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 27 

Abstract 28 

Tropical peatlands are among the most carbon dense ecosystems but land-use change has 29 

led to the loss of large peatland areas, associated with substantial greenhouse gas 30 

emissions. In order to design effective conservation and restoration policies, maps of the 31 

location and carbon storage of tropical peatlands are vital. This is especially so in countries 32 

such as Peru where the distribution of its large, hydrologically intact peatlands is poorly 33 

known. Here, field and remote sensing data support model development of peatland extent 34 

and thickness for lowland Peruvian Amazonia. We estimate a peatland area of 62,714 (5th 35 

and 95th confidence interval percentiles 58,325–67,102 respectively) km2 and carbon stock 36 

of 5.4 (2.6–10.6) Pg C, a value approaching the entire above-ground carbon stock of Peru 37 

but contained within just 5% of its land area. Combining the map of peatland extent with 38 

national land-cover data we reveal small but growing areas of deforestation and associated 39 

CO2 emissions from peat decomposition, due to conversion to mining, urban areas, and 40 

https://sciprofiles.com/profile/167417


agriculture. The emissions from peatland areas classified as forest in 2000 represent 1–4% 41 

of Peruvian CO2 forest emissions between 2000 and 2016. We suggest that bespoke 42 

monitoring, protection and sustainable management of tropical peatlands are required to 43 

avoid further degradation and CO2 emissions 44 

Main text 45 

While tropical peatlands are known to be among the most carbon-dense ecosystems in the 46 

tropics1,2, their absolute contribution to the global carbon cycle remains highly uncertain, 47 

with recent estimates placing their total below-ground carbon storage between 105 (70–48 

130) and 215 (152–288) Pg C3,4. They face various threats including land-use and climate 49 

change4,5. Deforestation and/or drainage of peatlands inhibit the accumulation of organic 50 

matter and promotes rapid decomposition of peat, releasing large quantities of the 51 

greenhouse gasses (GHG) CO2 and N2O to the atmosphere6,7,8,9,10. Moreover, drained 52 

peatlands are prone to fires which lead to large pulses of emissions11. The experience of 53 

Indonesia provides a cautionary tale: in 1997 alone, it was estimated that between 0.81 and 54 

2.57 Pg C were released as a result of peat and vegetation fires, which at the time equated 55 

to 13–40% of global fossil fuel emissions12. Indeed, the peatlands of Southeast Asia have 56 

already been severely damaged with almost 80% cleared and drained13. In contrast, the 57 

largest known peatland areas in tropical Africa and South America are thought to remain 58 

largely intact14,15.  59 

As such, commitments to avoid further deforestation and degradation by 1) promoting 60 

conservation and sustainable management of intact peatlands and 2) restoring degraded 61 

peatlands, are essential to reducing CO2 emissions and avoiding global warming of 1.5°C or 62 

more16,17. A funding mechanism for this is potentially offered by UNFCCC initiatives, 63 

including REDD+ and wider National Determined Contributions18 to the Paris Agreement, 64 



but a necessary first step towards conservation and restoration is reliable mapping of the 65 

spatial distribution of peatlands and their carbon stocks, at scales relevant to the 66 

development of national policies. 67 

Peru has substantial known regions of hydrologically intact peatland. Previous research 68 

identified a large area in the Pastaza-Marañón Foreland Basin in northern Peru (PMFB, Fig. 69 

S1), estimating its carbon stock to be 3.14 (0.44–8.15) Pg C including above- and below-70 

ground carbon2, and a smaller area in the Madre de Dios (MDD) region of southern Peru 71 

holding an estimated 0.03 Pg C19). However, published wetland maps20,21 and visual 72 

examination of remote sensing imagery suggest that there are likely other significant 73 

peatlands in Peru whose carbon stocks remain unquantified. Even in the best-known region, 74 

the PMFB, previous mapping was based on relatively small numbers of peat thickness 75 

measurements and did not attempt to model and map the spatial variation in peat 76 

thickness2,22, one of the greatest sources of uncertainty in the below-ground carbon stock2. 77 

Rather, the total below-ground carbon stock for the PMFB was estimated by determining 78 

the area of different peat-forming vegetation classes (i.e. peatland pole forest, palm swamp 79 

and open peatland) and multiplying those areas by a mean below-ground carbon stock for 80 

each vegetation class. This approach makes several simplifying assumptions23: that these 81 

three vegetation classes are always underlain by peat, that peat thickness varies more 82 

between than within classes, and that other landcover classes (including some wetland 83 

ecosystems such as seasonally flooded forest) never overlie peat2,22. In fact, field 84 

observations indicate that these assumptions are no longer valid; in particular, peat 85 

thickness varies substantially in space, including within single vegetation classes3,23. Data-86 

driven maps that more accurately capture the spatial variation in peat thickness and carbon 87 



storage, and that cover not just selected study areas but the whole of Peruvian Amazonia, 88 

are required to support national and regional peatland conservation planning. 89 

While Peruvian peatlands are believed to remain largely intact, thus far there has been no 90 

quantitative assessment of GHG emissions resulting from landcover change. Moreover, they 91 

face varied and increasing threats including agriculture expansion, illegal mining, oil 92 

exploration, infrastructure development, and the selective felling of the female Mauritia 93 

flexuosa palm for commercial purposes15,23,24,25,26. In recognition of these threats, legislation 94 

has recently been enacted which, for the first time, mandates the explicit protection of 95 

peatlands in Peru for climate-change mitigation27. Enforcing this legislation effectively will 96 

depend on robust mapping of peatland distribution, and on knowledge of the scale and 97 

distribution of recent peatland disturbance, none of which is presently available. 98 

Here we present extensive new field observations (Fig. 1) to test whether previous evidence 99 

of a relationship between distance to peatland edge and peat thickness found in other 100 

tropical peatlands3, also applies in Peru. These data are used along with remote sensing 101 

imagery to develop the first data-driven models of peatland extent and peat thickness 102 

distribution across the whole of lowland Peruvian Amazonia (LPA). We quantify the spatial 103 

variation and total peat carbon stock of these peatlands, and associated uncertainties. 104 

Finally, we use these models, along with national data on land-cover change, to map 105 

peatland disturbance and estimate the associated CO2 emissions for the period 2000–2016.  106 



 107 

Figure 1: Distribution of the 1,128 ground reference points (GRPs) sampled for peat thickness and 108 

vegetation type data used in this study. The points include GRPs collected from 2019-2021 as part 109 

of this study (red, n = 445) as well as published GRPs from2,19,22,28 (yellow). Estimated maximum flood 110 

extent is derived from the wetlands map of ref. 20. Rivers of Strahler order ≥ 6 are shown. 111 

 112 
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 114 



Peat thickness distribution reveals a large carbon store 115 

We estimate a total peatland extent of 62,714 (58,325–67,102) km2 (Fig. S2), a mean peat 116 

thickness of 203 (179–224) cm (Fig. 2, Fig. S3) and a total below-ground carbon stock of 5.38 117 

(2.55–10.58) Pg C (Fig. S4) across the LPA. In addition to the well-known peatlands of the 118 

PMFB and MDD basin, we identify substantial areas of peatland in the Ucayali (11,110 km2; 119 

2,258 km in Tapiche sub-basin), Napo (3,670 km2) and Putumayo (2,319 km2) basins (Fig. 2, 120 

Fig. S1, Table S1). Palm swamp is the most extensive peat-forming ecosystem (46,423 km2) 121 

and therefore contains the greatest stock (3.83 Pg C), despite pole forest and open peatland 122 

having higher peat carbon densities (1,054 Mg C ha-1 and 1,061 Mg C ha-1 respectively, Table 123 

S2). We estimate that 2% of seasonally flooded forest overlies peat, equating to an area of 124 

1,951 km2 and a peat C stock of 0.11 Pg C (Table S2).  125 

The distribution of peat thickness across the LPA is highly variable, with the greatest mean 126 

peat thickness predicted in the Tigre (232 cm), Marañón (230 cm), Tapiche (234 cm), and 127 

Napo basins (223 cm) (Fig. 2, Table S1). Our models of peatland area and peat thickness 128 

distribution performed well against observations (Table S3, Fig. S5), giving confidence in our 129 

results. We ran two separate peat thickness models: one for the MDD basin and another for 130 

all the rest of the study area (which contains 97% of total peatland area). The model which 131 

excluded the MDD basin performed better (p < 0.0001; R2 = 0.66, RMSE = 66%, Fig. S5a) 132 

than the MDD model (p < 0.0001; R2 = 0.38, RMSE = 70%, Fig. S5b). We found a significant 133 

linear relationship between peat thickness and distance to peatland edge (p < 0.0001, R2 = 134 

0.13, Fig. S6a). This relationship was more significant when the data from the MDD basin 135 

were excluded (giving R2 = 0.39, p < 0.0001, Fig. S6b) and there was no significant 136 



relationship between peat thickness and distance to peatland edge within the MDD data (p 137 

> 0.1, R2 = 0.005, Fig. S6c).  138 

 139 

 140 

 141 

 142 

 143 

 144 

 145 

 146 

 147 

 148 

 149 

 150 

 151 

 152 

 153 

 154 

 155 



 156 

Figure 2: Distribution of peat thickness. a, predicted distribution of peat thickness across lowland Peruvian Amazonia estimated using random forest 157 

regression in Google Earth Engine (median of 1,000 k-folds). b, enlargement showing the Napo River. c, enlargement showing the Marañón and Tigre rivers. 158 

All maps were produced at a resolution of c. 100 m. 159 



CO2 emissions from land-use change are small but growing 160 

Our analysis of land-use change data shows that a total peatland area of 1,052 km2 was 161 

drained and/or cleared during 2000–2005, increasing to 1,667 km2 by 2013–2016 (Table 1). 162 

Annual emissions from peat decomposition also increased from 3.26 million Mg CO2 y-1 in 163 

2000–2005 to 5.11 million Mg CO2 y-1 in 2013–2016, while total estimated emissions 164 

accounted for 63.83 million Mg CO2 during the period 2000–2016 mainly due to 165 

deforestation (Fig. 3b1, 3b2). Our analysis suggests rapid increases in CO2 emissions from 166 

conversion to mining, urban areas and agriculture, increasing from 2000 to 2016 by 11 times 167 

(from 2,426 to 27,634 Mg CO2 y-1), 9 times (from 2,848 to 26,881 Mg CO2 y-1) and 5 times 168 

(from 77,807 to 411,528 Mg CO2 y-1), respectively (see Table S4 and S5 for further detail). 169 

These estimates exclude emissions from areas where natural peatland vegetation may have 170 

been misclassified in 2000 as secondary forest in the land cover dataset Geobosques 171 

(amounting to 1,353 km2, Table S5). These misclassified areas were revealed by visual 172 

inspection of a Google map image of the department of Loreto by someone with local 173 

expert knowledge (Fig. 3a). 174 

For those areas classified as forest in 2000, as accounted for in Peru’s 2016 Forest Reference 175 

Emission Level report29, emissions from peat decomposition represent 0.99–3.72% of total 176 

national CO2 emissions from Lowland Peruvian Amazonian forests (i.e. from peat 177 

decomposition and biomass loss due to gross deforestation; Table 1).  178 

 179 

 180 

 181 



Table 1: Mean CO2 emissions from peat decomposition (95% CI) and biomass loss across Lowland 

Peruvian Amazonia (LPA) for four periods between 2000 to 2016 following Geobosques dataset30. Peat 

emissions are from this study, biomass emissions are national estimates a. 

   
Period  

2000–2005 2005–2011 2011–2013 2013–2016 

Duration (years) 5 6 2 3 

Total peatland area with disturbance 

(km2) 

1,051.63 1,264.50 1,392.82 1,666.76 

Total emissions from peat decomposition 

due to disturbance (x 106 Mg CO2) 

 16.29 

(6.94, 29.16) 

 23.27 

(9.91, 41.61) 

 8.95 

(3.73, 16.03) 

 15.33 

(6.12, 27.59) 

Peatland area with disturbance for 

categories classified as forest in 2000 

(km2) 

 158.46  404.38  536.48 808.92 

Emissions from peat decomposition due 

to disturbance for categories classified as 

forest in 2000 (x 106 Mg CO2) 

 1.25 

(0.44, 2.25) 

5.33 

(1.94, 9.55) 

2.98 

(1.08, 5.35) 

6.40 

(2.21, 11.59) 

Gross deforestation throughout LPA 

areas classified as forest in 2000 (km2)a 

 2,483.38   3,945.33   1,915.72   3,303.01  

Emissions from biomass loss due to gross 

deforestation throughout LPA (x 106 Mg 

CO2)b 

 124.80  198.65  95.85  165.60 

% due to peat decomposition for 

categories classified as forest in 2000 

 0.99 

(0.35, 1.77) 

 2.61 

(0.97, 4.59) 

 3.02 

(1.12, 5.29) 

 3.72 

(1.32, 6.54) 

a 2016 Forest Reference Emission Level report of Peru29. 

b CO2 emission from biomass includes both above- and below-ground biomass of living trees as 

calculated in the 2016 Forest Reference Emission Level report of Peru29.  
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 187 

Figure 3:  Distribution of peatlands classified as natural vegetation, secondary vegetation and deforestation based on the 2016 forest land and land use 188 

categories within Geobosques30 in lowland Peruvian Amazonia. Non-peatland areas are shown in grey, and the relevant departments of Peru are labelled 189 

within the study area. Google map images show examples of (A) natural peatland vegetation misclassified as secondary forest (shown in a1, a2) around the 190 

Puinahua channel and the Ucayali river in the department of Loreto and (B) peatland areas correctly classified as deforestation (shown in b1, b2) near 191 

Pucallpa in the department of Ucayali. 192 



Synthesis and future directions 193 

 194 

Our estimate of the total below-ground carbon stock of 5.38 (2.55–10.58) Pg C across the 195 

LPA is 75% of a recent estimate of the entire above-ground C stock of Peru31, and 196 

approximately doubles previous estimates of the Peruvian tropical peat stock calculated for 197 

the PMFB and the MDD regions only2,19,22. Our maps are driven by intensive field sampling 198 

which has, for the first time, generated peat thickness data widely across LPA, and which 199 

confirms that significant peatlands extend far beyond the relatively well-studied PMFB. 200 

Across the main peat-forming landcover classes of pole forest, open peatland and palm 201 

swamp, above-ground carbon densities (Table S2,23) are an order of magnitude lower than 202 

respective peat carbon densities, totalling 0.45 Pg C (Table S2). Summing the above- and 203 

below-ground carbon stocks gives a central estimate of 5.83 Pg C stored in LPA peatlands. 204 

The quantitative uncertainties around the peatland carbon stock are reduced compared to 205 

previous studies despite our study covering an area > 5 times greater 2,22. Future 206 

improvement may be gained by collecting field data where they are still lacking, notably the 207 

northwest PMFB and parts of the Ucayali (e.g. around Pucallpa) and Morona basins. Unlike 208 

previous studies2,22 our study placed no constraints on which landcover classes peat can 209 

form under, and we predict that around 2% of seasonally flooded forest is underlain by 210 

peat. This suggests that the search for peat should not be solely limited to the well-known 211 

peat-forming vegetation types of palm swamp, pole forest and open peatland. In addition to 212 

landcover classification maps, we recommend that future fieldwork is informed by 213 

examining maps and remote sensing imagery related to hydrology and inundation, such as 214 

height above nearest drainage (HAND)32, normalized difference water index (NDWI)33 and 215 

ALOS-PALSAR34 (where possible multi-temporal images). 216 



Our approach is driven by remote sensing layers with global coverage and can thus be 217 

readily adapted to other regions, provided sufficient field data are available for calibration 218 

and validation. Our results call for caution in treating all tropical peatlands as similar, and 219 

demonstrate the importance of field data. For example, distance to peatland edge has been 220 

found to correlate with peat thickness in other regions such as the Congo basin3, and in 221 

most of the basins we studied in Peru. However, we found no significant linear relationship 222 

between peat thickness and distance to peatland edge for the data in the MDD basin (p > 223 

0.1, R2 = 0.005, Fig. S6c). Householder et al.19 suggest that this may be because of specific 224 

geological conditions in this region: many of the deepest peats in the MDD are often located 225 

adjacent to upland (terra firme) terraces, close to the peatland edge. This means that the 226 

relationship between peat thickness and distance to peatland edge is more complex in MDD 227 

than in other regions. Past research points to geomorphological differences between 228 

northern and southern parts of Peruvian Amazonia35: while floodplains in northern 229 

Amazonia are often wide, rivers in southern Amazonia more often have narrow floodplains 230 

confined by terraces. We recommend that new transects should aim to target a range of 231 

landscape types (e.g. based on elevation maps) and where possible should cover the full 232 

cross-section of each individual peatland. In spite of this limitation, our random forest 233 

regression model for the MDD region performs reasonably well. 234 

This study assesses CO2 emissions resulting from peat decomposition due to land-cover 235 

change in Peru. Our results suggest that land cover change in the peatlands of the LPA has 236 

thus far been restricted to a few hotspot areas, with the largest area of deforestation 237 

identified near Pucallpa in the department of Ucayali, an area where recent ground 238 

observations confirm the presence of deforested peatlands (26; E. Honorio, pers. comm.). 239 

Access to these peatlands has been facilitated by the development of roads and the 240 



increasing demand for land for commercial plantations (e.g. oil palm and rice36,37,D. Garcia-241 

Soria, pers. comm.). Overall, the estimated emissions from peat decomposition remain low 242 

in Peru but our analysis suggests that the annual emissions are increasing. These findings 243 

have two implications for the conservation of these ecosystems. Firstly, the low current 244 

emissions support the view that the extensive peatland complex of the LPA is an 245 

emblematic example of hydrologically intact moist tropical forest with high structural 246 

integrity and therefore should be a high conservation priority23,38,39. Investment is required 247 

to promote protection and sustainable management of these widespread and extremely 248 

carbon-dense ecosystems, before emissions rise over the coming decades40,41. Secondly, the 249 

increasing threats and rising emissions from specific land-use transitions in some peatlands 250 

mean that it is important to improve detection of deforestation and secondary vegetation 251 

across the full range of peatland forest types, and to make more extensive measurements of 252 

greenhouse gas emissions associated with specific land-use transitions across the different 253 

forest types7,8,9.  254 

Taken together, our results indicate a carbon stock within the peatlands of LPA which is 255 

three-quarters as large as the entire above-ground carbon stock of Peru31 but contained 256 

within just 5% of its land area. The peatlands also contribute substantial ecosystem and 257 

floristic diversity to the Amazon42,43. While our study indicates that these peatlands remain 258 

largely intact, they face varied and growing threats15, 37. Our mapping and carbon stock 259 

estimates may be used to support the implementation and enforcement of recent 260 

legislation aimed at reducing emissions27 and should act to encourage national and 261 

international investment in monitoring, protection and sustainable management of Peru’s 262 

peatlands, in order that they avoid a similar fate to the heavily degraded peatlands of 263 

Southeast Asia37.  264 
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 408 

Methods 409 

Fieldwork 410 

Between 2019 and 2021, we collected 445 new ground reference points (GRPs) within LPA 411 

(Fig. 1, 294 of which were presented by ref.23) collecting data on the substrate (i.e peat 412 

thickness, where peat is present) and vegetation type (e.g. palm swamp). We focused data 413 

collection on regions with no existing GRPs, where peat was believed to be present based 414 

on remote sensing imagery (e.g. various Landsat 8 [Fig. S7] and Sentinel 2 bands), including 415 



the Napo, Putumayo, Tapiche and Tigre river basins (Fig. 1, Fig. S1), using the only available 416 

means of access, i.e. via rivers and streams. We also collected new data on peat thickness 417 

and carbon concentration from under-sampled peatland ecosystems (e.g. peatland pole 418 

forest).  We made the sampling as spatially representative as possible within the constraints 419 

of logistical feasibility, personal safety and accessibility, which are substantial in these 420 

remote regions of Peru. The previously published datasets which we incorporated here 421 

were also subject to the same constraints. 422 

Where present, peat thickness was measured with an auger or Russian-type peat corer, 423 

either along transects perpendicular to the river at intervals of 200–500 m, or at the four 424 

corners and centre of the vegetation plots (see below) in which case the value for peat 425 

thickness used is the mean of five point measurements. Working along transects leading 426 

away from the river and into the peatlands allowed us to sample across wide hydrological 427 

and topographic gradients, including both minerotrophic and ombrotrophic ecosystems. At 428 

91 of these GRPs, we conducted 1 ha, 0.5 ha or 0.1 ha vegetation plot surveys (collecting 429 

floristic data) for quantitative classification of ecosystem type23,43. Additionally, we used 218 430 

previously published GRPs2,22,28 (24 with floristic data) collected using a similar transect-431 

based sampling strategy in northern Peru and 465 GRPs19 (148 with floristic data) collected 432 

in southern Peru, amounting to a total of 1,128 GRPs (Fig. 1). Of these, 887 GRPS (Fig. S8) 433 

indicated the presence of peat (defined as an organic layer ≥ 30 cm thick44). Two examples 434 

of peat thickness measurement transects in the Napo basin are shown in Figure S7.  435 

The majority of peat thickness observations do not have corresponding carbon 436 

concentration measurements and thus we cannot enforce a precise cut-off in terms of 437 

carbon content. However, we visually identified peat and underlying sediments in the field 438 



on the basis of their physical properties (e.g. colour, structure, texture) and composition 439 

(e.g. wood, roots, mineral components)45,46. At 35 vegetation plots identified by 440 

fieldworkers as being on peat, we took sediment samples in the near-basal peat, transition 441 

zone and underlying mineral sediment (typically silts or clays) and measured loss on ignition 442 

(LOI) in each to test the visual assessments. The peat, transition zone and mineral samples 443 

had mean LOI values of 70%, 28% and 13% respectively (see Table S6). This gives us 444 

confidence that fieldworkers in this region are able to visually identify peat (in this case, soil 445 

with an LOI of at least 50%), as there is typically a clear and distinct transition to mineral 446 

sediment in Peruvian peatlands. 447 

Map of predicted peatland extent in lowland Peruvian Amazonia 448 

We created a 50 m resolution map (Fig. S2) of predicted peatland extent in LPA (defined 449 

here as the area covered by two of the ecozones recognized by Peru’s Ministry of 450 

Environment: Ecozone Selva Baja and Ecozone Hidromórfica47). Firstly, we ran a supervised 451 

random forest (RF) algorithm (200 trees) in Google Earth Engine to predict the distribution 452 

of five classes: peat below forest (PBF), peat below non-forest (i.e. herbaceous vegetation 453 

and shrubland, PBNF), non-peat below forest (NBF), non-peat below non-forest (NBN) and 454 

open water (WA). The model was trained and validated (50/50 split of polygons) using peat 455 

thickness measurements and information on the overlying vegetation, and driven using a 456 

stack of seven remote sensing layers including two Sentinel-2 indices (NDVI & NDWI33), 457 

three ALOS PALSAR-2 bands (HH, HV, HH/HV34), SRTM 30 m digital elevation48 (Table S7), 458 

and an extended version of a landcover classification produced previously23 (Fig. S9; 459 

Supplementary Information has further details). The PBF and PBNF categories were 460 

amalgamated to form the map of total peatland extent in Fig. S2. We calculated 5th and 95th 461 



confidence interval percentiles for peatland area using the area and accuracy of each class, 462 

applying the method described in ref. 49 (equations 9–13), following ref. 2 and 463 

recommended by the Global Forest Observations Initiative.  464 

Model of peat thickness distribution 465 

Testing showed that peat thickness increases with distance to peatland edge (R2 = 0.13, p < 466 

0.0001, Fig. S6), indicating that the deepest peat is typically found in the centre of a 467 

peatland. We thus calculated distance to peatland edge for each model grid, using our map 468 

of peatland extent. We used the 1,128 peat thickness measurements as training data, 469 

supplemented with points that we assumed to lack peat located along known rivers and 470 

urban areas (based on a combination of local knowledge and inspection of Sentinel-2 and 471 

Landsat 8 images), amounting to a final dataset of 1,359 points. The model was run at 100 m 472 

resolution in Google Earth Engine and driven by the stack of remote sensing layers, with two 473 

additional layers: distance to peatland edge, and height above nearest drainage (HAND32) 474 

(Table S8).  475 

In order to robustly test model performance, we performed a series of validations which 476 

accounted for spatial autocorrelation. Training the model using data only from within the 477 

PMFB (n = 717) and testing against data from outside the PMFB in Northern Peru (Napo, 478 

Putumayo and upper Amazon basins, n = 155), the model performed relatively well 479 

(Observed vs Predicted peat thickness, p < 0.0001; R2 = 0.56, Fig. S10a).  However, the same 480 

model (trained using only PMFB data) was unable to predict variation in peat thickness 481 

observed in the Madre De Dios (MDD) basin data (n = 478, p > 0.50; R2 = 0.00, Fig. S10b). For 482 

this reason, we decided to run two separate models for the final analysis, one using data 483 

only within the MDD basin (n = 477, no. model trees = 100), and another using all other data 484 



points (n = 867, no. model trees =50). Model performance was lower in the model which 485 

used only MDD data (p < 0.0001; R2 = 0.38, RMSE = 70%, Fig. S5b) than that using all other 486 

data points (Observed Vs Predicted peat thickness, p < 0.0001; R2 = 0.66, RMSE = 66%, Fig. 487 

S5a). We independently validated both models by training each with 80% of the data 488 

(randomly selected) and testing with the remaining 20% (Fig. S5c, d).  489 

To account for the uncertainty associated with our estimate of peat thickness distribution, 490 

we ran a k-fold analysis as in50, splitting the data into 1,000 folds, and therefore generating 491 

1,000 predictions of peat thickness per pixel. We took the median, 5th and 95th percentiles 492 

of the 1,000 predictions to represent our best estimate (Fig. 2a), minimum (Fig. S3a) and 493 

maximum (Fig. S3b) peat thickness distributions. We subsequently masked the maps of peat 494 

thickness distribution using the map of peatland extent (Fig. S2), thus restricting our model 495 

to only regions predicted to contain peat. 496 

Below-ground carbon stock 497 

A dataset of 68 stratigraphic profiles of carbon concentration (%) and dry bulk density (DBD, 498 

g cm-3) was compiled using data from refs 2,22,23,28,51 (see Table S9). This includes ten new 499 

peat profiles collected as part of this study and described in23 (see Table S4 of Honorio 500 

Coronado et al., 202123). We calculated peat carbon stock (PC, Mg C ha-1) from the peat 501 

cores by multiplying peat thickness (cm) by DBD and carbon concentration evaluated at 502 

regular intervals down the peat profile to the base of the peat. Laboratory conditions varied 503 

depending on the study and can be found in the original papers, along with information on 504 

protocols. The studies used a variety of standard methodologies to determine sample 505 

carbon concentrations. In line with our definition of peat, we only retained cores in which 506 



the peat was ≥ 30 cm thick, with a mean LOI of ≥ 50%, and those collected using a Russian 507 

corer to ensure that DBD measurements were based on a reliable volumetric sample.  508 

We performed a sensitivity analysis to test which of the three components of PC (i.e. peat 509 

thickness, DBD and carbon concentration) was most important. Peat thickness was found to 510 

be the most important determinant of total PC (p < 0.0001; R2 = 0.81, Fig. S11). We thus 511 

used our model of peat thickness distribution to estimate total PC for each 100 m grid-cell 512 

and then summed across the entire LPA to produce a total value for the peat carbon stock.  513 

In order to produce uncertainty bounds for our estimate of the total peat C stock, we ran a 514 

Monte Carlo analysis which accounted for the uncertainty in each stage of our 515 

methodology. We ran 1,000 simulations for PC, constrained using the standard error of the 516 

b-estimates from the regression equation (peat thickness vs PC, Fig. S11). This was 517 

performed twice, once using the 5th and then the 95th percentile distribution of peat 518 

thickness calculated previously (Fig. S3). These 1,000 PC simulations were in turn multiplied 519 

by 1,000 simulations of peatland area per grid, constrained by the confidence intervals 520 

calculated previously. Finally, the maps of the 5th and 95th percentile of peat C stock per grid 521 

were summed across LPA to derive the final minimum and maximum uncertainty bounds.  522 

 523 

Activity data and emissions from peat decomposition 524 

To estimate changes in forest cover, we used reports of activity data provided by Peru’s 525 

national monitoring platform, Geobosques30. These reports were generated using Landsat 7 526 

and 8 images from 2001 to 2016 at 30 m resolution, with cumulative areas of different land 527 

uses for the year 200030. In these data, Peruvian Amazonia is classified into 11 land uses for 528 

the periods 2000–2005, 2005–2011, 2011–2013, and 2013–2016. Figure 3 shows our 529 



predicted peatland map (produced by re-running our model at 30 m resolution to match the 530 

activity dataset) grouping the categories that represent natural vegetation (forest, forest on 531 

wetland, wet savannah, water body, non-forest on wetland), secondary vegetation, and 532 

deforested areas (agriculture, pasture, urban areas, mining areas, bare ground).  533 

Emission factors for organic soils were taken from Chapter 2 of the 2013 Supplement to the 534 

2006 IPCC Guidelines for the National GHG Inventory for Wetlands6. The values range from 535 

7.5 Mg C ha-1 y-1 for secondary vegetation to 9.6 Mg C ha-1 y-1 for deforested peatlands 536 

(Table S4). These IPCC values are intended to be used for drained peatlands, but peatland 537 

disturbance in Peru does not necessarily entail drainage. Nonetheless, undrained secondary 538 

forests on peat in Indonesia lose soil carbon (1.4 Mg C ha-1 y-1; 10) at a similar rate to 539 

shallow-drained plantations (1.5 Mg C ha-1 y-1; 6), and CO2 emissions in highly degraded 540 

undrained peatlands in Peru (e.g. degraded Mauritia-dominated palm swamps classified as 541 

secondary vegetation: 7.1 Mg C ha-1 y-1; 8) fall within the range of the values of deforested 542 

drained peatlands in Indonesia (1.5–14.0 Mg C ha-1 y-1; 6, Table S5). Therefore, we assume 543 

the IPCC emission factors are acceptable estimates for drained or undrained peatlands in 544 

Peru, which is reasonable given that it matches the available evidence.  545 

Total CO2 emissions following land use change due to inferred peat decomposition were 546 

estimated following the equation 2.3 from Chapter 2 in the IPCC Wetlands Supplement6: 547 

 548 

                         𝑃𝐷𝐸 = ∑ 𝐴𝑖𝑗 ∗ 𝐸𝐹𝑖𝑗
𝑛
𝑖𝑗=0 ∗ 𝑡 ∗  44/12                                                                      (1) 549 

 550 



Where PDE is total CO2 emissions from peat decomposition (Mg CO2); A is the area (ha) on 551 

peatlands of the original land-use category-i that was converted into category-j during the 552 

time period t (years); EF is the mean annual emission factor of peat decomposition assigned 553 

to the conversion from category-i to category-j (Mg C ha-1 y-1) and converted to CO2 by 554 

multiplying by the atomic mass factor of 44/12 52,53. For example, within peatlands 555 

(according to our map), forest on wetland (ecosystem saturated with water and assumed 556 

zero CO2 emissions) that is converted to mining area (ecosystem assumed similar to drained 557 

grasslands with emissions of 9.6 Mg C ha-1 y-1) will receive an EF value of 4.8 Mg C ha-1 y-1 558 

following 52 (Table S5). 559 

 560 

 561 

Data availability 562 

An interactive map of modelled peatland extent (50 m resolution) can be viewed here: 563 

https://code.earthengine.google.com/a07b25e62adbe714afa77e4a3e423b1b  564 

and source map downloaded here:   565 

An interactive map of modelled landcover class (50 m resolution) can be viewed here: 566 

https://code.earthengine.google.com/f3a655bbf36db6121be1d7fd09991530  567 

and source map downloaded here: https://datashare.ed.ac.uk/handle/10283/4364  568 

An interactive map of modelled peat thickness distribution (100 m resolution) can be 569 

viewed here: https://code.earthengine.google.com/8845760a7e086df8b1e66075985ea705  570 

and source maps downloaded here: https://datashare.ed.ac.uk/handle/10283/4364  571 

An interactive map of modelled peat carbon (100 m resolution) can be viewed here: 572 

https://code.earthengine.google.com/394ed8b119c1913f7c5f5b6a969ec19f  573 

 and source maps downloaded here: https://datashare.ed.ac.uk/handle/10283/4364  574 

The MINAM Geobosques30 raster file can be downloaded here: 575 

https://geobosques.minam.gob.pe/geobosque/view/descargas.php?122345gxxe345w34gg  576 

 577 

Code availability 578 

https://code.earthengine.google.com/a07b25e62adbe714afa77e4a3e423b1b
https://code.earthengine.google.com/f3a655bbf36db6121be1d7fd09991530
https://datashare.ed.ac.uk/handle/10283/4364
https://code.earthengine.google.com/8845760a7e086df8b1e66075985ea705
https://datashare.ed.ac.uk/handle/10283/4364
https://code.earthengine.google.com/394ed8b119c1913f7c5f5b6a969ec19f
https://datashare.ed.ac.uk/handle/10283/4364
https://geobosques.minam.gob.pe/geobosque/view/descargas.php?122345gxxe345w34gg


The above Google Earth Engine links include code for some basic analysis of the maps. Code 579 

for other parts of the analysis will be made available upon reasonable request to the 580 

corresponding author.  581 
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