced by the question mark operator, a postfix operator similar to
the quantifiers; for example

MATCH (x) [−>(y)]?

In most “regex” tools, the postfix question mark operator is equivalent to the quantifier {0,1}. In GPML
the two operators have almost the same semantics. The difference is that the quantifier {0,1} exposes all
variables as group, whereas the question mark operator exposes singletons as conditional singletons. This
distinction was made so that query-generating tools can solicit upper and lower bounds for a quantifier
from the user without having to watch for {0,1} as a special case.
To provide an example of the use of conditional variables in our running example, consider a query

asking for accounts from which money was transferred to either a blocked account or an account with a
login from a blocked phone. It could be written as path pattern union:

MATCH [(x:Account)−[:Transfer]−>(y:Account WHERE y.isBlocked='yes')] |

[(x:Account)−[:Transfer]−>()−[:hasPhone]−(p WHERE p.isBlocked='yes')]

Alternatively, one can use the question mark operator:

MATCH (x:Account)−[:Transfer]−>(y:Account) [−(:hasPhone)−(p)]?

WHERE y.isBlocked='yes' OR p.isBlocked='yes'

If the optional part of the pattern is not matched, then the condition p.isBlocked=’yes’ is not true,
and thus the account must be blocked to ensure that the condition in WHERE is true.
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4.7 Graphical Predicates

In addition to familiar predicates such as comparison (e.g., equal to, greater than, etc.) and IS NULL, GPML
specifies some predicates relevant to graphs (applicable to singleton variable references).

Many of the edge patterns are ambiguous about the orientation of an edge. For example, -[e]- matches
a directed edge pointing either left or right, or an undirected edge. The user may wish to interrogate the
orientation of the edge bound to e. For this, GPML provides the following predicates:

e IS DIRECTED is true if e is bound to a directed edge;
s IS SOURCE OF e is true if s is bound to the source of e;
d IS DESTINATION OF e is true if d is bound to the target of e.

SQL/PGQ is not able to use the equals sign to test for equality of element references, because p=q is
interpreted as an equality test on two column values, therefore p and q cannot be interpreted as element
references. GQL, on the other hand, will permit such equality tests of element references. To provide a
portable way to test equality of element references, GPML provides the following predicates:

• SAME(p, q, ...): test whether all element references in the list are bound to the same graph
element.

• ALL_DIFFERENT(p, q, ...): test whether the element references in the list are pairwise distinct.

The element references listed in SAME or ALL_DIFFERENT must be unconditional singletons because the
semantics of such expressions for conditional singletons would be ambiguous.

5 ASSURING TERMINATION

Written without any restrictions, GPML queries may not terminate as they will return infinitely many
matches. Consider for example,

MATCH p = (a WHERE a.owner='Dave')−[t:Transfer]−>*

(b WHERE b.owner='Aretha')

It asks for paths with any number of transfers between the account owned by Dave and the account owned
by Aretha. If evaluated over the graph of Figure 1, this query would have an infinite number of matches,
since the path matched by p could include a Transfer loop (e.g., path(a3,t7,a5,t8,a1,t1,a3)) any
number of times.
To prevent this behaviour, GPML queries must demonstrably terminate; in particular, the number of

matches must be finite. To achieve this, GPML uses restrictors and selectors. Every unbounded quantifier
(such as * above) must be contained in the scope of either a restrictor or a selector or both.

5.1 Restrictors and Selectors

Restrictors. A restrictor is a path predicate (that is, it imposes a condition stating which paths are
acceptable) such that the number of matches cannot be infinite. For instance, TRAIL forbids the matched
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path to repeat edges; there are only finitely many edges, therefore there are only finitely many paths with
no repeated edges in a graph. Restrictors are listed in Figure 7. Restrictors may be placed either at the head
of a path pattern, or at the head of a parenthesized path pattern. If the above example is written as

MATCH TRAIL p = (a WHERE a.owner='Dave')−[t:Transfer]−>*

(b WHERE b.owner='Aretha')

then, executed on the graph of Fig. 1, returns three bindings for p:

path(a6,t5,a3,t2,a2)

path(a6,t6,a5,t8,a1,t1,a3,t2,a2)

path(a6,t5,a3,t7,a5,t8,a1,t1,a3,t2,a2)

Note that the last path repeats the node a3; it is allowed by TRAIL but would be forbidden by the restrictor
ACYCLIC. Note also that

path(a6,t5,a3,t2,a2,t3,a4,t4,a6,t5,a3,t2,a2)

which traverses the Transfer cycle starting and ending in a6, is not a trail, and is thus not returned.

Selectors. A selector is an algorithm that conceptually partitions the solution space on the endpoints and
selects a finite set of matches from each partition. For instance, ALL SHORTEST keeps all paths having the
same shortest length within each partition defined by a pair of endpoints for which any solution exists.
Note that the shortest length can differ from partition to partition. Selectors are listed in Figure 8. Selectors
may only be placed at the head of a path pattern. As an example, applying a selector to the example from
the beginning of Section 5 can be done as follows:

MATCH ANY SHORTEST

p = (a WHERE a.owner='Dave')−[t:Transfer]−>*(b WHERE b.owner='Aretha')

Here we wish only one of the shortest paths between the nodes a6 and a2. In this case, there is only one
shortest path between these nodes and thus p is bound to path(a6,t5,a3,t2,a2).

Combining restrictors and selectors. At the conceptual level, restrictors can be seen as operating during
pattern matching while selectors operate afterwards. 5 That is, if combined, selectors are always applied
after restrictors. For instance, consider the query:

MATCH ALL SHORTEST TRAIL

p = (a WHERE a.owner='Dave')−[t:Transfer]−>*

(b WHERE b.owner='Aretha')−[r:Transfer]−>*(c WHERE c.owner='Mike')

5This is of course only an intuitive description: in the case of selectors, the engine will not compute an infinite number of matches and
then only keep some. However, to make the specification declarative ("tell me what you want, not how to get it") the specification
indeed describes how the infinite set is defined and then which finite selection from it should be returned.
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Keyword Description

TRAIL No repeated edges.
ACYCLIC No repeated nodes.
SIMPLE No repeated nodes, except that the first and last nodes may be the same.

Fig. 7. Table of restrictors

It selects the shortest paths among the trails going from node a6 to node a3 and passing through a2. It
returns two bindings for p:

path(a6,t5,a3,t2,a2,t3,a4,t4,a6,t6,a5,t8,a1,t1,a3)

path(a6,t6,a5,t8,a1,t1,a3,t2,a2,t3,a4,t4,a6,t5,a3)

The path path(a6,t5,a3,t2,a2,t3,a4,t4,a6,t5,a3) is not considered: it is shorter but it is not a trail.
This difference has one notable consequence. Consider a query 𝑄 with no selector or restrictor, and

assume that 𝑄 has matches. Then, adding a selector to 𝑄 might reduce the number of matches, but the
resulting query will always have at least one match. On the other hand, adding a restrictor to 𝑄 might yield
a query with no matches at all.
For example, consider the query

MATCH (p:Account WHERE p.owner='Natalia')−>{1,10}

(q:Account WHERE q.owner='Mike')−>{1,10}

(r:Account WHERE r.owner='Scott')

In the example graph, path(a5,t8,a1,t1,a3,t7,a5,t8,a1) is a solution to this query, and in fact it is a
shortest solution in the partition defined by the endpoints (a5,a1). However, it repeats the edge t8, so it fails
the restrictor TRAIL (as well as SIMPLE and ACYCLIC. Thus adding a selector such as ALL SHORTEST will
still have a result, whereas adding a restrictor such as TRAIL will have no result.

5.2 Prefilters and Postfilters of Selectors

When working with selectors, it is important to differentiate prefilters from postfilters. A prefilter is a
predicate applied before selection; a postfilter is a predicate applied after selection. In GPML, postfilters are
expressed in the final WHERE clause, whereas prefilters are expressed in element patterns or parenthesized
path patterns within the selector’s path pattern.

For example, suppose we want to find the shortest path from Scott to Charles passing through an account
that is blocked:

MATCH ALL SHORTEST (p:Account WHERE p.owner='Scott')−>+

(q:Account WHERE q.isBlocked='yes')−>+

(r:Account WHERE r.owner='Charles')
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Keyword Description

ANY SHORTEST Selects one path with shortest length from each partition. Non-deterministic.
ALL SHORTEST Selects all paths in each partition that have the minimal length in the partition.

Deterministic.
ANY Selects one path in each partition arbitrarily. Non-deterministic.
ANY 𝑘 Selects arbitrary 𝑘 paths in each partition (if fewer than 𝑘 , then all are retained).

Non-deterministic.
SHORTEST 𝑘 Selects the shortest 𝑘 paths (if fewer than 𝑘 , then all are retained). Non-

deterministic.
SHORTEST 𝑘 GROUP Partitions by endpoints, sorts each partition by path length, groups paths with

the same length, then selects all paths in the first 𝑘 groups from each partition
(if fewer than 𝑘 , then all are retained). Deterministic.

Fig. 8. Table of selectors

Note that all predicates in this example are expressed in element patterns, therefore they are all prefilters.
The only solution is the path(a1,t1,a3,t2,a2,t3,a4, t4,a6,t5,a3,t7,a5), in which q is bound to a4

(Jay, the only blocked account).
It would be a mistake to place the predicate on q in the final WHERE clause, like this:

MATCH ALL SHORTEST (p:Account WHERE p.owner='Scott')−>+

(q:Account)−>+

(r:Account WHERE r.owner='Charles')

WHERE q.isblocked='yes'

The shortest path from Scott to Charles is path(a1,t1,a3,t7,a5) with q bound to a3, which will be the
result of the selector, but this result is then filtered out by the final WHERE clause because a3 is not blocked.
Consequently this query finds no result. The original problem statement had the predicate “passing through
an Account that is blocked” as a prefilter, therefore the query placing it as a postfilter is incorrect.

5.3 Aggregates of Unbounded Variables

There is another subtle way of having non-terminating queries that must be ruled out by GPML. Consider
this query:

MATCH ALL SHORTEST [ (x)−[e]−>*(y) WHERE COUNT(e.*)/(COUNT(e.*)+1)>1 ]

Note carefully that the predicate is within a parenthesized path pattern, therefore it is a prefilter. As a
prefilter, the group variable e has not yet passed through the selector ALL SHORTEST; consequently the
predicate sees e as effectively unbounded.
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If a match has 0 edges, the quotient in the WHERE clause is 0; if it has 1 edge, the quotient is 1/2; if it
has 2 edges, the quotient is 2/3; etc. The quotient can never exceed 1. This is easily seen by human reason,
but generalizing this observation to any aggregate on an unbounded element reference is not obvious.
For example, suppose the aggregate were AVG(e.x); the behavior of AVG on an unbounded collection of
property references is not easy to anticipate. A few aggregates (MAX, MIN, COUNT) are monotonic, which
might permit reasoning on simple expressions such as linear combinations, but it is currently expected that
GPML will simply prohibit all predicates on unbounded groups to ensure termination.
The query can be made acceptable – i.e., turned into a terminating one – in several ways. First, the

predicate might be converted to a postfilter, like this:

MATCH ALL SHORTEST (x)−[e]−>*(y)

WHERE COUNT(e.*)/(COUNT(e.*)+1) > 1

Note that all we did was remove the square brackets, which moved the predicate out of the path pattern
and into the final WHERE clause. This made e effectively bounded. Of course any results produced by the
selector will be filtered out by the postfilter; therefore the result of this query is empty. However, turining the
predicate into a postfilter and using a selector first ensures the finiteness of the result, and thus termination.

A different approach is to retain the prefilter but insure that eis effectively bounded within the selector.
Certainly changing the quantifier to have a static upper bound such as {0,10} would do. Alternatively a
restrictor could be used, like this:

MATCH ALL SHORTEST [ TRAIL (x)−[e]−>*(y) WHERE COUNT(e.*)/(COUNT(e.*)+1) > 1 ]

Reasoning about this pattern we can see that the result will be empty. An implementation is of course
free to implement algorithms that detect some queries that are unsatisfiable and thereby terminate quickly.
Alternatively, the implementation could actually tackle the query as written and eventually arrive at the
conclusion that the result set is empty.

6 EXECUTION MODEL BY EXAMPLE

We illustrate GPML evaluation using a step-by-step example. The output of the example query is a set, or
a multiset, of reduced path bindings. A path binding is a sequence of elementary bindings, which in turn
are pairs of a variable and a graph element. A variable is either a variable that occurs in the pattern, or
a new variable corresponding to an anonymous node or edge. Each variable, anonymous or not, can be
further indexed if it appears under the scope of a quantifier: the index indicates the iteration in which it
appears. For the same variable a under the scope of a quantifier {1,} we can have variables a1, a2, a3, . . .
that correspond to different iterations of the quantifier. Obtained path bindings are then reduced, stripping
all annotations, and deduplicated, to remove duplicates. If multiple path patterns appear after MATCH, the
process is repeated for all of them, and the result is joined on identical singleton variables, and possibly
further filtered if there is a WHERE clause. Selectors and restrictors are used to ensure that the output is
finite in the presence of quantifiers.
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The key steps in the pattern matching execution model, as reflected in the forthcoming standard, are as
follows.

Normalization GPML provides syntactic sugar to help write patterns; this step puts patterns in a
canonical form.

Expansion The pattern is expanded into a set of rigid patterns without any kind of disjunction. In-
tuitively, a rigid pattern is one that could be expressed by an SQL equi-join query. Formally, it is a
pattern without quantifiers, union or multiset alternation. The expansion also annotates each rigid
pattern to enable tracking the provenance of the syntax constructs.

Rigid-pattern matching For each rigid pattern, one computes a set of path bindings. Each elemen-
tary construct of the rigid pattern is computed independently and then the results are joined together
on variables with the same name.

Reduction and deduplication The path bindings matched by the rigid patterns are reduced by
removing annotations. The reduced path bindings are then collected into a set. This implies a dedupli-
cation step since different path bindings might become equal after reduction, and only one copy is
kept.

6.1 Running Example

The remainder of this section gives a detailed account of how pattern matching is computed for the following
query.

MATCH TRAIL (a WHERE a.owner='Jay')

[−[b:Transfer WHERE b.amount>5M]−>]+

(a) [−[:isLocatedIn]−>(c:City) |

−[:isLocatedIn]−>(c:Country)]

This query finds sequences of transfers of arbitrary length that start and end with account owner Jay, as
well as the location (city or country) of Jay. To ensure termination, the TRAIL mode is used.

6.2 Normalisation

The first step of normalisation makes each sequence of node and edge patterns consistent. More precisely,
each such sequence must start and end with a node pattern; and alternate between node and edge patterns.
In addition, syntactic sugar is expanded, e.g., quantifier + is replaced by {1,}. Hence, the pattern becomes:

(a WHERE a.owner='Jay')

[()−[b:Transfer WHERE b.amount>5M ]−>()]{1,}

(a) [()−[:isLocatedIn]−>(c:City) |

()−[:isLocatedIn]−>(c:Country)]
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We then introduce a fresh variable into each anonymous node and edge pattern (that is, a pattern that is
not assigned to a variable). The fresh node and edge variables are denoted by □𝑥 and −𝑥 , respectively, for
some index 𝑥 . The pattern then becomes

(a WHERE a.owner='Jay')

[(□
𝑖
)−[b:Transfer WHERE b.amount>5M]−>(□

𝑖𝑖
)]{1,}

(a)[[(□
𝑖𝑖𝑖
)−[−

𝑖
:isLocatedIn]−>(c:City)] |

[(□
𝑖𝑣
)−[−

𝑖𝑖
:isLocatedIn]−>(c:Country)]]

6.3 Expansion

Expansion turns the pattern into a set of rigid patterns, which fix the number of iterations for each quantifier
and a disjunct for each union or alternation. In our query, this amounts to choosing a disjunct in the union
|, and expanding the quantifier {1,}. While unbounded quantifiers such as {1,} make the set infinite,
techniques of Section 5 will make the evaluation feasible. The following pattern is one possible expansion,
where we expanded the quantifier once and chose the left side of the path pattern union:

(a WHERE a.owner='Jay')

(□1
𝑖
)−[b1:Transfer WHERE b1.amount>5M]−>(□1

𝑖𝑖
)

(a) (□
𝑖𝑖𝑖
)−[−

𝑖
:isLocatedIn]−>(c:City)

In general, one such pattern is obtained for each 𝑛 ∈ N \ {0} and each ℓ ∈ {City, Country}: we expand
the quantifier 𝑛 times, and choose either the City or the Country option of the path pattern union. Such a
pattern is denoted by \𝑛,ℓ . As an example, the pattern below is \𝑛,City.

(a WHERE a.owner='Jay')

(□1
𝑖
)−[b1:Transfer WHERE b1.amount>5M]−>(□1

𝑖𝑖
)

(□2
𝑖
)−[b2:Transfer WHERE b2.amount>5M]−>(□2

𝑖𝑖
)

.

.

.
.
.
.

.

.

.

(□𝑛
𝑖
)−[b𝑛:Transfer WHERE b𝑛.amount>5M]−>(□𝑛

𝑖𝑖
)

(a) (□
𝑖𝑖𝑖
)−[−

𝑖
:isLocatedIn]−>(c:City)

The prototype \𝑛,Country is similar, only the last line changes.
Each group variable is marked by a superscript, corresponding to the iteration of the quantifier the

variable is in.
The next step is a clean-up: every node pattern with an anonymous variable is deleted if it is adjacent to

another node pattern. The resulting pattern is denoted by 𝜋𝑛,ℓ . For instance, 𝜋𝑛,City is:
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(a WHERE a.owner='Jay')

−[b1:Transfer WHERE b1.amount>5M]−>(□1
𝑖𝑖
)

−[b2:Transfer WHERE b2.amount>5M]−>(□2
𝑖𝑖
)

.

.

.
.
.
.

.

.

.

−[b𝑛−1:Transfer WHERE b𝑛−1.amount>5M]−>(□𝑛−1
𝑖𝑖

)

−[b𝑛:Transfer WHERE b𝑛.amount>5M]−>(a)

−[−
𝑖
:isLocatedIn]−>(c:City)

6.4 Computation of Path Binding

The matches of rigid patterns are computed independently. The result of the computation is called a path
binding, which in turn is a sequence of elementary bindings. An elementary binding is a pair of a variable
and a graph element. It is convenient to portray these pairs as tables with two rows: the first row contains
the variables, the second row contains the graph elements, and each column is an elementary binding. An
example path binding is

a b1 □1𝑖𝑖
a4 t4 a6

Consider the rigid path pattern 𝜋4,City. Each node-edge-node pattern is computed independently using
the input graph, and then equi-joined on variables with the same name. The first node-edge-node part
of 𝜋4,City is

(a WHERE a.owner='Jay')−[b1:Transfer WHERE b1.amount>5M]−>(□1
𝑖𝑖
)

In the graph it matches only one path binding, the one shown above. The second node-edge-node part is

(□1
𝑖𝑖
)−[b2:Transfer WHERE b2.amount>5M]−>(□2

𝑖𝑖
)

and the path bindings it matches are given in the left column below. The path bindings matched by the
third, fourth and fifth parts of 𝜋4,City are given in the three other columns.

□1𝑖𝑖 b
2 □2𝑖𝑖 □2𝑖𝑖 b

3 □3𝑖𝑖 □3𝑖𝑖 b
4 a a −𝑖 c

a6 t5 a3 a6 t5 a3 a6 t5 a3 a4 li4 c2

a3 t2 a2 a3 t2 a2 a3 t2 a2 a6 li6 c2

a2 t3 a4 a2 t3 a4 a2 t3 a4 a3 li3 c1

a2 t3 a4 a2 t3 a4 a2 t3 a4 a2 li2 c2

a3 t7 a5 a3 t7 a5 a3 t7 a5 a5 li5 c1

a5 t8 a1 a5 t8 a1 a5 t8 a1 a1 li1 c1

a1 t1 a3 a1 t1 a3 a1 t1 a3

Note that the matches for each part (i.e., each column above) is computed independently.
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The labels are matched and the WHERE clauses are checked at this stage. Thus, the edge (a6,t6,a5) does
not appear anywhere above as it fails the WHERE condition, nor does the edge (ip1,sip1,a1) since it has
neither the Transfer nor the isLocatedIn label.
Then the path bindings are concatenated by an implicit equi-join on variables with the same name. In

the end there is only one path binding for 𝜋4,City given below.

a b1 □1𝑖𝑖 b
2 □2𝑖𝑖 b

3 □3𝑖𝑖 b
4 a −𝑖 c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

Note that variables with different subscript or superscript (e.g., b1 and b2) are not joined on.
Restrictors are also checked at this point. For example, 𝜋8,City has no match. Indeed, a path binding

computed by the above join would use the loop (t4,t5,t2,t3) twice, and thus would not be a trail.
In the end, 𝜋𝑛,ℓ never has any matches unless 𝑛 = 4 (as presented above) or 𝑛 = 7. The patterns 𝜋4,City,

𝜋4,Country, 𝜋7,City and 𝜋7,Country each have one match given below.

a b1 □1𝑖𝑖 b
2 □2𝑖𝑖 b

3 □3𝑖𝑖 b
4 a −𝑖 c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b1 □1𝑖𝑖 b
2 □2𝑖𝑖 b

3 □3𝑖𝑖 b
4 a −𝑖𝑖 c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b1 □1𝑖𝑖 b
2 □2𝑖𝑖 b

3 □3𝑖𝑖 b
4 □4𝑖𝑖 b

5 □5𝑖𝑖 b
6 □6𝑖𝑖 b

7 a −𝑖 c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2

a b1 □1𝑖𝑖 b
2 □2𝑖𝑖 b

3 □3𝑖𝑖 b
4 □4𝑖𝑖 b

5 □5𝑖𝑖 b
6 □6𝑖𝑖 b

7 a −𝑖𝑖 c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2

The latter two path bindings are trails, but are not acyclic, since the node a3 appears twice. Thus, they
would have been filtered out if we had used the restrictor ACYCLIC instead of TRAIL.

6.5 Reduction and Deduplication

Reduction of path bindings strips variables from their annotations (subscripts and superscripts). In particular,
it merges together all variables introduced in anonymous element patterns. The result of reduction in our
example is show below:

a b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b □ b □ b □ b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2

a b □ b □ b □ b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2
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All reduced path bindings are then collected together in a set. That is, at this point, deduplication occurs. If
two different rigid patterns yield the same reduced path binding, then a single copy of the path binding is
kept. Thus, the final result has only two distinct reduced path bindings.

a b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

a b □ b □ b □ b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t7 a5 t8 a1 t1 a3 t2 a2 t3 a4 li4 c2

The consequence of this deduplication is that our running query is equivalent to:

MATCH TRAIL

(a WHERE a.owner='Jay') [−[b:Transfer WHERE b.amount>5M]−>]+

(a)−[:isLocatedIn]−>(c:City|Country)

Hence, a user can turn a disjunction in the label expression into a path pattern union.

Having finished this detailed example, we now look at some other features of the pattern matching
algorithm.

Using selectors. After deduplication, any selectors (if present) would be applied. Assume that in our
running example we replaced the restrictor TRAIL with the selector ALL SHORTEST:

MATCH ALL SHORTEST

(a WHERE a.owner='Jay') [−[b:Transfer WHERE b.amount>5M]−>]+

(a) [−[:isLocatedIn]−>(c:City) | −[:isLocatedIn]−>(c:Country)]

While the number of reduced path bindings would be infinite (since Transfer loops may be taken arbitrarily
many times without the trail restriction), the selector would keep the shortest reduced binding path for
each pair of endpoints (in our case, a4 and c2), thus returning

a b □ b □ b □ b a − c

a4 t4 a6 t5 a3 t2 a2 t3 a4 li4 c2

Multiple patterns. When more than one pattern, separated by commas, appear after MATCH, each path
pattern is solved separately, resulting in finitely many solutions to each path pattern. At this point the cross
product of the sets of path bindings is formed, and then filtered on the basis of implicit equi-joins on the
global singleton variables and the final WHERE clause.

Path pattern union vs multiset alternation. The consequence of using deduplication is that our run-
ning query with path pattern union is equivalent to a query where the last edge pattern is replaced by
(a)−[:isLocatedIn]−>(c:City|Country).

To avoid deduplication and to maintain four reduced path bindings in the output, one could use multiset
alternation instead, replacing the pattern by

(a) [−[:isLocatedIn]−>(c:City) |+| −[:isLocatedIn]−>(c:Country)]
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Graph pattern

Graph DB

GPML processor output

SQL/PGQ table

GQL

table

graph view

new graph

Fig. 9. Conceptual diagram of GPML, SQL/PGQ and GQL

6.6 Query Outputs

How should the result of pattern matching be represented to produce the output of a query? We have seen
that executing a GPML statement results in a set of path bindings. Presenting this to the user depends on
the host language, SQL/PGQ or GQL. Figure 9 shows the relationship between GPML and its two host
languages.
The GPML processor is a software component within an implementation of either SQL/PGQ or GQL.

The two inputs to the GPML processor are the graph pattern and the graph database. The output of the
GPML processor is consumed by the host to produce the final output requested by the user. For SQL/PGQ,
it will be a table, obtained from the computed reduced path bindings.
For GQL, the output could be more varied, including a graph view, or new graph. Indeed, each path

binding defines a subgraph of the input graph given by its nodes and edges, together with annotations, given
by variables assigned to them in the path binding. This opens up more possibilities for structuring query
outputs. While in the initial release of the GQL standard, outputs will be in line with those of SQL/PGQ, it
is anticipated that in the future more advanced options will be added.

7 LOOKING FORWARD

In this section we outline the ongoing work on the development of the SQL/PGQ and GQL standards and
list several research problems that have arisen in the process of designing the GPML.

7.1 Standards Process: Steps and Timing

The SQL/PGQ and GQL standards are being developed in the international standards committee ISO/IEC
JTC1 SC32 WG3 "Database Languages" with input from various national bodies. In particular, the US
committee INCITS DM32 "Data Management and Interchange" and DM32’s SQL/PGQ and GQL expert
groups review all significant US change proposals before they are considered by WG3.
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Date SQL/PGQ GQL

2017 Work started
2018 Work started
2021-02-07 CD Ballot End
2022-02-20 CD Ballot End
2022-12-04 DIS Ballot End
2023-01-30 Final Text to ISO
2023-03-13 SQL/PGQ IS Published
2023-05-21 DIS Ballot End
2023-07-30 Final Text to ISO
2023-09-10 GQL IS Published

Fig. 10. SQL/PGQ and GQL Timeline

The ISO/IEC JTC1 process has a number of steps with ballots to transition between the stages. The
high-level overview is:

• Initial effort – develop and expand the draft;
• Committee Draft (CD) Ballot – 12 weeks;
• Draft International Standard (DIS) Ballot – 20 weeks;
• International Standard (IS) published.

After each ballot, time is needed to resolve the comments submitted.
The current schedule for the progression of the SQL/PGQ and GQL standards is shown in Figure 10.6 By

the time the DIS ballot starts, the technical specification is fairly stable. Since GPML is the same for GQL
and SQL/PGQ, GQL GPML will be fairly stable when SQL/PGQ begins DIS ballot. As SC32 WG3 makes
progress on the drafts, it accumulates Language Opportunities (LOs). LOs are capabilities that are potentially
useful, but are not yet ready for the current versions of the draft standards. Below we provide a sample of
LOs pertaining to GPML:

• Constraining a graph pattern through the introduction of isomorphic match modes: for example, an
edge-isomorphic match requires all edges matched across all constituent path patterns in the graph
pattern to differ from each other.

• Queries on multiple graphs in a single concatenated MATCH.
• Path macros for multiple use in a query.
• Outputting the interleaving of bindings in nested quantifiers, such as [[(p)−>(q)]* −>(r)]*.
• Cheapest path search, by adding weights to edges.
• Exporting a graph element or path binding to JSON.

6The schedule depends on work that has not been completed and so could change.
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GQL also has LOs that go beyond those common with SQL/PGQ. Examples include property graph keys
and constraints [4], system versioned graphs, and stored queries, procedures, and functions. As discussed
in Section 6.6, formats such as JSON could potentially be used for returning a raw multi-path binding.

7.2 ResearchQuestions

There are many open questions related to GPML. Given the novelty of the language, and its goal as the
future standard of querying property graphs, it is important to full understand the expressiveness and
complexity of its various fragments, in the spirit of many decades of research tradition in database query
languages [5].

Some of the most intriguing questions concern processing unbounded paths. For instance, the innocently
looking query below may not terminate.

MATCH (x)−[e]−>*(y)

WHERE AVG(e.a)<1

KEEP ANY SHORTEST

With a sufficiently rich pattern language, termination will become an undecidable problem. A natural
question is then whether there are interesting classes of predicates on aggregates of group variables for
which termination can be guaranteed, or efficiently checked at compile time.

There are many questions related to the implementation of GPML. How does one solve efficiently shortest
path queries with arbitrary regular expressions, not just −>* as in Dijkstra’s algorithm? Can we handle
more complex optimization problems, such as maximizing an objective function subject to an upper bound
on the length or cost of the path (e.g., “What is the most scenic route to the airport in at most 2 hours?”).
Another direction is to consider fully recursive graph patterns, permitting multiple self-references, not

just a single one like in the * operator. Such patterns might be used to search for trees and other structures
more complex than paths. Is there intuitive syntax to express such patterns? What real-world problems
might they address? What is the cost of adding them to GPML?

Yet another line of future works concerns extended capabilities and different uses of graph patterns. One
of them concerns extending the language to capture the temporal aspect of data [39, 45]. A different line
of work is to understand the underpinnings of languages defined by paths in property graphs, which are
more than traditional regular languages over a finite alphabet, as they include property values coming from
potentially infinite domains. Simple models for this based on data words [11] have already been studied
in [31], but they disregarded operations on data, such as arithmetic or string operations. In an opposite
direction, we may look at restrictions that will be useful in different applications, such as for example
updating property graphs, which tends to be problematic [25] with a full power of pattern matching.
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8 RELATEDWORK

GPML is the culmination of a long evolution of graph query languages, including contributions in research,
standards and practice, too rich to survey comprehensively here. We discuss related work only in broad
strokes and refer the reader to existing surveys [3, 49].
GPML’s graph patterns extend the celebrated language of Conjunctive Regular Path Queries (CRPQ)

introduced in [17] and studied in a plethora of follow-up work (e.g. [9, 10, 14–16, 22]). CRPQs consist
of variables (typically binding only to individual vertices and edges), path patterns specified by regular
expressions over the edge labels, and comma-separated lists thereof. In their first incarnation, CRPQs
operated over property-less graphs, but subsequent work considered graphs with data annotations (e.g. [31]),
which are ancestors of today’s property graphs. Notable early graph query languages derived from CRPQs
include G [17], StruQL [21], Lorel [1] and WebSQL [36]. Syntactically, GPML graph patterns extend CRPQs
by introducing group variables and variables binding to entire paths. The latter allows GPML to treat
paths as first-class citizens, as advocated in the G-CORE proposal [2]. Semantically, graph patterns extend
CRPQs by supporting a finer-grained notion of match, which permits binding variables to paths, using
multiplicity-sensitive aggregation such as sum, count, and average, and restricting the number of possible
returned paths. These features are original contributions of GPML.
The simple path restrictor was already present in the first paper that introduced CRPQs [17]. However,

after it was discovered that the evaluation problem for (C)RPQs with simple path and trail restrictors
has a high computational complexity [38], they were put on hold by the research community. They were
resurrected by practical query languages (e.g., Cypher [23] and early versions of SPARQL 1.1. [27]), which
generated another wave of fundamental research [7, 34, 35] that sheds a clearer light on the relationship
between queries that appear in real-life and the high complexity of simple paths and trails in the worst case.
GPML patterns share many features with pattern standards developed for different data models. XML

documents [13] correspond to tree-shaped, vertex-labeled graphs. The XPath [43] World-Wide Web Con-
sortium (W3C) standard describes patterns that roughly correspond to GPML path patterns that can be
combined into tree-shaped structures; the use of variables is limited. The XQuery [44] standard supports
comma-separated lists of XPath patterns, stitched together with node variables. Like in GPML, XQuery
matches are discriminated by the path bindings they correspond to, but the limited use of quantifiers and
the tree shape of the graph avoid the query non-termination problem. Knowledge Graphs [28] corresponding
to the RDF standard [18], also admit pattern-based querying, for instance using the SPARQL W3C standard
query language [27]. Patterns consist once more of variables (binding to the RDF counterpart of nodes
and edges) and regular path expressions. To deal with cycles, and potentially infinite number of matching
paths [6, 32], SPARQL deploys the “endpoint semantics” of paths, and will only return start/end point of a
path, instead of the matching path itself.
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