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Abstract: We present a description of the production of di-lepton pair production

(through Z boson and virtual photon) in association with at least two jets. This cal-

culation adds to the fixed-order accuracy the dominant logarithms in the limit of large

partonic centre-of-mass energy to all orders in the strong coupling αs. This is achieved

within the framework of High Energy Jets. This calculation is made possible by extending

the high energy treatment to take into account the multiple t-channel exchanges arising

from Z and γ∗-emissions off several quark lines. The correct description of the interference

effects from the various t-channel exchanges requires an extension of the subtraction terms

in the all-order calculation. We describe this construction and compare the resulting pre-

dictions to a number of recent analyses of LHC data. The description of a wide range of

observables is good, and, as expected, stands out from other approaches in particular in

the regions of large dijet invariant mass and large dijet rapidity spans.
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1 Introduction

The Large Hadron Collider (LHC) sheds ever more light on Standard Model processes

at higher energies as it continues into Run II. One “standard candle” process for the

validation of the Standard Model description in this new energy regime is the production

of a dilepton pair through an intermediate Z boson or photon, in association with (at

least) two jets [1–7]. This final state can be entirely reconstructed from visible particles (in

contrast to pp→ dijets plus(W →)eν) making it a particularly clean channel for studying

QCD radiation in the presence of a boson. Experimentally, this process is indistinguishable

from the production of a virtual photon which has decayed into the same products, and

we will consider both throughout.

W and Z/γ∗-production are excellent benchmark processes for investigating QCD cor-

rections, since the mass of the boson provides a perturbative scale, while the event rates

allow for jet selection criteria similar to those applied in Higgs boson studies. W,Z/γ∗-

production in association with dijets is of particular interest, since in many respects it

behaves like a dijet production emitting a weak boson (i.e. electroweak corrections to a

QCD process rather than QCD corrections to a weak process). This observation means

that a study of W,Z/γ∗-production in association with dijets is relevant for understanding

Higgs-boson production in association with dijets (which in the gluon-fusion channel can
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be viewed as a Higgs-boson correction to dijet production). This process is interesting

(e.g. for CP -studies) in the region of phase space with large dijet invariant mass, where

the coefficients in the perturbative series have logarithmically large contributions to all

orders. As an example of the increasing importance of the higher orders, it is noted that

the experimental measurement of the (N + 1)/N -jet rate in Z/γ∗+jets increases from 0.2

to 0.3 after application of very modest VBF-style selection cuts even at 7 TeV [1, 2, 4].

The current state-of-the-art for fixed-order calculations for this process is the next-to-

leading order calculation of Z/γ∗ plus 4 jets by the BlackHat collaboration [8]. While it has

become standard to merge next-to-leading order QCD calculations with parton showers [9–

14], results for jet production in association with Z/γ∗ bosons have so far only appeared

with up to two jets [15, 16] (corresponding results for a W boson with up to three jets were

given in [17], following those for a W boson plus two jets in [16, 18]). Indeed, W/Z + 0−,

1− and 2−jet NLO samples have been merged with higher-multiplicity tree-level matrix

elements and parton shower formulations [19, 20]. Beyond the matching, the parton shower

cannot be expected to accurately provide a description of the large-invariant mass limit,

from its resummation of the (soft and collinear) logarithms which are enhanced in the region

of small invariant mass. An alternative method to describe the higher-order corrections

is instead to sum the logarithmic corrections which are enhanced at large invariant mass

between the particles. This is the approach pioneered by the High Energy Jets (HEJ)

framework [21, 22]. Here, the hard-scattering matrix elements for a given process are

supplemented with the leading-logarithmic corrections (in s/t) at all orders in αs. This

approach has been seen to give a good description of dijet and W plus dijet data at

both the TeVatron [23] and the LHC [24–28]. In particular, these logarithmic corrections

ensure a good description of W plus dijet-production in the region of large invariant mass

between the two leading jets [28] and in large invariant mass regions in a recent 4-jet

ATLAS study [29]. It is not surprising that standard methods struggle in the region of large

invariant mass, since the perturbative coefficients receive large logarithmic corrections to all

orders, and perturbative stability is guaranteed only once these are systematically summed.

The purpose of this paper is to develop the treatment of such large QCD perturbative

corrections within High Energy Jets to include the process of Z/γ∗ plus dijets. While this

process has many features in common with the W plus dijets process, one major difference

is the importance of interference terms, both between different diagrams within the same

subprocess (e.g. qQ→ qQ(Z →)e+e− with emissions off either the q or Q line) and between

Z and γ∗ processes of the same partonic configuration. For processes with two quark lines,

the possibility to emit the Z/γ∗ from both of these leads to profound differences to the for-

malism, since the t-channel momentum exchanged between the two quark lines obviously

differs depending on whether the boson emission is off line q or Q. Furthermore, the inter-

ference between the two resulting amplitudes necessitates a treatment at the amplitude-

level. High Energy Jets is formulated at the amplitude-level, which, together with the

matching to high-multiplicity matrix-elements, sets it apart in the field of high energy log-

arithms [30–38]. The added complication over the earlier High Energy Jets-formalism (and

indeed in any BFKL-related study) by the interfering t-channels introduces a new structure

of divergences in both real and virtual corrections, and therefore a new set of subtraction

– 2 –



J
H
E
P
0
5
(
2
0
1
6
)
1
3
6

terms are needed, in order to organise the cancellation of these divergences. The match-

ing to full high-multiplicity matrix elements puts the final result much closer to those of

fixed order samples merged according to the shower formalism [15, 16, 19, 20] — although

of course the logarithms systematically controlled with High Energy Jets are different to

those controlled in the parton shower formalism. In particular, High Energy Jets remains

a partonic generator, i.e. although it is an all-order calculation (like a parton shower), it is

not interfaced to a hadronisation model. Initial steps in combining the formalism of High

Energy Jets and that of a parton shower (and hadronisation) were performed in ref. [39].

We begin the main body of this article by outlining the construction of a High Energy

Jets amplitude and its implementation in a fully flexible parton level Monte Carlo in the

next section. In section 3 we derive the new subtraction terms which allows us to fully

account for interference between the amplitudes. The subtraction terms allow for the

construction of the all-order contribution to the process as an explicit phase-space integral

over any number of emissions. Specifically, the main result for the all-order summation is

formulated in eq. (3.14):

σ =
∑
fa,fb

∞∑
n=2

(
n∏
i=1

∫
d3pi

(2π)32Ei

)∫
d3pe−

(2π)32Ee−

∫
d3pe+

(2π)32Ee+

× (2π)4δ(2)

(∑
i

pi⊥ − pe−⊥ − pe+⊥
)

× |MHEJ−reg
fafb→Z/γ∗fa(n−2)gfb({pi}, pe− , pe+)|2 xaffa(xa, Qa)xbffb(xb, Qb)

ŝ2
Θcut,

where σ is the sought-after cross section, and the rest of the equation is discussed in the

relevant section. Section 3 also discusses the necessary modifications in order to include

fixed-order matching. In section 4 we show and discuss the comparisons between the new

predictions obtained with High Energy Jets and LHC data. We conclude and present the

outlook in section 5.

2 The high energy limit of QCD and real corrections

Fadin and Lipatov observed [30, 31] that QCD scattering amplitudes at large invariant

mass (compared to the transverse momenta involved) exhibit the scaling expected from

Regge-theory. In particular, this means that for a given configuration of the transverse

momenta in a 2 → n-scattering, the limiting behaviour of the scattering amplitude as

the invariant mass between each pair of partons increases is dictated by the maximum

spin of any particle, which could be exchanged in what is termed the t-channel between

partons neighbouring in rapidity. This is found by ordering both initial and final state

particles according to rapidity (or light-cone momenta in the case of incoming particles),

and drawing all possible colour connections between these. If a colour octet connection

is allowed between pairs of particles, this corresponds to the possibility of a spin-1 gluon

exchange, whereas colour-singlet exchange is identified as a spin-1/2 quark exchange.

The contribution to the cross section from a given momentum configuration of the

jets (as opposed to partons) from the different flavour assignments will have a different
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+

−

yg ≫ yq

|M| ∝ s1/2

+

−

yq ≫ yg

|M| ∝ s1

Figure 1. The two lines above illustrate the two possible rapidity orders for the process qg → qg. In

the first case, where the rapidity of the gluon is greater than the quark, the allowed colour connection

is a singlet corresponding to a quark exchange in the t-channel. This leads to a contribution to the

amplitude which scales as s1/2. In the second case, the allowed colour connection is an octet which

corresponds to a gluon exchange in the t-channel and a scaling of s1. The latter will clearly be the

dominant configuration in the limit of large s.

limiting behaviour, since the large invariant-mass scaling is different e.g. in the process

of qg → qg, if the rapidity ordering of the final state q and g is swapped. Considering a

specific transverse momentum configuration of the jets in a simple 2 → 2-process, the full

amplitude (which will then be squared in the calculation of the cross section) will scale as

sω, where s is the invariant mass of the final jets and ω is the spin of the particle which

would be exchanged in the t-channel. Some cases, e.g. gg → gg, always allow for a gluon to

be exchanged, and hence the amplitude scales as s1 for large s. In other cases, e.g. qg → qg,

the t-channel particle exchanged is either a quark or a gluon depending on the rapidity

order of the flavour assignment, and hence the amplitude scales as s1/2 or s1 for large s.

However, in this case, it is clear that in the limit of large s the contribution to the resulting

jet momentum configuration will be dominated by the process with the gluon exchange.

This discussion is illustrated further in figure 1. This argument may be further generalised

to the case of more than two outgoing partons, where now a 2→ n amplitude scales as

|M| ∝ sω1
12 . . . s

ωn−1

(n−1)n Γ({ti}), (2.1)

where the outgoing particles are ordered in rapidity, sij is the invariant mass of particles

i and j and ωi is the spin of the particle exchanged in the t-channel of neighbouring

particles. Γ({ti}) depends only on the square of the t-channel momenta (which in the

limit corresponds to minus the square of their transverse components).

We have thus identified the flavour-assignments of partons which will yield the dom-

inant contribution in the limit of large invariant mass between the jets, for any given

configuration of the transverse momenta: the dominant contribution is obtained in the

flavour configurations which allow for colour-octet (gluon) exchanges between all neigh-

bouring particles. We call these “FKL configurations”. Within High Energy Jets we

concentrate on describing to all orders in the strong coupling these scattering amplitudes,

which contribute to the leading power behaviour of the cross section.
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V µ2

V µ3

V µn−1

pa

pb

p1

pn

pn−1

p3

p2

Figure 2. The schematic structure of the high-energy description of the matrix element for qg →
qg . . . g(z →)`−`+, given in eq. (2.2). In that specific case particles a and 1 are quarks and particles

b, 2,. . . ,n are gluons.

These scaling arguments are unaffected by the additional emission of an electroweak

boson and specifically here we discuss the description with an additional Z boson or virtual

photon. The emission of an electroweak boson is viewed merely as an electroweak correction

to the underlying QCD dijet production.

We begin by considering qg-initiated processes where the quark is the backward-moving

incoming parton and take the leptonic decay of the Z/γ∗. The ordering described above

motivates a unique definition of t-channel momenta, namely if pa is the momentum of the

backward quark, pb is the momentum of the forward gluon and y1 � y2 � . . . � yn,

one then defines ti = q2i , where q1 = pa − p1 − p`+ − p`− and qi = qi−1 − pi for 2 ≤ i ≤
n. Furthermore, the leading contribution, which satisfies the requirement of maximal t-

channel gluon exchanges, arises purely from the outgoing state where all of the intermediate

particles in rapidity (those labelled 2 to n − 1) must be gluons. As discussed later, the

factorisation property of amplitudes in the high-energy limit then allows us to describe the

emission of each of these gluons with an independent effective emission vertex, a generalised

Lipatov vertex V µ [21], multiplying the corresponding expression for the equivalent 2 → 2

process, qg → qg(Z/γ∗ →)`−`+ (see figure 2). At matrix-element-squared level this gives

|MHE
qg→Z/γ∗qg...g|

2
= |MHE

qg→Z/γ∗qg|
2

×
n−2∏
i=1

(
g2CA

( −1

titi+1
V µ(qi, qi+1)Vµ(qi, qi+1)

)) (2.2)

where

V µ(qi, qi+1) = −(qi + qi+1)
µ

+
pµa
2

(
q2i

pi+1 · pa
+
pi+1 · pb
pa · pb

+
pi+1 · pn
pa · pn

)
+ pa → p1

− pµb
2

(
q2i+1

pi+1 · pb
+
pi+1 · pa
pb · pa

+
pi+1 · p1
pb · p1

)
− pb → pn.

(2.3)
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The lowest order expression on the right-hand-side of eq. (2.2), |MHE
qg→Z/γ∗qg|

2
, is the high-

energy description of the q(pa)g(pb) → q(p1)g(pn)(Z/γ∗ →)`−(p`−)`+(p`+) process, which

will be described in full detail in section 2.3. While pa+pb 6= p`−+p`++p1+pn for n > 2, the

expression is built of two independent factorised pieces, so this is not a problem. Care needs

to be taken with the expression for the t-channel pole, which must be taken symmetrically

as 1/t2 = 1/(t1tn−1). If the quark is instead the forward moving incoming parton, the

expression is identical except for the definition of q1 where the lepton momenta is removed.

For other initial states contributing to Z/γ∗ plus dijets, however, the situation is more

complicated. In particular for qQ-initiated processes, as the Z/γ∗ may be emitted from

either quark line, and there is interference from the two possibilities of exchanged t-channel

momenta. The effective emission vertex remains valid, but we must now work at amplitude

level to take into account this interference, both here and for the virtual corrections as

described in section 3. In the remainder of this section we will develop the equivalent of

eq. (2.2) for all channels of Z/γ∗ plus dijets. We begin this in the next subsection, by

describing our method of constructing |MHE
qg→Z/γ∗qg|

2
.

2.1 Writing matrix elements in terms of currents

Traditionally, amplitudes in the HE limit are described as a product of two scalar “impact

factors”, one for each end of the t-channel chain. Instead, in HEJ, we describe the core

2→ X+2 processes in terms of a contraction of two independent currents. This is inspired

by the structure of the exact tree-level amplitudes, where each quark line automatically

generates a current. Effectively, helicity currents allow for the distinction of the kinematic

invariants s and u, which is lost in the standard high-energy factorisation at the cross-

section level. This distinction proves necessary in retaining accuracy in the approximations.

This can already be illustrated in the simple example of qQ→ qQ. For all negative helicities

for example, one can immediately write:

iMq−Q−→q−Q− = ig2sT
d
1aT

d
2b

〈1|µ|a〉 · 〈2|µ|b〉
t

, (2.4)

where we have employed the spinor-helicity notation for the quark spinors, where 〈i|µ|j〉 is

shorthand for ū−(pi)�γ
µu−(pj). The repeated colour index d is summed over and the lower

colour indices refer to their respective particle.

We will work in lightcone coordinates p± = E ± pz and further define p⊥ = px + ipy
and eiφ = p⊥/|p⊥|. In components, we get (using the spinors parametrised as in ref. [21])

iMq−Q−→q−Q− = ig2sT
d
1aT

d
2b

2
√
p−a p

+
b

t

(√
p+1 p

−
2 e

iφ2 −
√
p−1 p

+
2 e

iφ1

)
. (2.5)

Let us first discuss the approach traditionally taken: in order to write this in the

desired factorised form of a product of scalars, C(pa, p1)× C(pb, p2), it is necessary to use

the limits p+1 � p−1 and p−2 � p+2 to neglect the first term. If one further approximates
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p−1 ' p−a and p+b ' p+2 , we may write [40]1

iMq−Q−→q−Q− =
2s

t

[
gsT

d
1ae

iφ1
]
.
[
−igsT d2b

]
. (2.6)

This correctly captures the leading behaviour in s/t and gives a factorised expression.

However, by using helicity-currents, it is possible to achieve a form of factorisation

without relying on kinematic approximations. Returning to eq. (2.4), it may immediately

be written as a contraction of two factorised four-vectors: V (pa, p1).V (pb, p2), where the

vectors depend on the same momenta as the factorised vertices in the traditional approach,

but now the vectors (up to constants) are just standard currents j−µ(pi, pj) = 〈i|µ|j〉:

iMq−Q−→q−Q− ≡ ig2sT d1aT d2b
jµ1 · j2µ

t
. (2.7)

Each helicity current has two independent components and this extra degree of freedom

compared to the impact factors of the traditional approach is precisely what is required in

order to keep the first term in eq. (2.5) and therefore describe the amplitude exactly.

This illustration is clearly for a very simple process, but the same conclusion applies

more generally. One can exactly describe qg → qg as the contraction of a standard quark

current and a gluon current jgµ, consisting of a product of a standard quark current and

colour factors depending on the gluon momenta only [22]. This holds even though the qg-

scattering process has s, t and u-singularities. The same holds for gg → gg as long as the he-

licities of the two incoming (and outgoing) gluons differ, such that one can define the s, t, u-

channels. One can also go beyond pure QCD and describe qQ → Wq′Q, qQ → Z/γ∗qQ

and qQ→ qQH exactly as the contraction of two currents [21]. In the next subsection we

describe the new current for Z/γ∗ plus jets, and the construction of the resulting amplitude.

2.2 A current for Z/γ∗ plus jets

In this section, we will construct a current to describe the emission of a Z/γ∗ boson and

exchange of a t-channel gluon from a quark or antiquark line. We can write the current

for the Z emission (only), jµZ , as a sum of the contributions from the two possible emission

sites: one where the Z is emitted before the t-channel gluon and another where the gluon

is radiated first, shown diagramatically in figure 3. For definiteness, we could then consider

the decay Z → e+e−. We have

jZµ =
CZqCZe

p2Z −M2
Z + iΓZMZ

(〈1|γσ(/pout + /pe+ + /pe−)γµ|a〉
(pout + pZ)2

+

+
〈1|γµ(/pin − /pe+ − /pe−)γσ|a〉

(pin − pZ)2

)
〈e+|γσ|e−〉,

(2.8)

where MZ is the mass of the Z boson, ΓZ is its width, CZx is the coupling of the Z to x,

x = e, q, νe, . . . and µ is the Lorentz index for the t-channel gluon propagator. Expanding

the quark and lepton momenta using their completeness relations we can fix the helicity of

1Our spinor conventions differ by a phase to those in ref. [40] which vanishes in the matrix-element

squared.
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=

pin pout

Z/γ∗

pe+

pe−

+

pe+

pe−

pe−

pe−

pg pg pg

Z/γ∗ Z/γ∗

pin pout poutpin

ε∗µ ε∗µε∗µ

Figure 3. The current used to describe the quark line with the emission of a Z or γ∗ is the sum

of the contributions arising from the two possible emission sites for the Z/γ∗.

the incoming quark, hin, and the outgoing quark, hout, to be identical, and we are left with

a current which only has four possible helicity configurations depending on hq = hin = hout
and the electron helicity, he:

jZµ (hq, he) = C
hq
ZqC

he
Ze

〈e+he |γσ|e
−
he
〉

p2Z −M2
Z + iΓZMZ

(2.9)

×
(2pσ1 〈1hq |γµ|ahq〉+ 〈1hq |γσ|e+hq〉〈e

+
hq
|γµ|ahq〉+ 〈1hq |γσ|e−hq〉〈e

−
hq
|γµ|ahq〉

(pout + pZ)2

+
2pσa〈1hq |γµ|ahq〉 − 〈1hq |γµ|e+hq〉〈e

+
hq
|γσ|ahq〉 − 〈1hq |γµ|e−hq〉〈e

−
hq
|γσ|ahq〉

(pin − pZ)2

)
.

For the charged lepton channels for Z-decays, we must also include the contribution

arising from the exchange of an off-shell photon, γ∗. The expression for the current for

the off-shell photon has the same form to that shown in eq. (2.9) with the Z propagator

replaced with that of the photon and the couplings modified. Our final current is then the

sum of the two:

jZ/γ
∗

µ (hq, he) = jZµ (hq, he) + jγµ(hq, he). (2.10)

2.3 All-order real corrections for Z/γ∗ plus dijets

With the current derived in the previous subsection, we have the required building blocks

to describe the dominant contribution to the real emission in the HE limit, in the manner

of eq. (2.2). We first construct the lowest order description, |MHE
qg→Zqg|

2
. Our current,

j
Z/γ∗
µ (hq, he), is already the sum of diagrams with a mediating Z and diagrams with a

mediating γ∗. For the quark-gluon initiated processes, this is then all we need for the

complete amplitude and we write:

|MHE
qg→Zqg|

2
=
g2s
8

1

(pa − p1 − pe+ − pe−)2(pb − pn)2

∑
hq ,he,hg

|jZ/γ∗µ (hq, he)j
gµ(hg)|2. (2.11)

The interference term between the Z and γ∗ processes is immediately included in this

construction through squaring the sum of eq. (2.10). The equivalent expressions for the
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gq-initial state and for q̄g and gq̄-initial states all have the same simple form. This can

then be substituted into eq. (2.2) to give the real corrections up to any order in αs.

We now turn our attention to the case of two incoming quark lines (or a mix of quark

and anti-quarks). Here, it is possible for the Z to be emitted from either quark line, and

it turns out that the interference effects are sizeable, see figure 4. We must include both

possibilities and allow for the interference term. Our high-energy description of the matrix

elements relies on the correct description of the t-channel momenta, and this obviously

depends on which of the quark lines the Z or γ∗ was emitted from. We therefore need to

modify the simple framework outlined above. We will use the subscript a (b) to label the

current at the lowest (highest) end of the rapidity chain. We then define ta (tb) to be the

t-channel momentum exchanged when the bosons are emitted at the lowest (highest) end of

the rapidity chain. Then the full amplitude squared for qQ→ qQ(Z/γ∗ →)e+e− is given by:

|MHE
qQ→ZqQ|

2
= g2s

CF
8Nc

∣∣∣∣jZ/γ∗a · jb
ta

+
ja · jZ/γ

∗

b

tb

∣∣∣∣2 (2.12)

= g2s
CF
8Nc

(∣∣∣∣jZ/γ∗a · jb
ta

∣∣∣∣2 +

∣∣∣∣ja · jZ/γ∗b

tb

∣∣∣∣2 + 2<
{(

j
Z/γ∗
a · jb
ta

)(
ja · jZ/γ

∗

b

tb

)∗})
,

where ja,b are the pure quark currents defined above eq. (2.7). The coupling constants

of the Z to the relevant quarks and leptons are contained within jZ/γ
∗
(hq, he), as in

eq. (2.8). Figure 4 shows the value of this matrix element squared divided by the squared

partonic centre-of-mass energy for increasing rapidity separation of the two jets. The

result is compared with that obtained from the full, tree-level matrix elements from

MadGraph5 aMC@NLO [14]. The slice through phase space here is given by:

pi = (ki⊥ cosh yi; ki⊥ cosϕi, ki⊥ sinϕi, ki⊥ sinh yi)

with

k1⊥ = ke+⊥ = 40GeV ke−⊥ =
m2
Z

2ke+⊥ (cosh(ye+ − ye−)− cos(ϕe+ − ϕe−)))
,

ϕ1 = π ϕe+ = π + 0.2 ϕe− = −(π + 0.2),

y1 = ∆ y2 = −∆ ye+ = ∆ ye− = ∆− 1.5.

(2.13)

The matrix element squared divided by ŝ2 tends to a constant when the rapidity separation

of the two outgoing partons grows large. This is as expected from BFKL and Regge

theory. Figure 4 also shows the separate contributions to the total matrix element squared

coming from the Z/γ∗ emission from the forward moving quark line (black, dashed)

and emission from the backward moving quark line (green, dotted). In this phase space

slice, the leptons also have an increasing positive rapidity and so the forward emission

matrix element describes the full matrix element most closely, with the contribution

from backward-emission falling at large values of ∆y. The sum of the forward and

backward emission matrix elements neglecting interference (magenta, dotted) significantly

overestimates the final result. Once the (destructive) interference effects have been taken
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Leading Order

|MHE|2 forward emission

|MHE|2 backward emission

|MHE|2 sum (no interference)

|MHE|2 full (with interference)

Figure 4. The matrix-element squared divided by the square of the partonic centre-of-mass energy

for qQ→ ZqQ with the Z decaying to an electron-positron pair for the phase space slice described

in eq. (2.13). Increasing values of ∆ represent increasing rapidity separation between the jets. The

different lines show the contributions from different terms in the calculation: only emission from

the forward or the backward quark line (black, dashed and green, dotted), their sum without the

interference term (magenta, dotted) and their sum including interference (red, solid) which is seen

to agree exactly with the LO result (blue, thick solid).

into account, the full sum (red, solid) correctly reproduces the LO matrix element (blue,

thick solid). It is therefore clear that at low rapidities the inclusion of the interference

effect plays an important role in the accuracy of the matrix element. Neither this effect nor

the interference between the Z and γ∗ channels is included when electroweak corrections

are included in a parton shower [41–43].

One can also investigate the importance of the virtual photon contributions we include

and their interference with the pure Z process. The inclusion of the virtual photon terms is

particularly important when studying a combined lepton invariant mass, (pe+ + pe−)2, far

from the Z mass peak. This can be seen in figure 5, where slices through phase space are

shown similarly to figure 4, but now for an (a) lower and (b) higher value of the dilepton

mass. In both cases, the contribution of the virtual photon processes is above 25%.

Having established our description of the 2 → Z/γ∗ + 2 parton process, we now turn

our attention to adding the all-order real corrections. Our all-order expression will take

the form of a sum of terms like eq. (2.2) for each of the three terms in eq. (2.12), such that
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|2
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6ŝ

2
π
5

1e 24

(pe+ +pe− )
2 =(120 GeV)2

Tree Level - MadGraph
Tree Level Z/γ ∗  - HEJ

Tree Level Z only - HEJ

(b)

Figure 5. The matrix-element squared divided by the square of the partonic centre-of-mass energy

for qQ → Z/γ∗qQ with the Z/γ∗ decaying to an electron-positron pair. The O(α2
sαW ) tree-level

contribution as described in HEJ (red, dashed) exactly matches that of Madgraph (blue, solid). The

terms corresponding to the production of a Z boson only (green, dotted) significantly undershoots

the full result. The virtual photon terms are, therefore, clearly an important contribution to the

matrix element away from the Z Breit-Wigner peak.

the squared matrix element for qQ→ (Z/γ∗ →)e+e−q(n− 2)gQ is:

|MHE
qQ→Z/γ∗q(n−2)gQ|2 = g2s

CF
8Nc

(g2sCA)n−2

×
(
|jZ/γ

∗
a · jb|2
ta1ta(n−1)

n−2∏
i=1

−V 2(qai, qa(i+1))

taita(i+1)
+
|ja · jZ/γ

∗

b |2
tb1tb(n−1)

n−2∏
i=1

−V 2(qbi, qb(i+1))

tbitb(i+1)

− 2<{(jZ/γ
∗

a · jb)(ja · jZ/γ
∗

b )}√
ta1tb1

√
ta(n−1)tb(n−1)

n−2∏
i=1

V (qai, qa(i+1)) · V (qbi, qb(i+1))√
taitbi

√
ta(i+1)tb(i+1)

)
.

(2.14)

In the case of n = 2, this reduces back to eq. (2.12). If either a or b is an incoming gluon,

there is once again a unique set of t-channel momenta and one can set the relevant j
Z/γ∗
a

or j
Z/γ∗

b to zero in the formula above. This then gives eq. (2.2) up to a factor of CA/CF
which corrects the colour factor.

We therefore have a compact expression for the real-emission contribution to a given

process at any order in αs. All real corrections can then be added by summing over n ≥ 2,

provided that each contribution is finite. We will organise the cancellation of singularities

using a phase-space slicing method which we describe in the next section.

3 Virtual corrections and the cancellation of divergences

In the previous section, we derived a description for the dominant real emission corrections

in the HE limit for a given process contributing to Z/γ∗ plus jets. Here we describe the

corresponding virtual corrections and the organisation of the cancellation of divergences.
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For a general QCD amplitude, the Lipatov Ansatz gives an elegant prescription for the

leading logarithmic and next-to-leading logarithmic terms of the virtual corrections in the

HE limit [30]. Each t-channel pole is supplemented with the following exponential factor:

1

ti
−→ 1

ti
exp(α̂(qi⊥)(yi+1 − yi)), α̂(qi⊥) = −g2sCA

Γ(1− ε)
(4π)2+ε

2

ε

(
q2i⊥
µ2

)ε
, (3.1)

where qi⊥ is the transverse components of the relevant t-channel momentum and we have

used dimensional regularisation with d = 4 + 2ε. Given the different ‘t’s which enter the

different terms of eq. (2.14), it is clear we must now also calculate the virtual corrections in

three separate terms. We define ∆yi = yi+1− yi and then incorporate the all-order virtual

corrections as follows:

|MHEJ
qQ→Z/γ∗q(n−2)gQ|2 = g2s

CF
8Nc

(g2sCA)n−2

×
(
|jZa /γ∗ · jb|2
ta1ta(n−1)

exp(2α̂(qa(n−1)⊥)∆yn−1)
n−2∏
i=1

−V 2(qai, qa(i+1))

taita(i+1)
exp(2α̂(qai⊥)∆yi)

+
|ja · jZb /γ∗|2
tb1tb(n−1)

exp(2α̂(qb(n−1)⊥)∆yn−1)

n−2∏
i=1

−V 2(qbi, qb(i+1))

tbitb(i+1)
exp(2α̂(qbi⊥)∆yi)

− 2<{(jZa /γ∗ · jb)(ja · jZb /γ∗)}√
ta1tb1

√
ta(n−1)tb(n−1)

exp((α̂(qa(n−1)⊥) + α̂(qb(n−1)⊥))∆yn−1)

×
n−2∏
i=1

V (qai, qa(i+1)) · V (qbi, qb(i+1))√
taitbi

√
ta(i+1)tb(i+1)

exp((α̂(qai⊥) + α̂(qbi⊥))∆yi)

)
.

(3.2)

To find the physical result (cross section, distributions, etc.), we now need to integrate

over n-particle phase space and then sum over all n ≥ 2. However, before it is possible to

do that, we must first organise the cancellation of divergences. There are two sources of

divergences in eq. (3.2): the poles in ε within the virtual corrections and, upon integration

over all phase space, the divergences which arise from any of the parton momenta going

to zero. We do not have collinear singularities in our description, because by construction

the particles are assumed to be well-separated.

We will use a phase space slicing method in which we divide the available phasespace

into two regions by the introduction of a cut-off scale λcut on p2⊥. Above the cut-off, we

consider the emissions ‘hard’ and below the cut-off, we consider them to be ‘soft’.

The divergence arising from the emission of a soft gluon can be seen directly from the

effective vertex given in eq. (2.3). In the limit p2i⊥ → 0, we find

− V 2(qi−1, qi)

ti−1ti
−→ 4

p2i⊥
, and −

V (qai, qa(i+1)) · V (qbi, qb(i+1))√
taitbi

√
ta(i+1)tb(i+1)

−→ 4

p2i⊥
. (3.3)

Therefore, the effect of the ith emitted parton becoming soft at the level of the matrix

element squared is:

lim
pi→0

|MHEJ
qQ→Z/γ∗q(n−2)gQ|2 =

4CAg
2
s

|pi⊥|2
|MHEJ

qQ→Z/γ∗q(n−3)gQ|2, (3.4)
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where the matrix element squared on the right-hand side is the corresponding one for the

momentum configuration of the matrix element on the left-hand side after pi has been set

to zero. The relation is identical if either q or Q is replaced by a gluon.

The integration over the soft phase space for the ith parton gives:

µ−2ε
∫
soft

d3+2εpi
(2π)3+2ε2Ei

4CAg
2
s

|pi⊥|2
= µ−2ε

∫ λcut

0

d2+2εpi⊥
(2π)2+2ε

∫ yi+1

yi−1

dyi
4π

4CAg
2
s

|pi⊥|2

=
4CAg

2
sµ
−2ε

(2π)2+2ε4π
(yi+1 − yi−1)

∫ λcut

0

d2+2εpi⊥
|pi⊥|2

=
4CAg

2
s

(2π)2+2ε4π
(yi+1 − yi−1)

1

ε

π1+ε

Γ(ε+ 1)

(
λ2cut
µ2

)ε (3.5)

where we have used a change of variables from pz to rapidity. We will eventually go on to

integrate over the momenta of all other particles, but the cancellation occurs already at

the integrand level so we will not do so at this point. We have therefore found that the

first-order correction to the qQ→ Z/γ∗q(n− 3)gQ process from this soft real emission is

CAg
2
s

22+2επ2+ε
(yi+1 − yi−1)

1

εΓ(1 + ε)

(
λ2cut
µ2

)ε
× |MHEJ

qQ→Z/γ∗q(n−3)gQ|2. (3.6)

The corresponding first-order virtual correction is found by expanding the exponentials in

eq. (3.2). We find

g2s
CF
8Nc

(g2sCA)n−3
(
−g2sCA

Γ(1− ε)
23+2επ2+ε

1

ε
(yi+1 − yi−1)

)
(3.7)

×
(
|jZa /γ∗ · jb|2
ta1ta(n−1)

 n−2∏
j=1,j 6=i

−V 2(qaj , qa(j+1))

tajta(j+1)

× 2

(
q2ai⊥
µ2

)ε

+
|ja · jZb /γ∗|2
tb1tb(n−1)

 n−2∏
j=1,j 6=i

−V 2(qbj , qb(j+1))

tbjtb(j+1)

× 2

(
q2bi⊥
µ2

)ε

− 2<{(jZa /γ∗ · jb)(ja · jZb /γ∗)}√
ta1tb1

√
ta(n−1)tb(n−1)

n−2∏
j=1

V (qaj , qa(j+1)) · V (qbj , qb(j+1))√
tajtbj

√
ta(j+1)tb(j+1)


×
((

q2ai⊥
µ2

)ε
+

(
q2bi⊥
µ2

)ε))
.

We can now go through term-by-term to show the divergences cancel and find the

resulting finite contribution to the matrix element squared. For the backward line Z/γ∗

emission squared terms, we have the following terms:

g2s
CF
8Nc

(g2sCA)n−3
|jZa /γ∗ · jb|2
ta1ta(n−1)

 n−2∏
j=1,j 6=i

−V 2(qaj , qa(j+1))

tajta(j+1)


×
(

CAg
2
s

22+2επ2+ε
(yi+1−yi−1)

1

εΓ(1+ε)

(
λ2cut
µ2

)ε
−g2sCA

Γ(1−ε)
22+2επ2+ε

1

ε
(yi+1−yi−1)

(
qai⊥
µ

)ε)
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= g2s
CF
8Nc

(g2sCA)n−2

22+2επ2+ε
|jZa /γ∗ · jb|2
ta1ta(n−1)

 n−2∏
j=1,j 6=i

−V 2(qaj , qa(j+1))

tajta(j+1)

 (yi+1 − yi−1)

×
(

1

ε Γ(1 + ε)

(
λ2cut
µ2

)ε
− Γ(1− ε)

ε

(
q2ai⊥
µ2

)ε)
. (3.8)

Performing the expansion in ε of the final bracket yields:(
(1+γEε+O(ε2))

(
1

ε
+ln

(
λ2cut
µ2

)
+O(ε)

)
−(1+γEε+O(ε2))

(
1

ε
+ln

(
q2ai⊥
µ2

)
+O(ε)

))
= ln

(
λ2cut
q2ai⊥

)
+O(ε). (3.9)

The poles in ε and the γE terms have identically cancelled and we are left with a finite

logarithm. This is a similar form to that found in [21, 44]. The procedure for the forward

line Z/γ∗ emission squared terms is identical and we find

g2s
CF
8Nc

(g2sCA)n−2

22+2επ2+ε
|ja · jZ/γ∗b |2
tb1tb(n−1)

 n−2∏
j=1,j 6=i

−V 2(qbj , qb(j+1))

tbjtb(j+1)

(yi+1−yi−1)
(

ln

(
λ2cut
q2bi⊥

)
+O(ε)

)
.

(3.10)

The cancellation for the interference terms is also similar and here we find

− g2s
CF
8Nc

(g2sCA)n−2

22+2επ2+ε
2<{(jZa /γ∗ · jb)(ja · jZb /γ∗)}√

ta1tb1
√
ta(n−1)tb(n−1)

×

n−2∏
j=1

V (qaj , qa(j+1)) · V (qbj , qb(j+1))√
tajtbj

√
ta(j+1)tb(j+1)

ln

 λ2cut√
q2ai⊥q

2
bi⊥

+O(ε)

 ,

(3.11)

as the finite remainder from the cancellation. These results are valid for any emission

between the outer quarks/gluons which becomes soft. If either of the outer quarks/gluons

becomes soft, this will also produce a divergence. To remain within the perturbative

framework, we require that the outer particles are constituents of the jets and that their

transverse momentum is above a minimum value.

It is clear that this result can be iterated order by order in αs. We would then form

our final regulated all-order result as

|MHEJ−reg
qQ→Z/γ∗q(n−2)gQ|

2 = g2s
CF
8Nc

(g2sCA)n−2

×
(
|jZ/γ

∗
a · jb|2
ta1ta(n−1)

exp(ω0(qa(n−1)⊥)∆yn−1)
n−2∏
i=1

−V 2(qai, qa(i+1))

taita(i+1)
exp(ω0(qai⊥)∆yi)

+
|ja · jZ/γ

∗

b |2
tb1tb(n−1)

exp(ω0(qb(n−1)⊥)∆yn−1)
n−2∏
i=1

−V 2(qbi, qb(i+1))

tbitb(i+1)
exp(ω0(qbi⊥)∆yi)

− 2<{(jZ/γ
∗

a · jb)(ja · jZ/γ
∗

b )}√
ta1tb1

√
ta(n−1)tb(n−1)

exp(ω0(
√
qa(n−1)⊥qb(n−1)⊥)∆yn−1)

– 14 –



J
H
E
P
0
5
(
2
0
1
6
)
1
3
6

×
n−2∏
i=1

V (qai, qa(i+1)) · V (qbi, qb(i+1))√
taitbi

√
ta(i+1)tb(i+1)

exp(ω0(
√
qai⊥qbi⊥)∆yi)

)
, (3.12)

where we have defined

ω0(q2⊥) = −g
2
sCA
4π2

log

(
q2⊥
λ2cut

)
. (3.13)

One can easily check by expansion that this correctly reproduces the results in eqs. (3.9)–

(3.11). However, the limit we have used from eq. (3.3) is a limit and not an exact identity.

We therefore have to account for the difference between −V 2(qi−1, qi)/(ti−1ti) and its strict

limit of 4/p2i⊥ for values of pi⊥ below λcut. In practice, we include this correction for ccut <

|p⊥| < λcut with ccut = 0.2 GeV and find stable results around this value. We demonstrate

that our numerical results are also insensitive to the precise value of λcut in appendix A.

A total (differential) cross section can then be obtained by summing over all values

of n and integrating over the full n-particle phase space, using an efficient Monte Carlo

sampling algorithm [44, 45]:

σ =
∑
fa,fb

∞∑
n=2

(
n∏
i=1

∫
d3pi

(2π)32Ei

)∫
d3pe−

(2π)32Ee−

∫
d3pe+

(2π)32Ee+

× (2π)4δ(2)

(∑
i

pi⊥ − pe−⊥ − pe+⊥
)

× |MHEJ−reg
fafb→Z/γ∗fa(n−2)gfb({pi}, pe− , pe+)|2 xaffa(xa, Qa)xbffb(xb, Qb)

ŝ2
Θcut,

(3.14)

where xa,b are the momentum fractions of the incoming partons and ffk(xk, Qk) are the

corresponding parton density functions for beam (k) and flavour fk. The factor of ŝ2 is the

usual phase space factor. The function Θcut imposes any desired cuts on the final state.

The minimum requirement is that the final state momenta cluster into at least two jets for

the desired algorithm.2

In the regions of phase space where all final state particles are well separated in rapidity,

this gives the dominant terms in QCD at all orders in αs (the leading logarithmic terms in

s/t). However, in other areas of phase space, the differences due to the approximations used

in |MHEJ−reg
qQ→Z/γ∗q(n−2)gQ|2 will become more significant. We can therefore further improve

upon eq. (3.14) by matching our results to fixed order results. Here, we match to high-

multiplicity tree-level results obtained from Madgraph5 aMC@NLO [14] in two different

ways. This amounts to merging tree-level samples of different orders according to the

logarithmic prescription of HEJ.

1. Matching for FKL configurations.

As described in section 2, these are the particle assignments and momentum con-

figurations which contain the dominant leading-logarithmic terms in s/t. The first

step of the HEJ description was to develop an approximation to the matrix element

2We use FastJet [46] within our code and so are compatible with (almost) any choice of jet algorithm

and parameter.
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for these processes which was later supplemented with the finite correction which

remained after cancelling the real and virtual divergences: |MHE
qg→Zqg|

2
(eq. (2.11))

or |MHE
qQ→ZqQ|

2
(eq. (2.14)). The approximation is necessary to allow us to describe

the matrix element for any (and in particular, large) n and for including both the

leading real and virtual corrections. However, if the parton momenta cluster into four

or fewer jets,3 the full tree-level matrix element remains calculable. In these cases, we

perform the matching multiplicatively, so we multiply the integrand of eq. (3.14) by

|Mfull
qQ→Z/γ∗q(k−2)gQ(pa, pb, {j′i})|2/|MHEJ

qQ→Z/γ∗q(k−2)gQ(pa, pb, {j′i})|2. (3.15)

Here, {j′i} are the jet momenta after a small amount of reshuffling. This is necessary

because the evaluation of the tree-level matrix elements assumes that the jet

momenta are both on-shell and have transverse momenta which sum to zero, neither

of which is true in general for our events due to the presence of extra emissions.

Our reshuffling algorithm [47] redistributes this extra transverse momentum in

proportion to the size of the transverse momentum of each jet. The plus and minus

light-cone components are then adjusted such that the jet is put on-shell and the

rapidity remains unaltered. This last feature ensures that after reshuffling the event

is still in an FKL configuration.

After this multiplicative matching factor has been included, the regularisation then

proceeds as before.

2. Matching for non-FKL configurations.

Away from regions in phase space where the quarks and gluons are well-separated, the

non-FKL configurations will play a more significant rôle. These have so far not been

accounted for at all, and hence we add three exclusive samples of leading-order two-

jet, three-jet and four-jet leading-order events to our resummed events. The distinc-

tion between the samples is made following the choice of jet algorithm and parameters.

These two matching schemes complete our description of the production of Z/γ∗ with

at least two jets, including the leading high-energy logarithms at all orders in αs. In the

next two sections, we compare the predictions from this formalism to LHC data.

4 Comparisons to LHC data

4.1 ATLAS — Z+jets measurements

We now compare the results of the formalism described in the previous sections to data.

We begin with a recent ATLAS analysis of Z-plus-jets events from 7 TeV collisions [4]. We

summarise the cuts in table 1. Any jet which failed the jet-lepton isolation cut was removed

from the event, but the event itself is kept provided there are a sufficient number of other

jets present. Throughout, the central value of the HEJ predictions has been calculated

with factorisation and renormalisation scales set to µF = µR = HT /2, and the theoretical

3These may have arisen from many more partons.
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Lepton Cuts pT` > 20 GeV, |η`| < 2.5

∆R`
+`− > 0.2, 66 GeV ≤ m`+`− ≤ 116 GeV

Jet Cuts (anti-kT , 0.4) pTj > 30 GeV, |yj | < 4.4

∆Rj` > 0.5

Table 1. The cuts applied to the theory simulations in the ATLAS Z-plus-jets analysis results

shown in figures 6–9.

uncertainty band has been determined by varying these independently by up to a factor of

2 in each direction (removing the corners where the relative ratio is greater than two). Also

shown in the plots taken from the ATLAS paper are theory predictions from Alpgen [48],

Sherpa [19, 49], MC@NLO [9] and BlackHat+Sherpa [8, 50]. We will also comment on the

recent theory description of ref. [20].

In figure 6 we begin this set of comparisons with predictions and measurements of

the inclusive jet rates. HEJ and most of the other theory frameworks give a reasonable

description of these rates. The MC@NLO prediction drops below the data because it only

contains the hard-scattering matrix element for Z/γ∗ production and relies on a parton

shower for additional emissions beyond the one hard jet. The HEJ predictions have a larger

uncertainty band which largely arises from the use of leading-order results in the matching

procedures.

We will now discuss a number of the differential distributions. In ref. [4] these are dis-

played as distributions normalised to the inclusive Z/γ∗-rate. However, given the excellent

agreement between the HEJ-prediction and data for the inclusive 2-jet cross section, we

prefer to compare to data directly the prediction obtained with HEJ for the distributions.

The size of the scale variation of the HEJ predictions is largely dictated by the match-

ing to leading order accuracy. The smaller scale variation in the results of e.g. BLACK-

HAT+SHERPA is therefore a reflection of the benefit of going to NLO. The choice of not

normalising the HEJ predictions further increases the size of the scale variation bands,

as there is no cancellation in scale dependence in numerator and denominator. We find,

though, that our scale dependence tends to lead to a change in overall normalisation rather

than in shape. We demonstrate this by plotting (1/σ((Z/γ∗ → e+e−)+ ≥ 2j)) dσ/dX for

various variables X in appendix B. Including such a normalisation factor significantly re-

duces the size of the scale uncertainty band, down to less than ±10% in both cases. The

quality of agreement with the central line is unchanged.

The first differential distribution we consider here is the distribution of the invariant

mass between the two hardest jets, figure 7. The region of large invariant mass is partic-

ularly important because this is a critical region for studies of vector boson fusion (VBF)

processes in Higgs-plus-dijets, and as previously discussed, the corrections arising from

QCD are similar in both processes: the radiation patterns are largely universal between

these processes, so one can test the quality of theoretical descriptions in Z/γ∗-plus-dijets

and use these to inform the Hjj-analyses. It is also a distribution which will be studied to

try to detect subtle signs of new physics. In this study, HEJ and the other approaches all
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give a good description of this variable out to 1 TeV. It will be interesting to see if the very

good agreement between HEJ and the central data points will survive, once larger data

sets lead to a reduction in the experimental uncertainty. The merged sample of ref. [20]

(figure 9 in that paper) combined with the Pythia8 parton shower performs reasonably

well throughout the range with a few deviations of more than 20%, while that combined

with Herwig++ deviates badly. In a recent ATLAS analysis of W -plus-dijet events [28],

the equivalent distribution was extended out to 2 TeV and almost all of the theoretical pre-

dictions deviated significantly while the HEJ prediction remained flat. This is one region

where the high-energy logarithms, included only in HEJ, are expected to become large.

In figure 8, we show the comparison of various theoretical predictions to the distribution

of the absolute rapidity difference between the two leading jets. It is clear in the left plot

that HEJ gives an excellent description of this distribution. This is to some extent expected

as high-energy logarithms are associated with rapidity separations. However, this variable

is only the rapidity separation between the two hardest jets which is often not representative

of the total rapidity ‘length’ of events with more than two hard jets, since the hardest jets

tend to be central in rapidity. Nonetheless, the HEJ description also performs well in this

restricted scenario. The next-to-leading order (NLO) calculation of Blackhat+Sherpa also

describes the distribution quite well while the other merged, fixed-order samples deviate

from the data at larger values. The merged samples of ref. [20] (figure 8 in that paper)

describe this distribution well for small values of this variable up to about 3 units when

combined with Herwig++ and for most of the range when combined with the Pythia8

parton shower, only deviating above 5 units.

The final distribution in this section is that of the ratio of the transverse momentum of

the second hardest jet to the hardest jet. The perturbative description of HEJ does not con-

tain any systematic evolution of transverse momentum and this can be seen where its pre-

diction undershoots the data at low values of pT2/pT1. However, for values of pT2 & 0.5pT1,

the ratio of the HEJ prediction to data is extremely close to 1. The fixed-order based predic-

tions shown in figure 9 are all fairly flat above about 0.2, but the ratio to the data differs by

about 10% for the Blackhat+Sherpa and Sherpa predictions. Clearly the theoretical uncer-

tainties for the fixed-order based predictions for values of p⊥2/p⊥1 close to 1 are very small.

Comparing to the normalised distribution in appendix B, this is a region where the theoret-

ical uncertainties in HEJ also become very small when normalisation is taken into account.

4.2 CMS — Z + jets measurements

We now compare to data from a CMS analysis of events with a Z/γ∗ boson produced in

association with jets [5]. We show, for comparison, the plots from that analysis which con-

tain theoretical predictions from Sherpa [19, 49], Powheg [51] and MadGraph+Pythia [14].

The cuts used for this analysis are summarised in table 2.

As in the previous section, any jet which failed the final jet-lepton isolation cut was

removed from the event, but the event itself is kept provided there are a sufficient number

of other jets present. The main difference to these cuts and those of ATLAS in the previous

section is that the jets are required to be more central; |y| < 2.4 as opposed to |y| < 4.4.

This allows less room for evolution in rapidity; however, as we will see, HEJ predictions are

– 18 –



J
H
E
P
0
5
(
2
0
1
6
)
1
3
6

2 3 4

≥ Njets

0.5

1.0

1.5

Th
eo

ry
/D
at
a 2 3 4

100

101

σ
(Z

+
≥

N
j
e
t)
[p
b
] PDF set: CT10nlo

anti-kt jets R = 0.4
pjT > 30 GeV |yj| < 4.4

(a)

) 
[p

b
]

je
t

 N
≥

) 
+

 
- l

+  l
→

*(
γ

(Z
/

σ

-310

-210

-110

1

10

210

310

410

510

610

 = 7 TeV)sData 2011 (

ALPGEN

SHERPA
MC@NLO

 + SHERPAATHLACKB

ATLAS )µ)+jets (l=e,
-
l

+
 l→*(γZ/

-1
 L dt = 4.6 fb∫

 jets, R = 0.4tanti-k

| < 4.4
jet

 > 30 GeV, |y
jet

T
p

0≥ 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

N
L
O

 /
 D

a
ta

0.6

0.8

1

1.2

1.4  + SHERPAATHLACKB

0≥ 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥

M
C

 /
 D

a
ta

0.6

0.8

1

1.2

1.4 ALPGEN

jetN

0≥ 1≥ 2≥ 3≥ 4≥ 5≥ 6≥ 7≥
M

C
 /
 D

a
ta

0.6

0.8

1

1.2

1.4 SHERPA

(b)

Figure 6. These plots show the inclusive jet rates from (a) HEJ and (b) other theory descriptions

and data [4]. HEJ events all contain at least two jets and do not contain matching for 5 jets and

above, so these bins are not shown.
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Figure 7. These plots show the invariant mass between the leading and second-leading jet in pT .

As in figure 6, predictions are shown from (a) HEJ and (b) other theory descriptions and data [4].

These studies will inform Higgs plus dijets analyses, where cuts are usually applied to select events

with large m12.
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Figure 8. The comparison of (a) HEJ and (b) other theoretical descriptions and data [4] to the dis-

tribution of the absolute rapidity different between the two leading jets. HEJ and Blackhat+Sherpa

give the best description. These results will inform analyses of Higgs plus dijets, where cuts are

usually applied to select events with large rapidity separation of jets.
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Figure 9. These plots show the differential cross section in the ratio of the leading and second

leading jet in pT from (a) HEJ and (b) other theory descriptions and data [4].
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Lepton Cuts pT` > 20 GeV, |η`| < 2.4

71 GeV ≤ m`+`− ≤ 111 GeV

Jet Cuts (anti-kT , 0.5) pTj > 30 GeV, |yj | < 2.4

∆Rj` > 0.5

Table 2. Cuts applied to theory simulations in the CMS Z-plus-jets analysis results shown in

figures 10–12.

still relevant in this scenario. Once again, the central values are given by µF = µR = HT /2

with theoretical uncertainty bands determined by varying these independently by factors

of two around this value. Once again, the theoretical uncertainty bands on the HEJ predic-

tions are large (we note that they are not displayed in the MadGraph+Pythia6 predictions).

The size is dictated by matching to leading-order. As illustrated in appendix B, the scale

variation effects are largely an overall normalisation and not a change in shape and are

significantly reduced in normalised distributions. Therefore the agreement between the

central predictions and data is more significant than the variation bands initially suggest.

HEJ events always contain a minimum of two jets and therefore here we only compare to

the distributions for an event sample with at least two jets or above.

We begin in figure 10 by showing the inclusive jet rates for these cuts. The HEJ

predictions give a good description, especially for the 2- and 3-jet inclusive rates in this

narrower phase space. In figures 11–12, we show the transverse momentum distributions for

the second and third jet respectively (the leading jet distribution was not given for inclusive

dijet events). Beginning with the second jet in figure 11, we see that the HEJ predictions

overshoot the data at large transverse momentum. In this region, the non-FKL matched

components of the HEJ description become more important and these are not controlled

by the high-energy resummation. The HEJ predictions are broadly similar to Powheg’s Z-

plus-one-jet NLO calculation matched with the Pythia parton shower. In contrast, Sherpa’s

central value significantly undershoots the data at large transverse momentum although it

is within their scale variation band. Here the Madgraph+Pythia central prediction gives

the best description of the data; their scale variation band is not shown.

Figure 12 shows the transverse momentum distribution of the third jet in this data

sample. Here, the ratio of the HEJ prediction to data shows a linear increase with transverse

momentum (until the last bin where all the theory predictions show the same dip). Both the

Sherpa and Powheg central predictions show similar deviations for this variable, although

the data is just within the larger Sherpa scale variation band. The Madgraph+Pythia

prediction again performs very well.

4.3 Comparisons for the W±+jets/Z+jets ratio

In this section we briefly comment on the all-order predictions from HEJ for the ratio of

W± plus jets to Z/γ∗ plus jets events. We compare to data from a recent study undertaken

by the ATLAS collaboration [6]. The cuts for both final states are summarised in table 3.
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Figure 10. The inclusive jet rates from [5] compared to predictions from (a) the HEJ description

and (b) other theoretical descriptions.
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Figure 11. The transverse momentum distribution of the second hardest jet in inclusive dijet

events in [5], compared to (a) the predictions from HEJ and (b) the predictions from other theory

descriptions.
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Figure 12. The transverse momentum distribution of the third hardest jet in inclusive dijet

events in [5], compared to (a) the predictions from HEJ and (b) the predictions from other theory

descriptions.

Lepton Cuts pT` > 25 GeV, |η`| < 2.5

∆R`
+`− > 0.2

Reconstructed Z Cuts 66 GeV < m`+`− < 116 GeV

Reconstructed W± Cuts mTW > 40 GeV /ET > 25 GeV

Jet Cuts (anti-kT , 0.4) pTj > 30 GeV, |yj | < 4.4

∆Rj` > 0.5

Table 3. Cuts applied to theory simulations in the analysis of the ATLAS W±+jets/Z+jets ratio

predictions shown in tables 4 and 5.

Tables 4 and 5 show the measured values of the ratio between W -plus-jets and Z-plus-

jets events, Rjet, separated into inclusive and exclusive samples of 2, 3 and 4 jets. Also

shown are the corresponding values from HEJ and the ratio of the two. We see extremely

good agreement for the 2-jet ratios and the 3- and 4-jet ratios agree at the 10% level. This is

comparable with the other theoretical predictions used in the study (BlackHat+SHERPA [8,

50, 52, 53], ALPGEN [48] and SHERPA [19, 49]) as can be seen in figure 1 of [6].
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Njets Data HEJ HEJ/Data

≥ 2 8.64 ± 0.04(stat.) ± 0.33(syst.) 8.66 ± 0.12(stat.)+0.14
−0.16(s.v.) 1.00 ± 0.01(stat)+0.02

−0.01(s.v.)

≥ 3 8.18 ± 0.08(stat.) ± 0.52(syst.) 7.96 ± 0.25(stat.)+0.01
−0.01(s.v.) 0.97 ± 0.03(stat)+0.01

−0.00(s.v.)

≥ 4 7.62 ± 0.20(stat.) ± 0.95(syst.) 8.55 ± 0.69(stat.)+0.02
−0.02(s.v.) 1.12 ± 0.09(stat)+0.00

−0.00(s.v.)

Table 4. The HEJ prediction for inclusive Rjet rates at 2, 3 and 4 jets compared with ATLAS data.

Njets Data HEJ HEJ/Data

2 8.76 ± 0.05(stat.) ± 0.31(syst.) 8.88 ± 0.135(stat.)+0.15
−0.18(s.v.) 1.01 ± 0.02(stat)+0.021

−0.02 (s.v.)

3 8.33 ± 0.10(stat.) ± 0.45(syst.) 7.85 ± 0.265(stat.)+0.01
−0.01(s.v.) 0.94 ± 0.01(stat)+0.001

−0.03 (s.v.)

4 7.69 ± 0.21(stat.) ± 0.71(syst.) 8.44 ± 0.684(stat.)+0.04
−0.04(s.v.) 1.10 ± 0.01(stat)+0.005

−0.09 (s.v.)

Table 5. The HEJ prediction for exclusive Rjet rates at 2, 3 and 4 jets compared with ATLAS data.

5 Conclusions

In this paper we have discussed augmenting the theoretical description of inclusive Z/γ∗-

plus-dijets processes with the dominant logarithms in the High Energy limit at all orders

in αs. In particular, the description constructed here is accurate to leading logarithm in

ŝ/t̂. This is achieved within the High Energy Jets (HEJ) framework. We began in section 2

by motivating and describing the construction of an approximation to the hard-scattering

matrix element for an arbitrary number of gluons in the final state. This uses factorised

currents for electroweak boson emission and outer jet production combined with a series

of (gauge-invariant) effective vertices for extra QCD real emissions.

In contrast to previous HEJ constructions (for pure jets, W -plus-jets and Higgs boson-

plus-jets), the complete description of the interference contributions between Z and γ∗

processes and between forward and backward emissions required a new regularisation pro-

cedure. This is described in section 3 where we showed explicitly the cancellation of real and

virtual divergences by using the Lipatov ansatz to include the dominant contributions in the

High Energy limit of the all-order virtual contributions. The method by which we match

our matrix element to the leading order matrix elements was also outlined here. In this way

we achieve the formal accuracy of our Monte Carlo predictions to Leading Logarithmic in

(ŝ/t̂) and merge Leading Order predictions in αs for the production of two, three or four jets.

In section 4, we compared the predictions of our construction to Z/γ∗-plus-jets data

collected at the ATLAS and CMS experiments during Run I. We see excellent agreement

for a wide range of observables and can be seen to describe regions of phase space well

where some other fixed-order-based predictions do not fare as well. Discrepancies which

occur only do so in regions where we do not expect this description to perform as well, for

example where there is a large ratio between pT1 and pT2. We also discuss properties of

other available theoretical descriptions.

This all-order description of Z/γ∗-plus-dijets allows predictions for the ratio of

W±+dijets to Z/γ∗+dijets at all-orders in αs for the first time. This is an extremely

important analysis as many theoretical and experimental uncertainties cancel in this ratio

and in section 4.3, we show that we correctly reproduce the ratios of the total cross sections.
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λcut (GeV) σ(2j) (pb) σ(3j) (pb) σ(4j) (pb)

0.2 5.03± 0.02 0.70± 0.02 0.13± 0.03

0.5 5.05± 0.01 0.70± 0.01 0.13± 0.01

1.0 5.09± 0.01 0.71± 0.01 0.13± 0.01

2.0 5.16± 0.04 0.72± 0.01 0.13± 0.01

Table 6. The FKL-only cross sections for the 2-, 3- and 4-jet exclusive rates with associated

statistical errors shown for different values of the regularisation parameter λcut. The scale choice

was half the sum over all transverse scales in the event, HT /2.

Just as for previous analyses of LHC data, it is found that the high-energy logarithms

contained in HEJ are necessary for a satisfactory description of data in key regions of phases

space, e.g. at large values of jet invariant mass. Such regions of phase space are crucial for

the analysis of Higgs boson production in association with dijets. The impact of the high-

energy logarithms will only be more pronounced at the larger centre-of-mass energy of LHC

Run II, and beyond at a possible future circular collider. The HEJ framework and Monte

Carlo is the unique flexible event generator to contain these corrections and will provide

important theoretical input for the study of important processes at LHC Run II and beyond.
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A Dependence on the regularisation parameter, λcut

In this appendix, we show results for various values of the parameter λcut defined in sec-

tion 3. We increase our sensitivity to the parameter by showing results for FKL momentum

configurations only. The non-FKL samples which are added to give the total cross sections

have no dependence on λcut and would therefore dilute any dependence in the full sample.

We begin in table 6 where we show the value of the cross section for different values of λcut
for exclusive 2-, 3- and 4-jet samples. The cuts applied are the same as in section 4.1. It

is clear that the cross section does not display a large dependence on the value of λcut.

Figure 13 shows the effect of the same variation in λcut on the differential distribution

in both the rapidity gap between the two leading jets in p⊥, ∆yj1,j2, (a)–(c), and the

rapidity gap between the two extremal jets in rapidity, ∆yjf,jb, (d)–(f). Results are shown

for exclusive 2-, 3- and 4-jet samples in each case, once again the cuts applied are the same

as in section 4.1. Again the scale choice for the central line was µF = µR = HT /2. The

variation bands have been determined by varying these two scales independently by up

to a factor of two in either direction with the extremal points removed where the relative
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Figure 13. (a)–(c) The effect of varying λcut on the differential distribution in the rapidity gap

between the two leading jets in p⊥, ∆yj1,j2, with the Njet = 2, 3, 4 exclusive selections shown from

left to right, and (d)–(f) for the rapidity gap between the most extremal jets in rapidity, ∆yjf,jb,

with the Njet = 2, 3, 4 exclusive selections shown from left to right. The different colours represent

λcut = 0.2 (red), 0.5 (blue), 1.0 (green) and 2.0 (purple) and the bands represent the scale variation

described in the text.

difference between µF and µR is greater than a factor of 2. The distributions also show a

very weak dependence on the choice of λcut.

In practice, our default chosen value for λcut is 0.2.

B Normalisation effects on scale uncertainties in Z/γ∗+jets

Here we discuss the effect of normalising the predictions shown in section 4.1 to the total

cross-section. We see from figure 6a that we describe the experimentally observed inclusive

two jet rate very well and, as such, do not require normalisation to agree with the data.

However, applying a normalisation procedure which consistently applies scale variation
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Figure 14. The predictions of section 4.1 normalised to the total cross-section, with scale variation

consistently applied to numerator and denominator.

simultaneously in numerator and denominator significantly reduces the size of the scale

uncertainty bands for High Energy Jets (or any theoretical prediction).

In figures 14a, 14b and 14c we show the results from figures 7a, 8a and 9a where we

have normalised to the total cross-section calculated for each scale combination. We see

that, as expected, the central value of HEJ still describes the data well in the regions

discussed in section 4.1 and now the size of the theoretical uncertainty band is significantly

reduced (by as much as a factor of 16 in the last bin of the p⊥2/p⊥1-distribution for

example, and more typically by a factor of about 4). This illustrates that varying the

renormalisation and factorisation scales leads to a change in overall normalisation but not
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to any significant change in shape. Therefore, it is still valuable to discuss the quality

of agreement of the central line, despite their apparently large accompanying uncertainty

bands in the unnormalised predictions.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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