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Author summary

Re-infestation of recently insecticide-treated houses by wild/secondary triatomine, their
potential adaptation to this new environment and capabilities to geographically disperse
across multiple human communities jeopardise sustainable Chagas disease control. This
is the first study in Chagas disease vectors that identifies genomic regions possibly linked
to adaptations to the built environment and describes landscape drivers for accurate pre-
diction of geographic dispersal. We sampled multiple domestic and wild �������� 	
���
���	���� population pairs across a mountainous terrain in southern Ecuador. We
evidenced that triatomine movement from forest to built enviroments does occur at a
high rate. In these highly connected population pairs we detected loci possibly linked to
local adaptation among the genomic makers we evaluated and in doing so we pave the
way for future triatomine genomic research. We highlighted that current haphazardous
vector control in the zone will be hindered by reinfestation of triatomines from the forest.
Instead, we recommend frequent and spatially-targeted vector control and provided a
landacape genomic model that identifies highly connected and isolated triatomine popu-
lations to facilitate efficient vector control.

Introduction
The process by which insect vectors of human diseases adapt to survive and breed in human
habitats is fundamental to the emergence and spread of vector-borne diseases (e.g., �	�	�
�	����� [1]). Relatively modest changes in vector host preference between ancestral (wild) and
derived (domesticated) forms can drive devastating epidemics that result in millions of deaths
[2]. Host preference variability in ���	� ����	�� of hybrid ancestry is thought to be genetically
based and has contributed to local West Nile virus outbreaks in North America [3,4]. Similarly,
host choice behaviour in Malaria mosquito �����	�	� ����	���� has been linked to the allelic
variation of a 3Ra chromosomal inversion [5]. Understanding the evolution and genetic bases
of traits associated to the domestic habitat in disease vectors is, therefore, paramount and
could inform control efforts and reveal the epidemic potential for new vector species [6,7].

Triatominae (Hemiptera: Reduviidae) are a group of hematophagous arthropods that trans-
mit ���������� 
���, the parasite that causes Chagas disease, a fatal parasitic infection
afflicting more than seven million people in Latin America [8]. Approximately 20 species are
of public health concern due to their involvement in �. 
��� domestic transmission [9]. Eradi-
cation of ‘domesticated’ triatomines through insecticide spraying has been the mainstay of dis-
ease control in the past (e.g., ������� ���	����� [10], �������� ������� and �������
��������� [11]). However, wild (e.g., �. ���	����� [12] and �. ������� [13]) and/or secondary
competent species of triatomines (e.g., ������� ������ [14], ������� ��
����� and �����
���� ����	�
	�� [15], ������������ ������ [16] and �. 
����� [17]) can continuously occupy
empty domestic niches. Except from a few species that intrude houses seasonally (e.g., ����
���� ��������� and other species in the Amazon basin [18,19]), constant triatomine house col-
onisation has historically jeopardised Chagas disease control strategies.

Colonisation of the domestic niche may involve multiple, independent evolutionary pro-
cesses across the geographic distribution of a given vector species [20,21], analogous to parallel
trophic speciation observed in other arthropods [22]. Alternatively, domestication (hereafter,
refers to the long-term evolutionary sense) of vectors with their associated zoonotic parasites
may result from a single or limited number of independent colonisation events, followed by
rapid and widespread dispersal within the domestic setting [23,24]. Domestication, and
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selection for domestic traits (e.g., pathogen resistance or efficient pollitators), in a given species
may also represent a combination of these two scenarios, where multiple domesticated lineages
serially introgress with wild lineages over evolutionary time, as has been elegantly demon-
strated through analysis of the genomes of the �
��	�����-European hybrid honey bees in
America [25,26]. Disentangling these different scenarios in triatomine species, and their
important implications for disease control, has been challenging due to a lack of genomic
resources for these organisms which are only recently becoming available [27–29]. With ade-
quate genomic tools; however, patterns of colonisation of the domestic niche can be estab-
lished, and their underlying mechanisms unveiled. Models of ‘adaptation with gene flow’ (e.g.,
[30]) exploit standard population genetic metrics and theory to make generalisations about the
genomic basis of adaptations (e.g., [22]). Such models can be deployed to study disease vector
colonisation and reveal fundamental traits associated with the domestic niche.

The genetic changes that allowed triatomines to thrive in the domestic niche may be related
to feeding, reproduction and developmental performance. For instance, the development of
potent saliva compounds that alter vertebrate host homeostatic, anti-inflamatory and immune
responses was a crucial adaptation in triatomines for successful blood intake, and therefore,
survival [31,32]. Saliva composition variation between domestic and wild populations has not
been shown, yet saliva composition does play a role in highly ‘domesticated’ triatomines (e.g.,
�. ������� and �. ���	�����) with exceptional feeding performace in humans [33,34]. Morpho-
logical changes such as reduced sexual dimorphism and body size have also been associated
with the domestic habitat [35]. Egg development and viability are driven by neurohormonal
signaling pathways starting soon after a female feeds on blood which results in yolk formation
and supports embryonic development [36]. Under laboratory conditions, embryonic develop-
ment of eggs collected inside houses was faster than those from the peridomicile [37]. Morpho-
metric studies have attempted to develop phenotypic markers in triatomines associated with
domestic or wild ecotopes with little (e.g., [38]) to moderate (e.g., [39]) success. Therefore,
association of triatomine with the domestic niche is currently a qualitative concept with urgent
need for quantitative foundations [40].

Identification of the ecological factors driving triatomine dispersal, with subsequent coloni-
sation of a given niche, is necessary to predict complex triatomine population dynamics. High
localised genetic structuring is expected in triatomine populations given their poor flying capa-
bilities (< 2 Km), nymphs can only crawl short distances, and long-distance dispersal may spo-
radically occur via attachment to human cloths/bird feathers [41–43]. Models based on
presence-only data have shown altitude, temperature, humidity, precipitation and vegetation
as importat variables for triatomine distribution [44–46]. These models, however, represent
broad spatial distribution rather than detailed local vector population dynamics and their
accuracy requires extensive entomological records [47–49]. Instead, a landscape genomics
framework (Fig 1) can accurately define landscape functional connectivity (the level at which
the landscape heterogeneity facilitates or impedes a given organism’s movement from, and to,
different habitat patches [50]) and shed light on the drivers of dispersal in a given vector spe-
cies, and even assist in identifying poorly connected or isolated areas that can be easily targeted
by eradication interventions [51–53]. Elevation may be a factor limiting �. 	
�����	���� dis-
persal given it limits the presence of other triatomine species [46]. Habitat fragmentation and
human agricultural activities have shown to have an effect on triatomine population dynamics
[54]. Human-mediated passive triatomine dispersal has been suggested elsewhere [11,41–43],
and therefore, we assume roads might connect triatomine popuations (Fig 1D).

�������� 	
�����	���� is the major vector for Chagas disease in Ecuador and Northern
Peru [55]. Both domestic and wild populations of this species exist throughout its range [56].
Preliminary morphological and genetic evidence suggests some gene flow of �. 	
�����	����
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between domestic and wild ecotopes [57,58]. By comparison, genetic studies of �. 
��� infect-
ing the same vectors in Ecuador have shown strong to moderate differentiation between wild
and domestic isolates [59,60]. As such there is a lack of a clear understanding of the micro and
macro-evolutionary and ecological forces shaping �. 	
�����	���� domestic adaptation and
dispersal capabilities, and those of the parasites they transmit.

Our study represents an attempt to evidence gene flow from wild to domestic ecotopes in
�. 	
�����	���� in Ecuador, a preliminary survey of any potential genomic signatures of ada-
pation to the domestic niche in triatomines, as well as an assessment of the landscape drivers
of vector dispersal. We used a reduced-representation sequencing approach (2b- RADseq) to
recover genome-wide SNP variation in 272 �������� 	
�����	���� individuals collected across
ecological gradients in Loja, Ecuador. We confirmed �. 	
�����	���� do frequently invade
houses from the forest in southern Ecuador. Significantly elevated allelic richness in wild sites

Fig 1. Step-by-step walk-through of the landscape genomics mixed modelling framework used to study the Chagas disease
arthropod vector, �������� 	
������	����. A, First, a research question is defined based on whether gene flow or adaptation processes
are to be investigated and sampling design is established. B, In the field, triatomines are collected in different ecotopes in the spatial and
temporal gradients defined in A. Different variables are recorded at this stage such as altitude and geographic coordinates. C, In the
laboratory, triatomine next generation sequencing (NGS) libraries are prepared and sequenced in high-throughput platforms. NGS data
is processed with bioinformatic tools, and each sample genotype information is used to obtain a matrix of pairwise populations (Pop)
genetic distances. D, A hypothetical landscape model (1) is parametrised into a resistance surface (2) which is a spatial representation of
a given species movement constraints at each grid cell on a digital layer. From this resistance surface, a matrix of pairwise population
(Pop) effective distances is calculated (3). E, Finally, statistical methods are used to correlate pairwise population genetic and effective
distance matrices to investigate whether isolation-by-resistance (landscape functional connectivity) is a fitted model of the genetic
differentiation of triatomine populations. Source maps: www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-
multi-resolution-terrain-elevation, www.usgs.gov/media/images/south-america-land-cover-characteristics-data-base-version-20 and
dataportaal.pbl.nl/downloads/GRIP4/GRIP4_Region2_vector_shp.zip.

https://doi.org/10.1371/journal.pgen.1010019.g001
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by comparison to nearby domestic foci clearly confirmed that dispersal occurred most fre-
quently from wild ecotopes into domestic structures. Genome scans across multiple parallel
colonisation events revealed possible evidence of ‘adaptation with geneflow’, with key outlier
loci associated with colonisation of built domestic structures and, presumably, human blood
feeding. Several outlier loci were mapped to the annotated regions of the �. ������� genome.
A strong signature of isolation-by-distance (IBD) was observable throughout the dataset, an
effect less pronounced between domestic sites than between wild foci. Formal landscape geno-
mic analyses revealed elevation surface as the major barrier to genetic connectivity between
populations. Landscape genomic analysis enabled a spatial model of vector connectivity to be
elaborated, informing ongoing control efforts in the region and providing a model for map-
ping the dispersal potential of triatomines and other disease vectors. Our findings suggest fre-
quent and spatially targeted interventions, to cope with high gene flow and fragmented
populations, are necessary to suppress Chagas disease transmission in Loja. Moreover, the dis-
covery of signatures of possible local adaptation shed the first light on the genomic basis of
domestication in triatomines.

Results

Recovery of SNP markers from 272 �������� 	
������	���� SNP specimens
Our CspCI-based 2b-RAD protocol was successful in obtaining genome-wide SNP informa-
tion for �. 	
�����	����. Sequencing of non-target species was minimal (0.2%). We genotyped
six �������� ������� as controls and 80% of reads mapped to the �. ������� reference
genome. Only 9.5% of �. 	
�����	���� reads mapped to the same reference, a consequence of
genomic sequence divergence between �. 	
�����	���� and �. ������� [61] (S1 Methods). A
stringent genotyping approach confidently identified 2,552 SNP markers across 272 �. 	
���
���	���� samples from 25 collection sites, which represented closely administrative boundaries
of human communities. In seven collection sites (Fig 2A; CG, BR, CE, CQ, HY, SJ and GL-
seven pairs) triatomines from both domestic and wild ecotopes were collected. Remaining
sites only had individuals of one ecotope (domestic or wild; S1 Table).

Reduced �. 	
������	���� population genetic diversity in domestic ecotopes
Multiple genetic diversity estimates among populations from the 25 collection sites in Loja
province were calculated (obsvered heterozygosity (HO), gene diversity (HE), inbreeding coef-
ficient (FIS) and allelic richness (Ar)). Diversity estimates ranged from 0.11 to 0.23, from 0.09
to 0.22, and from -0.24 to 0.11 for HO, HE and FIS, respectively. Sample-size corrected Ar values
ranged from 1.19 to 1.44 with the lowest values in La Extensa (EX), San Jacinto (SJ), El Huayco
(HY) and Santa Rita (RT). In the paired ecotopes within the seven collection sites, Ar values
were significantly higher for wild than domestic triatomine populations and in five out of
seven instances (p<0.05, rarefaction method [62]; S2 Table).

Genomic differentiation between domestic and wild ecotopes
To assay population dynamics between sympatric domestic and wild foci, we focused our indi-
vidual-based genomic differentiation and pairwise FST comparisons analyses on the seven col-
lection sites for which samples from both ecotopes were available (Fig 2A). Supporting
frequent migration between domestic and wild ecotopes, samples from each ecotope were
interleaved at most collection sites in the phylogenetic tree, with collection site geography, not
ecotope, impacting the tree topology (Fig 2B). As such, samples collected in Galapagos (GL),
Coamine (CE) and Chaquizhca (CQ) formed distinct clusters, and El Huayco (HY)—San
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Jacinto (SJ) and Bramaderos (BR)—La Cienega (CG) also grouped discretely. Five broadly con-
gruent clusters were defined in a discriminant analysis of principal components (DAPC) (Fig
2C), with geographic collection site rather than ecotope (silvatic vs domestic) again structuring
observed diversity. FST indices between paired domestic and wild triatomine samples within each
of the seven compared collection sites indicate little differentiation (e.g., FST� 0.10). Permutation
tests indicated that FST was significant (p< 0.05) at only two sites—Bramaderos and El Huayco
(Fig 2D). As expected, hierarchical analysis of molecular variance revealed genetic subdivision
was significantly stronger (Fcollection sites/total = 0.26, p-value< 0.001) among collection sites than
among ecotopes within collection sites (Fecotope/collection site = - 0.004, p-value< 0.001) or among
collection year within communities (Fcollection year/collection site = 0.06, p-value< 0.001) (S3 Table).

Genetic loci correlated with domestic colonisation
To identify loci among our markers associated with domestic colonisation, we combined a
Random Forest (RF) classification approach and redundancy analyses (RDA) with outlier
scans (see Methods). We included the seven collection sites with frequent domestic-wild
migration and three additional wild-only sites to roughly conform similar number of domestic
(n = 56) and wild (n = 52) samples. A total of 347 SNPs provided high ranked classification
accuracy (mean > 3) across the three RF iterations (inset in Fig 3A). Backwards purging on
this highly discriminatory subset of SNPs detected a set of 43 SNPs that minimised the ‘Out-

Fig 2. Genomic differentiation of domestic and wild �. 	
������	����. A, geographic distribution of the seven collection sites with
both ecotopes over an elevation surface map of Loja. B, Neighbor-Joining midpoint phylogenetic tree with phylogenies indicating the
Euclidean distance between triatomine samples built from allele counts. Tree branches clades are colour-coded to differentiate
geographic collection sites (or clusters of collection sites) including some apparent migrants (black asterisks). Branch tip labels are
coloured to indicate ecotype (domestic—blue / wild—green). C, the scatter plot shows five clusters are built with the first and third
principal components of the discriminant analysis eigenvalues. D, pairwise FST comparisons between domestic (blue box) and wild
(green box) �. 	
�����	���� in multiple sites across Loja (A). Significant FST values (arrows) after FDR correction are highlighted in bold
and an asterisk. In all panels, samples location (dots) and labels are colour-coded to indicate their domestic (blue) or wild (green)
collection ecotope. Collection sites abbrevations: SJ, San Jacinto; HY, EL Huayco; GL, Galapagos; CQ, Chaquizhca; CE, Coamine; BR,
Bramaderos; CG, La Cienega (see S1 Table for full collection sites list). Source map: www.usgs.gov/centers/eros/science/usgs-eros-
archive-digital-elevation-global-multi-resolution-terrain-elevation.

https://doi.org/10.1371/journal.pgen.1010019.g002
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of-bag’ error rate (OOB-ER) to 0.09 and maximised the discriminatory power among domestic
and wild samples (Fig 3A). In a parallel RDA model, ecotope (domestic / wild) was a predictor
explaining approximately 0.4% of the total variation and the constrained axis built from that
variation was significant (p-value < 0.001), and so was the full model as indicated by the
Monte Carlo permutation test. The distribution of each SNP loading/contribution to the RDA
significant axis showed 109 candidate outlier loci as SNPs loadings at �2 SD from the mean of
this distribution (permissive threshold; Fig 3B). In a more conservative approach, we also iden-
tified seven loci from those 109 under very strong selection as represented by those SNPs load-
ing at the extreme �3 SD (conservative threshold) away from the mean distribution of the
constrained axis (Fig 3B). The arrangement of the individual samples in the ordination space
with relation to the RDA axis showed a clear pattern of subdivision comparable to the ecotope
in which samples were collected (Fig 3C). The 21 loci/SNPs identified as outlier loci (dark dots
in Fig 3B) by RDA were also detected as highly discriminatory SNPs for domestic and wild
ecotopes in the RF analysis. Assuming ‘adaptation with geneflow’ we assessed locus-specific
estimates of FST (Fig 3D), among the 2552 SNPs between domestic and wild ecotopes and
identified one SNP (Locus ID 15732 –purple diamond in Fig 3B and 3D) possibly under local
adaptation and/or spatial heterogeneous selection as suggested by OutFlank analysis (Fig 3D

Fig 3. Scanning outlier SNP markers for signatures of local adaptation in �������� 	
������	����. A, Random Forest backwards
purging shows subsets with decreasing number of highly discriminatory SNPs and their resulting OOB-ER. The two vertical red lines
indicated the 43 SNPs subset with the lowest OOB-ER and maximum discriminatory power between domestic and wild ecotopes. The
inset shows SNPs ranked based on their classification accuracy averaged after 3-independent RF runs. SNPs with classification accuracy
above three (red horizontal line) were used for the backwards purging. B, In our RDA model, SNPs (dots and diamonds) are arranged as
a function of their relationship with the constrained predictor (RDA 1), ecotope (arrow outlines towards a wild ecotope relationship).
SNPs closer to the centre (small grey dots) are not showing relation with the predictor. Outlier loci/SNPs are represented by those large
dots/diamond loading at � 2 SD and � 3 SD separated from the mean SNPs loading distribution and showing a strong relationship with
ecotype. Black large dots (and purple diamond) represent loci/SNP identified with high classification power in RF analysis. C, a biplot of
�. 	
�����	���� triatomine samples and SNPs (small black dots in the centre) are arranged in relation to the constrained RDA axis with
an arrow indicating those related to the wild ecotope. Dots are colour-coded to show sample ecotope of collection, domestic (blue) or
wild (green). Biplot scaling is symmetrical with inset showing the density function for the RDA axis. D, Scatter plots show OutFlank
(left) and fsthet (right) SNPs FST-heterozygosity relationship. 43 SNPs (large dots) had higher than average FST distribution of neutral
loci in fsthet, whereas only one in OutFlank. Purple diamond indicated the SNP (ID 15732) flagged in all four analyses.

https://doi.org/10.1371/journal.pgen.1010019.g003
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left). Moreover, outlier scan with fsthet (Fig 3D right) in the same subset flagged this OutFlank
SNP and 73 additional SNPs showing FST higher that the average neutral loci distribution at a
5% threshold. In summary, 43 SNPs were identified with the highest classification accuracy in
RF analysis. 21 of those SNPs showed some signal of selection (that is, loaded � 2 SD away
from mean distribution of the constrained axis) and four were identified showing strong signal
of selection (that is, loaded � 3 SD away from the mean distribution of the constrained axis) in
RDA analysis. Three of the SNPs flagged as outliers in fsthet analysis were found also being at
high classification accuracy in RF analysis. The SNP (Locus ID 15732) possibly under strong
selection as identified by OutFlank analysis, also had a high classification accuracy in RF and,
interestingly, it was also identified within the RDA and fsthet SNPs sets as under a strong sig-
nal of selection.

Mapping outlier loci to the �������� ������� genome
Several outlier SNPs from the different analyses mapped to annotated regions of the �. �������
genome. One SNP identified in the RDA analysis mapped (97.1% identity) in a �. �������
genome region containing the characterised ����	� gap gene (Accession No JN092576.1)
involved in arthropod embryonic development [63]. Three outlier SNPs identified in fsthet
analysis mapped (100% identity) to regions in the �. ������� genome containing characterised
GE-rich and polylysine protein precursors (mRNA—Accession AY340265.1), and the ����	�
and giant gap genes [63,64] (Accession No HQ853222.1). The former are important proteins
within the sialome of blood-sucking bugs [65] and the latter involved in arthropod embryonic
development [64]. Mapping of the majority of putatively outlier SNPs, including Locus ID
15732, was not possible in the absence of an available �. 	
�����	���� genome.

Comparison of dispersal rates of �. 	
������	���� between domestic sites
with dispersal rates between wild sites
Including all samples (n = 272) and collection sites (n = 25), we tested the strength of genetic
isolation-by-distance (IBD) initially among domestic sample collection sites and latterly
among wild collection sites (Fig 4). Mantel tests in both domestic (rm = 0.46, p-value < 0.001)
and wild (rm = 0.31, p-value = 0.043) ecotopes strongly supported an effect of geographic dis-
tance on genetic distance (Fig 4A). Based on a generalised least square model with maximum
likelihood population effects parametrisation (GLS-MLPE), the effect of geographic distance
was significantly stronger (0.0018, p-value < 0.001) in wild compared to domestic foci (Fig
4A), suggesting that the rate of vector dispersal occurred at a higher rate between domestic
populations than between wild ones (S4 Table).

Landscape functional connectivity in �. 	
������	����
Landscape genomic mixed modellling aims to identify the effect of different combinations of
landscape surfaces and their parameters on a given genomic differentiation pattern (see Meth-
ods). �. 	
�����	���� genomic differentiation was closely partinioned by collection sites (Fig
5A) which was evidenced through hierarchical (S3 Table), phylogenetic, DAPC (Fig 2) and
Admixture analyses (S1 and S2 Figs). To obtain an accurate representation of the genomic dif-
ferentiation pattern among �. 	
�����	���� populations, we chose Hedrick’s GST pairwise
comparisons (Fig 5B) which corrects for sampling limited number of populations [66]. The
genomic pattern was consistent regardless of metric used (e.g., Pairwise FST [67] and Meir-
man’s standardised FST [68]) as revealed by strong and significant (r2 = 0.99 & 0.92, respec-
tively; p< 0.001) Pearson’s correlations between them. Pairwise Hedrick’s GST comparisons
(Fig 5B) showed a strong pattern of population structure across Loja province with presence of
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Fig 5. Landscape connectivity of �������� 	
������	���� in Loja province, Ecuador. A, Elevation map of the geographic location of
collection sites across Loja. B, Heatmap shows pairwise genetic distances (GST) with collection sites ID labels on the right. Clusters and
highly differentiated collection sites are circled in A. Grey scale indicate genetic distance with lighter colours showing higher
differentiation. C, Electrical current map of Loja built from the optimised elevation surface model showing a gradient of high (yellow/
light shade), medium (light greens) and low (blue/dark shade) functional connectivity across Loja. Clusters of highly connected sites are
evident but isolated sites are also present across regions in Loja. Connectivity within and among clusters and collection sites is highly
influenced by the landscape, specifically elevation surface. Source map: www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-
elevation-global-multi-resolution-terrain-elevation.

https://doi.org/10.1371/journal.pgen.1010019.g005

Fig 4. Dispersal rate in �. 	
������	����. A, correlation between pairwise genetic (FST) and geographic distances (data points) with fitted regression
lines (95% CI) for domestic (blue dots) and wild (green diamonds) ecotopes. Fitted GLS-MLPE model in Eq 1. B, geographic distribution of the 25
collection sites across Loja province (elevation map) used for estimating �. 	
�����	���� gene flow with geographic distance. Collection sites ID labels:
EX, La Extensa; SJ, San Jacinto; HY, EL Huayco; RT, Santa Rita; NJ, Naranjillo; GL, Galapagos; SS, Santa Rosa; TR, Tuburo; YS, Camayos; NT, San
Antonio de Taparuca; AZ, Ardanza; GA, Guara; CQ, Chaquizhca; BM, Bella Maria; CE, Coamine; VC, Vega del Carmen; TM, Tamarindo; HG, Higida;
ND, Naranjo Dulce; TC, Tacoranga; AH, Ashimingo; LM, Limones; BR, Bramaderos; CG, La Cienega; SF, San Francisco (SF). Source map: www.usgs.
gov/centers/eros/science/usgs-eros-archive-digital-elevation-global-multi-resolution-terrain-elevation.

https://doi.org/10.1371/journal.pgen.1010019.g004
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both high and low genetic differentiation among collection sites (Fig 5A and 5B). San Fran-
cisco (SF) and San Antonio (NT) were two examples of clear, and mutually distinct, outliers in
genetic terms. Santa Rita (RT), El Huayco (HY), San Jacinto (SJ) and La Extensa (EX) were
genetically and geographically close but highly differentiated form the rest. Overall, some clus-
ters of collection sites were evident as well as instances differentiation within and among clus-
ters (S5 Table).

The pattern of population genomic differentiation was iteratively regressed with different
combinations of landscape variables and parameters using the ResistanceGA [69] optimisation
framework (see Methods). The optimisation process involves estimating unbiased resistance
values for a given combination of surfaces and selecting the best (true) model representing the
genomic pattern. To rule out collinearity between landscape variables, we calculated Spear-
man’s correlation coefficient, rho, between all pairs of surfaces which resulted in small and/or
negative (rho < 0.29) correlations (S6 Table). Similarly, a scatterplot matrix did not show
highly correlated surfaces (S3 Fig).

Our three ResistanceGA optimisation replicates (see Methods) showed comparable results.
In all replicates, the single elevation surface showed the lowest AICc values and the highest
AICc weight compared to the other single and composite optimised surfaces (Table 1 is a repli-
cate example). Delta AICc shows the AICc difference between the elevation surface (best
model) and the rest of the (combination of) surfaces. A difference of ~2.26 units between ele-
vation surface and a distance-only model was evident which suggests elevation surface is a bet-
ter predictor than geographic distance, although geographic distance remains a strong
predictor. Optimisation of the elevation surface parameters confirmed that gene flow resis-
tance increases with altitude up to the highest resistance at approximately 2,400 m.a.s.l.
(S4 Fig).

To evaluate the roboustness of our optimisation procedure and test the effect of uneven dis-
tribution of sample sites, we ran a bootstrap analysis with resampling of the sites at each itera-
tion. Interestingly, the bootstrap analysis revealed that, when resampling 85% of the collection
sites, the optimised elevation surface model was ranked the top model in only 43.2% of the
bootstrap iterations compared to 46% of the times in which a distance-only model was better
(Table 2). The fact that elevation surface was slightly less supported in the bootstrap analysis is
likely due to the irregular distribution of sites across the study area and altitudes [70].

To assist with the identification of vector management zones for regional health authorities,
an electrical current map was built by applying a circuit theory algorithm [71,72] on the opti-
mised elevation surface model (Fig 5C). Specifically, the algorithm simulates the passing of an

Table 1. Model selection results for the generalised mixed-effects models optimised on genetic distance (Hedrick’s GST) for �. 	
������	����. The most strongly sup-
ported resistance surface model is presented first. For each resistance surface model, number of parameters plus the intercept (k), additional parameters corrected Akaike
information criterion (AICc), delta AICc and AICc weight (�) are provided.

Resistance surface model Type � AICc Delta AICc �

Elevation single 4 -749.51 0 0.76
Distance single 2 -747.25 2.26 0.24
Roads single 6 -736.25 13.26 0.0010
Elevation + Roads composite 9 -729.55 19.96 3.49e-05
Land Single 12 -720.26 29.25 3.35e-07
Elevation + Land cover composite 15 -687.82 61.70 3.03e-14
Land cover + Roads composite 17 -648.63 100.88 9.37e-23
Null model single 1 -565.08 184.43 6.75e-41
Elevation + Land cover + Roads composite 20 -520.44 229.08 1.36e-50

https://doi.org/10.1371/journal.pgen.1010019.t001

PLOS GENETICS Adaptation and dispersal in Chagas disease vectors

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010019 February 4, 2022 10 / 28



electric current across grids (zones) with low/high optimised resistance values. Low resistance
grids are highlighted as high current intensity zones (yellow/light zones in Fig 5C) in which
high population connectivity, and therefore high degree of gene flow, is predicted. The map
showed different gradients of connectivity within and among western, central, eastern and
southern Loja province. These included individually isolated populations (e.g. SF & CG), iso-
lated clusters (e.g EX; SJ; HY; RT; NJ); as well as well-connected hubs (e.g., BR-LM,
AH-TM-ND, HG-TC and CE-VC).

Discussion
In this study we make several core observations: �. 	
�����	���� do invade houses from wild
populations, �. 	
�����	���� loci associated with the domestic niche can be identified within
our limited marker set and mapped to annotated triatomine genomic regions, and the land-
scape drivers of vector dispersal can be identified. Consistent with frequent house invasion,
high levels of gene flow between multiple domestic and wild �. 	
�����	���� populations were
detected by hierarchical analysis. Low and largely non-significant pairwise FST values, as well
as interleaved sample clustering based on phylogenetic and discriminant analyses were also
consistent with house invasion. Significantly elevated allelic richness in wild sites by compari-
son to nearby domestic foci clearly confirmed that dispersal occurred most frequently from
wild ecotopes into domestic structures. Genome scans across these parallel events of colonisa-
tion to the domestic niche revealed possible evidence of ‘adaptation with geneflow’, with key
outlier loci associated with colonisation of built domestic structures and, presumably, human
blood feeding—several of which mapped to the �. ������� genome. A strong signature of iso-
lation-by-distance (IBD) was observable throughout the dataset, an effect less pronounced
between domestic sites than between wild foci. Formal landscape genomic analyses revealed
elevation surface as the major barrier to genetic connectivity between populations. Landscape
genomic analysis enabled a spatial model of vector connectivity to be elaborated, informing
ongoing control efforts in the region and providing a model for mapping the dispersal poten-
tial of triatomines and other disease vectors.

Vector control is the mainstay of Chagas Disease control [11]. Widespread wild reservoir
hosts, as well as a lack of safe treatment options [73,74] and associated healthcare infrastruc-
ture, mean that transmission cannot be blocked by reducing parasite prevalence in human and
animal hosts [75]. Our data indicate that elimination of domesticated �. 	
�����	���� in Ecua-
dor will be frustrated by repeated re-invasion from the wild environment. Similar risks to
effective control are posed by wild �. ���	����� in the southern cone region [12], �. ������� in
Los Llanos of Colombia and Venezuela [13] and potentially elsewhere in Latin America where

Table 2. Summary of bootstrap analysis. For each resistance surface model, number of parameters plus the intercept ( ), and average (Avg) additional parameters cor-
rected Akaike information criterion (AICc), AICc weight (�), rank, and frequency the model was top ranked are provided.

Resistance surface model � Avg AIC Avg AICC � Avg rank Top model (%)
Elevation 4 -535.59 -533.09 0.40 1.62 43.2
Distance 2 -531.44 -530.78 0.60 2.33 46
Land cover 12 -526.59 -487.59 4.17e-05 3.91 10.8
Roads 6 -523.81 -517.81 0.0008 4.18 0
Elevation + Roads 9 -525.76 -509.40 2.80e-06 4.40 0
Elevation + Land cover 15 -521.94 -425.94 1.45e-21 5.29 0
Land cover + Roads 17 -516.51 -312.51 3.97e-46 6.59 0
Elevation + Land cover + Roads 20 -511.14 328.86 1.11e-185 7.68 0

https://doi.org/10.1371/journal.pgen.1010019.t002
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competent vectors are present in the wild environment and nearby domestic locales (e.g., �.
������, �. ��
�����, �. ����	�
	�� and others [14,15]).

Understanding evolutionary processes that underpin the colonisation of the domestic envi-
ronment by arthropod vectors, and their specialisation to feeding on humans, is required to
characterize their vectorial capacity. Hybrid ancestry in ���	� ����	��, for example, is thought
to contribute to the biting preference for humans [3]. Human feeding preference can be rap-
idly genetically selected for in �����	�	� ������	 [76]. Specialisation of �	�	� �	����� on
humans, and resultant global outbreaks of dengue, yellow fever, and Chikungunya viruses,
may be traceable to SNPs associated with the emergence of differential ligand-sensitivity of the
odorant receptor ��	�!" in East Africa [2]. In triatomines, the nature of genetic adaptations
that have enabled the widespread dispersal of successful lineages are far from clear. �. ���	�����,
thought to have originated in the Western Andean region of Bolivia, spread rapidly among
human dwellings in the Southern Cone region of South America before its near eradication in
the 1990s [10]. Cytogenetic analyses suggest this early expansion was accompanied by a sub-
stantial reduction in genome size [77], but the significance of such a change is not clear. The
advantage of the �. 	
�����	���� system we describe is that it may be able to capture multiple
parallel adaptive processes and; therefore, can assist in the identification of common evolu-
tionary features associated with colonisation of the domestic environment. Despite limited
genomic coverage, and with no �. 	
�����	���� reference genome available, we mapped out-
lier loci to genes in the �. ������� draft genome, and found hits related to salivary enzyme pro-
duction [65], as well as embryonic development [63]. However, these findings represent only a
small first step towards undertstaning domestic adaptation in triatomines. Our methodological
pathway was limited to comparing allele frequencies at a relatively small fraction of genomic
loci between triatomine natural populations in order to identify oulier loci associated with a
given niche, and map them to genomic regions in �. ������� ([30,78]). Although, these genes
may have a role in domestic adaptation in triatomines, genome-wide association studies,
quantitative trait locus mapping or CRISPR/Cas9 gene knockout approaches are necessary to
fully reveal the genomic architecture of adaptation to the domestic setting. Nevertheless, these
findings motivate us to investigate further putative genes involved in local adaptation to the
domestic environment such as blood-feeding [79], sensory cues and host-seeking behaviour
[28,80], as well as human blood detoxification [79,81]. Recent data from our group in Loja
province shows that, without doubt, domestic �. 	
�����	���� feed extensively on human
blood [82]. To adequately explore the genomic bases of adaptive traits in triatomines, future
work should focus not only on improving functional annotation of triatomine genomes, but
also robust experimental designs (e.g., common-garden or recriprocal transplant experiments
[83,84]), to enable genotype and phenotype to be linked.

Our analyses identified a strong signal of genetic IBD among �. 	
�����	���� populations
across our study area. Geographic partitioning at this scale is consistent with limited autono-
mous dispersal capabilities of triatomines which are, in the main, poor fliers [41]. Wind-blown
dispersal observed in smaller vector species is unlikely in triatomines [85]. Passive dispersal of
triatomine vectors alongside the movements of their human hosts, which certainly underpins
the successful dispersal of other domesticated vector species, is more likely (e.g., �	�	� ���.
[86,87]). Lower IBD observed among domestic sites than wild sites may be consistent with pas-
sive dispersal alongside humans in the former. We observed a similar phenomenon among
parasite isolates from the same region in a previous study [59] in which �. 
��� domestic/peri-
domicile isolates showed no spatial structure in comparison with wild isolates. Nonetheless,
our formal exploration of the landscape drivers of vector dispersal did not reveal an important
effect of roads, and it is not clear to what extent human dispersal of vectors takes place based
on our data alone.

PLOS GENETICS Adaptation and dispersal in Chagas disease vectors

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010019 February 4, 2022 12 / 28



According to our landscape genomic analysis, elevation surface is a key predictor of con-
nectivity/discontinuity among �. 	
�����	���� populations. Our machine learning (ML) opti-
misation procedure provides objective parameterisation of altitude resistance values to �.
	
�����	���� gene flow [88]. Based on our landscape model predictions we were able to con-
struct an electric current map (Fig 5C) to assist medical entomologists and policy makers in
understanding vector dispersal routes. Current vector control strategies in Loja target a single
civic administrative unit (neighbourhood or town) for any given insecticidal intervention [55].
Historical vector control in Loja has been sporadic and limited insecticide spraying that varied
yearly (from 2004 to 2014) to only a small number of parishes due to budgetary constraints
[89]. Our data and model suggest this approach may be effective for certain communities (e.g.,
SF, CG, NT and YS, Fig 5). However, for highly connected hubs (e.g. BM, GA, CQ, AZ), suc-
cessful longer term triatomine control (e.g., insecticide spraying, house improvement, window
nets, etc.) will depend on simultaneous intervention in multiple connected communities.

In Ecuador, as with many other endemic regions in Latin America, efforts to control Cha-
gas disease may be complicated in the long term by substantial wild populations of secondary
triatomine vectors [16]. As with many other vector borne diseases, there is also a strong case
for the use of integrated vector management (IVM) for Chagas disease, where improvements
to housing, education, community engagement, in addition to bed net use and insecticide
spraying are all likely to be necessary to achieve sustained control [55,90]. Our data clearly
indicate that triatomines do invade houses in Loja and low-lying valleys provide routes for vec-
tor dispersal between communities and cost-effective IVM must be underpinned by this
understanding of vector population structure. Fortunately, genomic and analytical tools can
now furnish much of the detail, although better genomic resources for secondary triatomine
vector species are required to reveal the process of vector adaptation to the human host. Tar-
geting secondary vector species like �. 	
�����	���� must now be a priority for health authori-
ties, as these now represent the most pernicious and persistent barrier to controlling residual
Chagas disease transmission.

Methods

Sample collection and study area
�������� 	
�����	���� triatomine bugs (n = 272; S1 Table) were derived from a larger collec-
tion in the Center for Research on Health in Latin America (CISeAL) of Pontificia Universidad
Católica del Ecuador (PUCE). �������� ������� samples (n = 6) were provided by the London
School of Hygiene and Tropical Medicine and sequenced as an outgroup, as well as to assist
with the decontamination of the of 2b-RAD reads and their mapping to functional regions in
the draft �. ������� genome [27]. The CISeAL triatomine collection has been gathered since
2004 from domestic (human built environment) and wild (animals nests, burrows, etc) eco-
topes during field surveys across Loja, Ecuador. Surveys have occurred throughout the year
but 80% of the time during the summer, from June to August [58]. Houses and wild locations
have been selected over the years by random sampling, but depending on rough terrain acces-
sibility, resource availability and community participation [55,91,92]. Domestic �. 	
�����	��
��� were collected inside houses (e.g., rooms, underneath beds and clothing, walls, etc) using
the one-hour-man method described in previous studies [16,55,91]. Wild �. 	
�����	����
were collected in animals (bird/squirrel/mouse) nests attached to trees and bushes surround-
ing domestic collection sites [54,56,92].

This study triatomine subset (n = 272) was composed of spatially widespread collection
sites (n = 25) across Loja separated by 0.4 to 100 Km (Fig 4). Sites were located at different eco-
topes (e.g., domestic and wild ecotopes separated by 0.1 to 3 Km–Fig 2), altitudes (up to 1542.9
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m.a.s.l.–S5 Fig), vegetation types (e.g., tree/bush forest, cropland, etc.–S6 Fig) and adjacent to
different road infrastructure (e.g., highways, tertiary roads, etc.–S7 Fig). As mentioned above,
we defined �. 	
�����	���� as domestic/wild based on whether they were collected in the built
environment or wild animals nests, respectively. When speciemens were available we selected
triatomines from different houses/wild sites within a locale to have a good representation of
the site.

The triatomines were collected under Ecuadorian collection permits: N˚ 002–07
IC-FAU-DNBAPVS/MA; N˚ 003–2011-IC-FAU-DLP-MA; N˚ 006-IC-FAU-DLP-MA-2010;
N˚ 010-IC-FAN-DPEO-MAE; N˚ 011–2015- IC-INF-VS-DPL-MA; MAE-DNB-CM-2015-
0030 and internal mobilization guide N˚ 001-2018-UPN-VS-DPAL-MAE and N˚ 017-
2018-UPN-VS-DPAL-MAE. All these samples were exported to the University of Glasgow by
the scientific export authorization N˚70-2018-EXP-CM-FAU-DNB/MA.

Genomic DNA extraction and sequencing
Genomic DNA (gDNA) was extracted in 88.2% (443/502) of the samples using a SSNT/Salt
precipitation method [93] previously applied in triatomine bugs [94]. For each sample, gDNA
concentration was > 25 ng/uL and 288.4 ng/UL (sd. � 241.8) on average with purity ratios
(260/280 and 260/230) of 1.87 (sd. � 0.10) and 2.30 (sd. � 0.97), respectively. gDNA was
digested with the CspCI Type IIB restriction enzyme (IIB-REase—New England BioLabs, Inc.)
which has shown to yield a high marker density in triatomine [94]. DNA fragments (36bp)
were ligated to Illumina single-end adaptors and a specific barcode added during PCR amplifi-
cation to construct 382 150bp 2bRAD libraries [95]. Libraries were homogenised to an approx-
imate similar concentration, purified with magnetic beads [96] and pooled in two separate
batches (n = 191). Each batch was sequenced separately on 1-flowcell (2 lanes) HiSeq 2500
(Illumina) Rapid Mode platform with a single-end (1x50 bp) setup using v2 SBS chemistry at
the Science for Life Laboratory (SciLifeLab, Stockholm, Sweden), which also implemented the
reads demultiplexing and their in-house quality-filtering.

Bioinformatics of 2b-RAD sequenced data
Data cleaning and decontamination. Demultiplexed raw data quality scores were verified

in FastQC software v0.11.9 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
2.3% (16/689) Million reads (Mreads) were removed due to incomplete CspCI restriction site
(36 bp) and having across read quality score below 30 [97]. The 624.7 high quality Mreads with
integrate restriction site had their Illumina adaptors and barcodes trimmed, and reads were
forwarded (5’-3’) using custom scripts. To exclude non-target sequences, 1.2 Mreads (0.2%)
mapping to bacteria, virus, archaeal, ���������� 
��� [98] and ���� ����	�� (Genome Ref-
erence Consortium human build 38) genomes were removed using DeconSeq standalone v4.3
[99] with an alignment identity threshold of 85% and Kraken [100] taxonomic classifier (S1
Methods). After decontamination, each sample yielded on average 1.6 Million reads (inter-
quartile range = 1.9 Mreads).

Optimisation and genotyping. As advised in refs. [101,102], we optimised STACKS
v2.55 [103] DENOVO_MAP.PL programme by varying at a time one of the main controlling
parameters (-m -M and -n, -N) on each run while keeping the rest of the parameters at the set-
ting used in early experiments (e.g., -m 5, -M 2, -n 1, -N 4, -alpha 0.01, -bound_low 0,
-bound_high 0.01, -r 0.8, -min_maf 0.01 [94]). These parameters control the minimum num-
ber of raw reads required to form a stack (a putative allele) which is comparable to the mini-
mum depth of coverage (-m), the number of mismatches allowed between stacks (putative
alleles) to merge them into a putative locus which is comparable to the number of nucleotide
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mismatches allowed (- M), the number of mismatches allowed between stacks (putative loci)
during construction of the catalog that contains all loci and alleles of the population (-n) and
the number of mismatches allowed to align secondary reads (reads that did not form stacks) to
assemble putative loci to increase locus depth (-N) [103]. The parameter combination yielding
the highest number of SNPs with the least missing data and genotyping error rate was chosen
to be the optimal set (S2 Methods). Genotypes below a quality score of 30, and samples with
above 50% missing genotypes across sites and among loci were removed from downstream
analysis using the VCFtools software suite v0.1.5 5 [104]. The remaining missing genotypes
(< 0.5%) were imputed using the k-nearest neighbour genotype imputation (LDkNNi)
method [105] implemented in the TASSEL software v5 [106].

Genomic differentiation between domestic and wild ecotopes
Genetic diversity and linkage disequilibrium. Genetic diversity measures (e.g., observed

(HO) and gene diversity (HE), inbreeding coefficient (FIS) and allelic richness (Ar)–S2 Table)
were calculated for each collection site, and ecotopes (domestic and wild) within collection
sites, in the HIERFSTAT [107] and pegas [108] packages in R [109]. Sample-size corrected Ar
was calculated using the rarefaction method [62] implemented in the PopGenReport [110] R
package. To evaluate the percentage of SNP markers in linkage disequilibrium (LD), correla-
tion coefficient (r2) estimates were calculated between markers pairs using using the GUS-LD
R package [111] which revealed a very low percentage (< 0.20%). To observe whether genetic
diversity difference between ecotope pairs was significant, a permutation-based (10,000 per-
mutations) two sample t-test was performed on each pair diversity values using the RVAide-
Memoire R package (https://www.rdocumentation.org/packages/RVAideMemoire).

Individual-based genomic differentiation. Genomic differentiation among �. 	
�����
�	���� domestic and wild samples within a subset of seven collection sites (Fig 2A) was visual-
ised in a Neighbour-Joining midpoint tree [112] (Fig 2B) built from Euclidean genetic
distances of allele frequencies with the ape [113] R package. Tree components were edited in
FigTree software v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/) to better illustrate domestic
and wild samples, and their overall clustering pattern. To explore samples genomic differentia-
tion further, a DAPC [114] was performed in the same seven collection sites with the adegenet
[115] R package (Fig 2C). The most likely � ���� number of clusters was chosen based on the
lowest Bayesian information criterion (BIC). In the DAPC, all principal components (PCs)
and the eigenvectors of the first three DA discriminant functions were kept for visualizing the
samples individual coordinates of different PCs linear combinations (S8 Fig).

Pairwise FST comparisons. To support previous hierarchical analyses, pairwise FST com-
parisons [67] (Fig 2D) were performed between �. 	
�����	���� from domestic and wild eco-
topes within the seven collection sites (Fig 2A). In this study, FST was exploited as a measure of
genomic connectivity (flow) between ecotopes within given collection sites. Specifically, Nei’s
FST [116] pairwise comparisons were computed in adegenet R package and tested at 5% signifi-
cance via 999 permutations of individuals selected randomly within and between groups. P-
values were corrected for multiple comparisons using the false discovery rate (FDR) method
[117] in the function p.adjust of the stats R package [109].

Hierarchical F-statistics. �. 	
�����	���� molecular variation was explored at a four-level
(e.g., among collection sites, among ecotopes (domestic or wild) within collection sites, among
collection year within collection sites and among individuals within populations) hierarchy of
population structure. For each hierarchy, a F-statistic (with 95% C.I.) was calculated, and its
significance tested via 999 randomised permutations with the HIERFSTAT R package. For
comparison and given not all sites had both ecotopes, two hierarchical analysis were
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performed, one with the total collection sites (n = 25) and the other with a subset of collection
sites (n = 7) with samples collected in both ecotopes (S3 Table).

Domestic-wild SNP association analyses
As a response of �. 	
�����	���� ecotopes fluxes in multiple collection sites across Loja, we
screened for SNP RADseq markers under a strong signal of selection (outlier loci). The power
for detecting outlier loci of four different approaches, Random Forest (RF) machine learning
(ML) classification algorithm (implemented in refs. [118–120]), redundancy analysis (RDA)
constraint ordination [121], and OutFlank [122] and fsthet [123] FST-outlier methods, was
evaluated using a roughly similar number of domestic (n = 56) and wild (n = 52) �. 	
�����
�	���� across Loja province sharing a total of 2552 SNPs.

Random forest. The RF algorithm [124] implemented in the randomForest [125] R pack-
age was used to build a series of recursive decision trees (S3 Methods), or forest, to classify
domestic and wild �. 	
�����	���� based on their shared SNPs (predictors) covarying to a spe-
cific ecotope (response variable). Within each RF run, decision trees were trained by random
subsampling with replacement 66.6% of triatomine samples (training dataset), for which alea-
tory selected SNPs were top-ranked classifiers when minimizing the most within-ecotope vari-
ation (that is, partitioning triatomine by ecotope). Trained trees predictive power was tested
with the remaining 33.3% triatomine samples (‘Out-of-bag’ test dataset) in which ecotope mis-
classification of samples estimated an OOB-ER for that RF run; SNPs importance classification
accuracy was averaged among the total number of trees created in a given RF. Three indepen-
dent (spatial structure-corrected) RFs with 100,000 trees were run and their convergence on
SNPs importance classification accuracy was evaluated by Pearson’s correlation test. Top-
ranked SNPs (Fig 3A inset) among the three RFs (that is, importance classification accuracy
above 3) were chosen for backwards purging, as implemented in refs. [119,126]. Backwards
purging (Fig 3A) iteratively runs RFs starting with the full top-ranked SNPs and discarding the
least important ones before the next iteration until only two were left. The subset with the low-
est OOB-ER contained SNPs outlying strongly for the ecotope response.

Redundancy analysis. Outlier loci likely under selection were also identified using RDA
multivariate constrained ordination [127] implemented in the vegan [128,129] R package. First, a
matrix fitted values were obtained using multivariate linear regression between a matrix of geno-
types (response) and ecotopes (explanatory) with an additional term controlling for spatial struc-
ture (based on the three first axes of an individual principal coordinates of each sample). Then,
principal component analysis (PCA) on the fitted values matrix resulted in a constrained axis
composed from the variation explained, ‘redundancy’, by our explanatory variable. Overall RDA
model and variation explained by the constrained RDA axis were tested for significance via 999
permutations designed for constrained correspondence analysis. Additionally, SNPs (Fig 3B) and
samples (Fig 3C) coordinates were scaled and plotted in the ordination space to see their relation-
ship with the constrained axis (RDA 1), ecotope. SNPs z-transformed loadings separated by �2
and �3 standard deviations (permissible and conservative thresholds, respectively) from the mean
distribution of the total SNPs loadings in our RDA axis were considered under selection (Fig 3B)
(for further details on step-by-step RDA see S3 Methods and refs. [121,130,131]).

FST-Heterozygosity outlier method. The FST-Heterozygosity outlier method aims to
identify loci with strong allele differences among ecotopes. First, ecotope differentiation for
each locus is calculated using Wright’s FST without sample correction. The distribution of
these values is expected to have a chi-squared shape. The main goal is inferring a null FST dis-
tribution from neutral loci not strongly affected by diversifying selection [122]. Therefore, a
best-fit to the chi-squared FST distribution was achieved by trimming the lowest and highest
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FST values (loci in the tails of the distribution are likely to be under effective diversifying selec-
tion) and considering only the values in the centre (neutral loci and loci experiencing spatial
uniform balancing selection). Loci with unusual FST values relative to this fitted distribution
can be thought of experiencing additional diversifying selection [122,123]. We used two R
packages to accomplish this analysis, OutFlank [122] (Fig 3D left) and fsthet [123] (Fig 3D
right), and compared the results. The difference between the packages is that fsthet uses
smoothed quantiles of the empirical FST-Heterozygosity distribution to identify outlier loci
and does not assume a particular distribution or model of evolution as compared to OutFlank.
We set OutFlank function with proportion of lower and upper loci trimmed to 0.06 and 0.35,
respectively, and the rest of the values to default.

Mapping SNP outlier loci. In order to identify genes that may be responsible for local adap-
tation in the Chagas disease vector, �. 	
�����	����, to the domestic environment we mapped the
SNPs found in the association analyses to the �. ������� annotated genome [27]. We used the
BWA alignment tool implemented in DeconSeq software v0.4.3 [99] to map SNPs sequences (38
bp) at a minimum alignment threshold of 85. The sequences of the regions (60-300kb) in which
our SNPs aligned were BLAST searched and compared to the �. ������� genome.

Estimating gene flow with distance. Matrices of genetic (FST [116]) and geographic (Km)
distances (Fig 4A) between the 25 collection sites (Fig 4B), and between domestic and wild col-
lection sites separately, were obtained with the adegenet and raster [132] R packages, respec-
tively. Mantel tests [133] were performed on those matrices using the ecodist [134] R
packages. Genetic and geographic correlation between domestic and wild ecotopes was also
viewed separately by fitting a generalised least square (GLS) model with a maximum likelihood
population effects correction (MLPE) [135] implemented in the corMLPE (https://github.
com/nspope/corMLPE/) R package and assuming a linear relationship

#�$ � a� b�%�$ � ��� �&� � t �� � 	�$ �Eq1�

between two distance matrices based on genetic and geographic distance measures, Y and X,
respectively. Centring the %�$ in about its mean, ��, removes the correlation between the esti-
mates of �� and �� [135]. H, determines the ecotope and the ’ij term adds the MLPE random
effect correlation structure.

Estimating gene flow with resistance
Genetic distances. Given genomic differentiation between domestic and wild ecotopes

was low, we combined all samples within a collection site and used collection site as the unit in
our landscape genetic analysis. Collection site units are logistically and budgetary important
when carrying out triatomine surveys and insecticide spraying. Heirachical, phylogenetic and
DAPC analyses also suggested �. 	
�����	���� samples were closely clustered by collection
sites. To estimate ancestry of invididuals at each collection site and support our clustering cri-
teria, an ADMIXTURE [136] analysis was performed using a 5-step expectation-maximization
algorithm and 10-fold cross-validation with 200 boostrap resampling iterations to estimate the
standard errors for � = 2–30 (S1 and S2 Figs). Using a landscape genomics mixed modelling
framework (Fig 1), we aimed to disentangle the effects of landscape heterogeneity on �. 	
���
���	���� population structure and gene flow (S4 Methods). A Hedrick’s GST [66], which cor-
rects for sampling limited populations [137], distance matrix among the 25 collection sites (Fig
5B) was obtained in the GenoDive v3.04 [138] software (S5 Table). In addition, we ran a Pear-
son’s correlation test between the Hedrick’s GST matrix, and Meriman’s standardised FST [68]
and FST [67] matrices, calculated in the same software, to evaluate the consistency of genomic
differentiation pattern among collection sites with different genetic distance measures.
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GIS data collection and preparation. Elevation, land cover and road network (hereafter,
surfaces—S5, S6 and S7 Figs) landscape variables were chosen over temperature and precipita-
tion to test �. 	
�����	���� dispersal and gene flow and to avoid multicollineary and overffting
in our landscape mixed models. For the continuous surface (elevation surface–S5 Fig), only
monomolecular transformations (e.g., S4 Fig) with any possible shape and maximum parame-
ters were used to explore the relationship between gene flow and altitude. Our categorical sur-
faces, land cover and road network, were reclassified as follows. Those highly fragmented land
cover categories (e.g., cultivated and managed areas) were reclassified to the least resistance of
gene flow, whereas regular flooded areas and water bodies were reclassified to the highest resis-
tance values (S6 Fig and S7 and S8 Tables). High transitable roads (e.g., highways and tertiary
roads) were assigned to the least resistant values, whereas absence of roads were assigned to
the highest resistance values (S9 Table). Original GIS surfaces were obtained from multiple
sources (S10 Table) and transformed to have the same format (raster), resolution (250 m2

grid), extent (~ 97 Km2) and coordinate reference system (Universal Transverse Mercator
(UTM)). Spearman’s rank correlation coefficient (rho) tests were run (S6 Table) and plotted
(S3 Fig) on each pair of surfaces to ensure variables were uncorrelated (rho < 0.29 based on
Cohen [139]). All three surfaces original values were transformed to the same scale (i.e., a min-
imum value of 1 and a maximum of 100) to meet our initial hypothesis.

ResistanceGA principle. The genetic algorithm [140] implemented in the R package,
ResistanceGA [69], was used for multiple and sinlge-surface optimization of resistance values
to gene flow in the above surfaces (S4 Methods). The method works by correlating genomic
(response) and effective (predictor) distances (derived from a random-walk commute time
algorithm [141]–S4 Methods) matrices through a maximum likelihood population effects
[135] model and, on each iteration, evaluates the best resistance parameters based on a ML
objective function, log-likelihood in our case. Simulating the process of evolution on each iter-
ation, the best model and parameters are selected and passed over the next generation with
some random change on parameter values to explore the parameter space widely.

Multiple surface optimisation. We performed three replicate runs to optimise all possible
combinations of our surfaces (hereafter, composite surfaces), including surfaces individually
(hereafter, single surfaces) to generate models with optimised resistance values. The major GA
algorithm options were set to default, except for the ‘pop.mult’ which was set to 20 to increase
the number of parameters to evaluate on each surface every iteration. All optimisation pro-
cesses were run in parallel with 10–20 cores in a Debian cluster (http://userweb.eng.gla.ac.uk/
umer.ijaz/#orion) at the University of Glasgow. Running times varied from days to weeks
depending on surface size and number combined at a time.

Model selection. Composite and single surface models, including an intercept- only (null
model) and a geographic distance (resistance grid cells are set to 1 to model isolation-by-dis-
tance) model were evaluated (Table 1) and the best model was selected based on the lowest
AICc, AICc weight and Delta AICc. To confirm the robustness of the optimisation surfaces and
controlling for potential bias due to uneven distribution of sample locations in the landscape,
we carried out bootstrap resampling (10,000 iterations) in 85% of our sample locations and
then fit the subset to each of the effective distance matrices from the optimised surfaces. After
the bootstrapping analysis, the average AICc among all iterations and the percentage a model
was top over all iterations was used as a criterion to rank the best model (Table 2).

Landscape connectivity model. We used the best optimised single (elevation surface)
resistance surface models to estimate landscape connectivity through a circuit theory algo-
rithm [71,72] (Fig 5C) implemented in the software CIRCUITSCAPE v5 [142]. Here, our resis-
tance surfaces were converted into electric networks in which each grid cell represented a
node connected to their neighbours by resistors of different weight. Resistor weights were
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calculated from the average resistance values (i.e., optimised resistance values) of the two grid
cells being connected. The algorithm applies a simulated electric current between all pairs of
focal nodes (collection sites) in the network to estimate effective distances between them (S4
Methods). A current density map (Fig 5C) was obtained from those resistance distance estima-
tions representing a random walk probability of movement through our study area.
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