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Abstract Modeling, analysis and synthesis of behaviour are
the subject of major efforts in computing science, especially
when it comes to technologies that make sense of human-
human and human-machine interactions. This article out-
lines some of the most important issues that still need to be
addressed to ensure substantial progress in the field, namely
1) development and adoption of virtuous data collection and
sharing practices, 2) shift of the focus of interest from in-
dividuals to dyads and groups, 3) endowment of artificial
agents with internal representations of users and context,
4) modeling of cognitive and semantic processes underly-
ing social behaviour, and 5) identification of application do-
mains and strategies for moving from laboratory to the real-
world products.

Keywords Human Behaviour; Social Interactions; Virtuous
Data Practices; Multimodal Embodiment; Cognitive
Modeling; Semantic Processing; Roadmap to Application.

1 Introduction

Modeling, analysis and synthesis of human behaviour are
the subject of major efforts in computing science [128, 130].
In principle, the problem can be addressed in purely techno-
logical terms, i.e. by applying the same methodologies and
approaches that can be used for any other type of data acces-
sible to machines. For example, speech has been analyzed
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using methodologies that can be applied to any other sig-
nal and, similarly, computer vision has addressed the prob-
lem of tracking people using the same methodologies that
can be used to track any other moving object. Furthermore,
robotics and computer graphics addressed the synthesis of
human motion by simply reproducing its observable aspects.

However, human behaviour is governed by cognitive,
social and psychological phenomena that, while not being
observable, must be taken into account to build technolo-
gies more robust, effective and human-centered. The first at-
tempts in this direction were done in the early nineties, when
automatic analysis and synthesis of facial expressions were
addressed for the first time not only in terms of observable
facial muscles activity, but also in terms of emotion expres-
sion [41]. Interdisciplinary collaboration between comput-
ing on one side and, on the other side, psychology and cog-
nitive sciences proved to be a crucial and fruitful milestone.

Nowadays, domains like Affective Computing [93], So-
cial Signal Processing (SSP) [128], Social Robotics [23],
Intelligent Virtual Agents [26], Human Communication Dy-
namics [80], etc. are well established and have a well delim-
ited and recognized scope in the computing community. Re-
cent technological achievements include, e.g., social robots
that deal with autistic children [109], computers that make
sense of human personality in various contexts [127], artifi-
cial agents that sustain emotionally rich conversations with
their users [113], approaches that detect phenomena as sub-
tle as mimicry [37], and the list could continue.

However, modeling, analysis and synthesis of human be-
haviour are far from being solved problems. This article out-
lines a few major issues that need to be addressed to substan-
tially improve the current state-of-the-art:

– Virtuous practices for design, collection and distribu-
tion of data. Without data it is difficult, if not impos-
sible, to develop technologies revolving around human
behaviour. However, widely shared practices for making
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of data an asset for the entire community are still missing
(see Section 2) [19, 65].

– From individuals to interaction. A group of interacting
people is more than the mere sum of its members. How-
ever, most current analysis approaches still focus on in-
dividuals. Furthermore, methodologies addressing groups
as a whole, especially when it comes to mutual influence
processes, are still at an early stage of development (see
Section 3) [27, 54].

– From shallow to deep interactions. Human-human inter-
actions take place in highly specific contexts where peo-
ple typically have a long history of previous relations.
However, current artificial agents typically miss an in-
ternal representation of both context and others, result-
ing into shallow interactions with their users. Attempts
to go beyond such a state-of-affairs are still limited (see
Section 4) [7, 108].

– Integration of semantic and cognitive aspects. Social life
is determined to a large extent by unconscious, cognitive
processes. However, most current approaches for analy-
sis and synthesis of human behaviour do not try to model
how people make sense of others and give meaning to
their experiences (see Section 5) [32, 96].

– Applications. Real-world applications are the ultimate
testbed for any technology expected to interact with hu-
mans. However, only a relatively few domains are seri-
ously planning the adoption of technologies dealing with
human behaviour (see Section 6) [61, 99, 100, 124].

The rest of the article describes each of the above issues in
details.

2 The Data

Corpora and data collections are a necessary prerequisite for
modeling, analysis and synthesis of human behaviour. In
fact, analysis and synthesis are not possible without learn-
ing from data showing contexts and phenomena of inter-
est. Furthermore, efficiency in experiments and replicabil-
ity of results are difficult without a framework for compre-
hensive and easily interoperable data annotation and anal-
ysis. In other words, the multimodal research community
cannot progress without virtuous data collection, annotation
and sharing practices that make high-quality data accessi-
ble and easy to process. This section outlines the challenges
arising at various stages of corpus design, collection, anno-
tation, curation and distribution, and proposes strategies that
should underpin the best practices.

2.1 Data Design and Collection

Collections of data portraying multimodal interaction be-
haviours cover a wide spectrum of verbal, nonverbal, social

and communicative phenomena. However, most current re-
sources do not address all aspects of social interactions, but
focus on the investigation of specific contexts and settings.
The probable reason is that the range of spoken interactions,
or “speech-exchange systems” [106], humans engage in is
enormous. It is an open question whether basic mechanisms
such as turn-taking or the temporal distribution of cues such
as back-channel, gestures or disfluencies vary with the type
of interaction. In other words, it is not sure whether obser-
vations made over certain data generalize to other data as
well and, if yes, to what extent. This requires one to care-
fully consider what is the genre of the corpus at the design
stage.

Corpora may consist of audiovisual material gathered
from conventional media (radio and television) and the web,
or recordings made during laboratory experiments, possibly
using advanced sensors (e.g., High Definition cameras, gaze
trackers, microphone arrays, RGB Depth cameras like the
Kinect, physiological sensors, etc.). Overall, the large num-
ber of settings and data acquisition approaches reflects the
wide variety of design and research goals that data collec-
tions are functional to [128].

When interactions are recorded in a laboratory setting,
the most common way to ensure that people actually engage
in social exchanges is to use tasks aimed at eliciting conver-
sation. Typical cases include the description of routes on a
map (e.g., the HCRC Map Task Corpus [5]), spotting differ-
ences between similar pictures (e.g., the London UCL Clear
Speech in Interaction Database [12] and the Wildcat Cor-
pus [125]), participation in real or simulated professional
meetings (e.g., the ICSI Meeting Corpus [60] and the AMI
Corpus [77]), etc. This way of collecting data produces use-
ful corpora of non-scripted dialogues. However, it is unclear
whether the motivation of subjects involved in an artificial
task can be considered genuine. Therefore, it is not sure that
the resulting corpora can be used to make reliable general-
izations about natural conversations [68, 85].

Attempts to collect data in more naturalistic settings have
focused initially on real-world phone calls like, e.g., the sui-
cide hotline and emergency line conversations described in
[106]. A broadest domain of topics is available in the cor-
pora of real phone conversations (e.g., Switchboard [47] and
ESP-C [25]). The main drawbacks of these resources are that
they are unimodal and, furthermore, it is not clear whether
phone mediated and face-to-face conversations can be con-
sidered equivalent. The effort of capturing face-to-face, real-
life spoken interactions has led to collection of corpora like
Santa Barbara [39], ICE [49], BNC [16] and Gothenburg
Corpus [1]. However the effectiveness of these collections is
still limited by unimodality (the only exception is the Gothen-
burg Corpus) and relatively low quality of the recordings.

What emerges from the above is that the collection of
data suitable for multimodal research entails a trade-off be-
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tween the pursuit of real-life, naturalistic resources and the
need of high quality material suitable for automatic pro-
cessing. This typically leads to the choice of laboratory set-
tings where the sensing apparatus is as unobtrusive as pos-
sible and the scenario is carefully designed to avoid biases.
This led to hybrid multimodal corpora showing encounters
recorded in the laboratory, but without pre-scribed task or
subject of discussion imposed on participants. These include
collections of free-talk meetings, or first encounters between
strangers (e.g., the Swedish Spontal [40], the NOMCO and
MOMCO Danish and Maltese corpora [88], casual conver-
sations between acquaintances and strangers [86], etc.). Some
of the latest corpora include physiological signals, motion
capture information (e.g., DANS and Spontal [40]), and breath-
ing data.

The availability of new sensors, capable of capturing in-
formation non accessible in previous corpora, make old data
less useful due to sparsity of the type of signals collected
(many are audio only) and the impossibility of investigat-
ing the range of interconnected signals and cues of interest
to current researchers. This issue could serve as a caution to
current data collectors. It would be very useful if researchers
future-proofed corpora by gathering a range of signals as
wide as possible at the data collection stage, hopefully slow-
ing the onset of data obsolescence.

2.2 Data Annotation, Curation and Distribution

Creating recordings is becoming increasingly cheaper and
easier, but annotating them in view of modeling, analysis
and synthesis of social behaviour remains a time-consuming
and labour-intensive task. In fact, enriching data with de-
scriptive and semantic information is usually done manu-
ally. Recent advances in sensing technologies have intro-
duced flexibility in automatically collecting features of in-
terest enabling the creation of datasets rich with information
on multimodal behaviour that can be further augmented with
manual encodings. However, analysis and modelling of mul-
timodal interaction is hampered by the lack of a comprehen-
sive annotation scheme or taxonomy incorporating speech,
gestures, and other multimodal interaction features.

Many spoken dialogue annotation schemes are based on
speech/dialogue acts and their function in updating dialogue
state [24][31][67]. The ISO 24617-2 standard for functional
dialogue annotation [57] comprehensively covers informa-
tion transfer and dialogue control/interaction management
functions of utterances, but coverage of social or interac-
tional functions is restricted to “social obligation manage-
ment” (salutations, self-introduction, apologizing, thanking,
and valedictions). There is also a need to include annotation
of multimodal cues. The MUMIN scheme [2] allows cod-
ing of multimodal aspects of dialogue, particularly in terms

of their contribution to interaction management and turn-
taking, but has not yet been integrated into larger dialogue
taxonomies. An important advantage of the ISO standard
and indeed of the information state update paradigm [20]
is its multi-dimensionality, whereby a “markable” or “area
of interest” can be tagged in several orthogonal ways. This
scheme may thus be extensible to account for many interac-
tional and multimodal aspects of interaction. A more exten-
sive taxonomy of communicative acts encompassing various
modalities is highly desirable.

While many databases are publicly available, many oth-
ers are still not shared. The shortage of desirable annotated
data is also due to lack of standardisation, Intellectual Prop-
erty Rights (IPR) restrictions, and privacy issues arising from
research ethics. Datasets involved in tasks related to human
behaviour analysis come with strict terms of use. Data providers
should thus ensure that data reuse is permitted through a
set of appropriate licensing conditions. More importantly,
datasets should be indexed so that all interested parties are
able to identify different types of resources they wish to ac-
cess and/or acquire. The multidisciplinarity of the field also
calls for true and continuous cooperation among disciplines
to make the most of complementary expertise in resource
development and processing [116].

2.3 Open Issues and Challenges

Methodologies aimed at data creation and dissemination should
be fostered by both users and providers to maximize avail-
ability and usability. The goal should be the creation of data
ecosystems that support the whole multimodal value chain -
from design to distribution - through definition of best prac-
tices (e.g., like those available in Natural Language Process-
ing) and setup of infrastructures for resource use and shar-
ing [95]. These infrastructures will address the following
needs:

– a framework for managing and sharing data collections;
– legal and technical solutions for privacy protection in a

number of use scenarios;
– data visibility and encouragement to data sharing, reuse

and repurposing for new research questions;
– identification of gaps and missing resources.

Establishing such an ecosystem in the area of multimodal
interaction is necessary to support the increasingly demand-
ing requirements of real-world applications. In particular,
the creation of an effective data ecosystem promises to have
the following advantages:

– integration of social and multimodal annotation into stan-
dard dialogue annotation schemes;

– building of knowledge-bases informing the design of real-
world and impact-oriented applications;
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– coverage of a wide, possibly exhaustive spectrum of con-
texts and situations;

– better analysis of context and genre in social interac-
tions.

Overall, a solid shared data ecosystem would greatly stream-
line the acquisition of relevant scientific understanding of
multimodal interaction, and thus expedite the use of this
knowledge in the research and development of a range of
novel real-world applications (see Section 6). The challenge
remains at defining, labeling and annotating the high-level
behaviours associated with human-human interaction. For
this purpose, experts in multimodal signal processing and
machine learning work hand-in-hand with psychologists, clin-
icians and other domain experts to transfer knowledge gained
over years of labeling human behaviours to a machine read-
able code that is amenable to computational manipulation.

3 Behaviour Analysis

Previous research on social behaviour analysis has focused
on individuals, whether it comes to the detection of spe-
cific actions and cues (e.g., facial expressions, gestures, and
prosody) or the measurement of social and psychological
phenomena (e.g., valence and arousal and personality traits).
With advances in methodology, there is increasing interest
in advancing beyond action detection in individuals to de-
tection and understanding of interpersonal influence. Recent
work includes comparing patterns of interpersonal influence
under different conditions (e.g., with or without visual feed-
back, during high- versus low conflict, and during negative
and positive affect [52, 54, 78, 117, 126]) and the relation
between interpersonal influence and outcome variables (e.g.,
friendship or relationship quality [3, 97]). Key issues are fea-
ture extraction and representation, time-series methodolo-
gies, and outcomes. Unless otherwise noted, the rest of this
section focuses on dyads (i.e., two interacting individuals)
rather than larger social groups.

3.1 Detection of Behavioural Cues

The first step in computing interpersonal influence is to ex-
tract and represent relevant behavioural features from one or
more modalities. Methodologies include motion-tracking [9]
for body motion, computer vision [36, 54, 78, 126] for facial
expression, head motion, and other visual displays, signal
processing [59, 126] for voice quality, timing, and speech,
and manual measurements by human observers [30, 71, 74].
Because of their objectivity, quantitative measurement, ef-
ficiency, and reproducibility, automatic measures are desir-
able. We address their limitations and challenges in Sec-
tion 3.3.

3.2 Modeling Interpersonal Influence

Independent of specific methods of feature extraction, two
main approaches have been used to analyze interpersonal
influence. The first includes analytic and descriptive mod-
els that seek to quantify the extent to which behaviour of
an individual account for the behaviour of another. The sec-
ond includes prediction and classification models that seek
to measure behavioural matching between interactive part-
ners.

3.2.1 Analytic/Descriptive Models

Windowed cross-correlation is one of the most commonly
used measures of similarity between two time-series [3, 97].
It uses a temporally defined window to measure successive
lead-lag relationships over relatively brief time-scales [17,
53, 54, 78]. By using small window sizes, assumptions of
stationarity are less likely violated. When time series are
highly correlated at zero lag, they are said to be synchronous.
When they are highly correlated at negative or positive lags,
reciprocity is indicated. Patterns of cross-correlation may
change across multiple windows, consistently with descrip-
tions of mismatch and repair processes (e.g., in mother-infant
dyads [29]).

Other approaches are recurrence analysis, accommoda-
tion, and spectral analysis. Recurrence analysis [104] seeks
to detect similar patterns of change or movement in time se-
ries, which are referred to as “recurrence points”. Accom-
modation [112], also referred to as convergence, entrain-
ment, or mimicry [91, 92], refers to the tendency of dyadic
partners to adapt their communicative behaviour to each other.
Accommodation is based on a time-aligned moving aver-
age between time series. Spectral methods are particularly
suitable for rhythmic processes. Spectral analysis measures
phase shifts [87, 104] and coherence [36, 103, 104] or power
spectrum overlap [87]. The methods cited above may sug-
gest that one of the interaction participants influences the
other (e.g., infants smile in response to their mother’s smile),
but it is more rigorous to say that they detect co-occurrence
patterns that do not necessarily correspond to causal or in-
fluence relationships. Correlation or co-occurrence across
multiple time series might be due to chance. A critical is-
sue when attempting to detect dependence between time se-
ries is to rule out random cross-correlation or random cross-
phase coherence. Two types of approaches may be consid-
ered. One of the most common is to apply surrogate statis-
tical tests [9, 36, 71, 103]. For instance, the time series may
be randomized. Statistics that summarize the relation be-
tween time series (e.g., correlations) then can be compared
between the original and randomized series. If the statistics
differ between the original and randomized series, that sug-
gests a non-random explanation.
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To investigate directionality requires one to consider al-
ternative approaches. For instance, is synchrony achieved by
one or both partners modifying their own behaviour in re-
sponse to the other [29]? In behavioural science, both time-
and frequency-domain approaches have been proposed to
address this problem [48, 71]. These approaches involve sta-
tistical analysis of observational measures. Yet another ap-
proach is to introduce experimental perturbations into natu-
rally occurring behaviour. In a video-conference, the output
of one person’s behaviour may be processed using an active
appearance model and modified in real time without their
knowledge. Using this approach, it has been found that at-
tenuated head nods in an avatar resulted in increased head
nods and lateral head turns in the other person [18]. Recent
advances in image processing make possible real time ex-
perimental paradigms to investigate the direction of effects
in interpersonal influence.

3.2.2 Prediction/Classification Models

In many applications, it is of interest to detect moments of
similar behaviour between partners. For example, smiles in
interactions between mothers and infants could be learned,
and then their joint occurrence detected automatically. Mu-
tual or synchronous head nodding, as in back-channeling,
would be another example. A method to detect joint states
using semi-supervised learning was proposed in [131]. Sim-
ilarly, one could use supervised or unsupervised methods
to learn phase relations between partners. This would in-
clude coordinated increasing or decreasing intensity of pos-
itive affect or mimicry. In [107], Hidden Markov Mod-
els (bi-grams) are employed to learn parent-infant interac-
tion dynamics. This modeling is coupled with Non-Negative
Matrix Factorization for a the extraction of a social signa-
ture of typical and autistic children. In [38], a set of One-
Class SVM-based models are used to recognize the gestures
of task partners during EEG hyper-scanning. A measure of
“imitation” is then derived from the likelihood ratio between
the models.

To reveal causal relations between time series, paramet-
ric approaches such as Actor-Partner analysis have been pro-
posed [64]. These approaches assume that each person is po-
tentially both cause and effect of others’ behaviour. In [54],
Actor-Partner analysis was used to measure the reciprocal
relationship between head movements of intimate partners
in conflict and non-conflict interaction. Each participant’s
head movements were used as both predictor and an out-
come variable in the analyses. In behavioural science, it of-
ten is of interest to discover predictors of interaction out-
comes from patterns of social interaction over time. For ex-
ample, it was discovered that when husbands signaled con-
tempt during arguments with their respective wives, divorce

was in the offing [69]. Over 90% of divorces could be pre-
dicted in this way.

3.3 Open Issues and Challenges

Critical challenges are access to well-annotated data from
dyads or other social groups (see Section 2), further ad-
vances in automated measurement, and improved analysis
methodologies (see Section 5). Because distribution of spon-
taneous social interaction data has been constrained by con-
fidentiality restrictions, investigators have been unable to
train on and analyze each other’s data. That limits advances
in our methods. Often, however, participants would be agree-
able to sharing their audio-video data if only asked. When
participants have been given the opportunity to consent to
such use by the research community, they often have con-
sented. This has encouraged efforts to open access to data
sources that would have been unavailable in the past (see
Section 2). The U.S. National Institutes of Health [78] among
others supports data-sharing efforts.

The current state of automated measurement presents
limits. First, automatic feature extraction typically results
in moderate rates of missing data, such as when head rota-
tion exceeds the operational parameters of the system or face
occlusion occurs. This is particularly germane when apply-
ing algorithms to participants much different than ones on
which they were trained [52]. Second, while communica-
tion is multimodal, automated feature extraction typically is
limited to one or few modalities. Despite advances in Natu-
ral Language Processing (NLP) [115], sampling and integra-
tion of speech with nonverbal measures remains a challenge.
Third, optimal approaches to multimodal fusion are an open
research question and may hinge on specific applications.
In manual measurement, coders often use multimodal de-
scriptors [29]. Comparable descriptors for automated fea-
ture extraction have yet to appear. In part for these reasons,
some investigators have considered a combination of auto-
matic and manual measurement [52, 54] or combination of
overlapping algorithms for feature extraction [90].

A further key challenge is to propose statistical and com-
putational approaches suitable for content and temporal struc-
ture of dyadic interactions. Various sequential learning mod-
els, such as Hidden Markov Models (HMMs) or Conditional
Random Fields (CRFs), are typically used to characterize
the temporal structure of social interactions. Further approaches
of this type will be of great benefit for automatic analysis
and understanding of interpersonal communication in social
interaction.
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4 Multimodal Embodiment

In the past ten years, significant amount of effort has been
dedicated to explore the potential of Social Signal Process-
ing in human interaction with embodied conversational agents
and social robots. The social interaction capability of an ar-
tificial agent may be defined as the ability of a system to
interact seamlessly with humans. This definition implies the
following:

– the human produces and expects responses to social sig-
nals in the communication with the agent;

– the agent is not only perceptive to the social signals emit-
ted by the human, but also uses social signals to further
its own purposes.

Especially, the latter point implies a rich internal representa-
tion of humans and human-human interactions for the agent.

Needless to say, specific aspects of embodied social in-
teraction cannot be studied under laboratory conditions alone;
naturalistic social settings and people’s daily environments
are needed to situate the user-agent communication (see Sec-
tion 2 for issues related to the collection of data in natu-
ralistic settings). Looking at recent literature, current goals
in multimodal embodied interaction are focused on imple-
menting sets of social communication skills in the agent,
including detection of humor, empathy, compassion, and af-
fect [130]. Basic skills like facial emotion recognition, gaze
detection, dialogue management, and nonverbal signal pro-
cessing are still far from being effective. Similarly, synthe-
sis and timing of nonverbal signals, and appropriate ways of
signaling apparent social cues are studied.

This section identifies two major challenges in this area.
The first is that in these studies, typically, the cultural con-
text is held fixed. One may argue that even humans have
troubles selecting correct responses when the cultural setting
is not familiar, but studies on artificial agents typically take
place in very restricted domains, and naturalistic contexts
are absent. The second problem is that the social behaviour
of the agent is often not grounded in a rich internal represen-
tation, and lacks depth [7, 108]. When an agent shows signs
of enjoying humor, it does that according to an internal rule
triggered to display amusement as the appropriate response
to a certain number of interactional situations. This way of
modeling social exchanges is very rudimentary, and while
it can be the initial step for implementing a social agent,
it is very far from implementing the complexity and rich-
ness of social communications in real-life. The two issues
mentioned above are strongly connected; without a proper
internal representation, shallow models cannot be expected
to adapt to different social contexts.

4.1 Approaches to Multimodal Embodiment

Social signals are strongly contextualized. For example, in a
situation of bereavement, a gesture that is performed close
to the interacting party can easily be interpreted as showing
sympathy. The same gesture could be entirely inappropriate
in a different context. The interpretation of social signals de-
pends not only on the correct perception and categorization
of the signal, but also on the evaluation and active interpre-
tation of the interacting parties. While humans are adept at
this, artificial agents lack the semantic background knowl-
edge to deal with subtleties. Subsequently, the human-agent
interaction needs to assume that the technology is limited,
and compensate for its shortcomings by structuring the in-
teraction in a way that the exchange follows signals that are
clear and simple, tailored to the capabilities of the agent, but
still rich enough to convey the internal states of the agent to
the human, and vice versa.

Technologies for realizing individual components of a
social agent have reached a great level of advancement. Progress
in the area of social signal interpretation has been consid-
erably fostered by a number of international benchmarking
campaigns, such as the series of the Audio/Visual Emotion
Challenges (AVEC) 1. This is important for artificial agents
that need to understand their users in naturalistic settings,
but it is obvious that human-agent interactions do not neces-
sarily need to use the same signals as those used in human-
human interaction. The archetypical example is a domesti-
cated cat, which produces a different set of social signals
than a human, but seamlessly communicates over this set.
The contribution of benchmarking campaigns is essential to
the development of new solutions. Realistic data, naturalis-
tic behaviours, and real-time processing are key aspects for
these campaigns. The latter aspect is particularly important,
as most challenges focus on offline processing, but the on-
line mode, which is essential for real, situated social interac-
tions, is a much more difficult setting [110]. Candace Sidner
and Charles Rich [102] coined the term always-on relational
agents to describe the vision of a robotic or virtual charac-
ter that lives as a permanent member in a human household,
which remains a grand challenge. In a related perspective,
Barbara Grosz [50] stated that: “Is it imaginable that a com-
puter (agent) team member could behave, over the long term
and in uncertain, dynamic environments, in such a way that
people on the team will not notice it is not human.” The per-
ception, negotiation, and generation of social cues in a con-
text is necessary to achieve this condition.

1 http://sspnet.eu/avec2014/
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4.2 Open Issues and Challenges

As tools become more diversified and layered, it becomes
possible to create agents with more depth. Work done in the
SEMAINE project [113] has shown that simple backchan-
nel signals, such as “I see”, may suffice to create the illu-
sion of a sensitive listener. However, to engage humans over
a longer period of time, a deeper understanding of the di-
alogue would be necessary. While a significant amount of
work has been done on the semantic/pragmatic processing
in the area of NLP, work that accounts for a close interac-
tion between the communication streams required for se-
mantic/pragmatic processing and social signal processing is
rare (see Section 5). The integration of Social Signal Pro-
cessing with semantic and pragmatic analysis may help to
resolve ambiguities. Especially short utterances tend to be
highly ambiguous when solely the linguistic data is con-
sidered. An utterance like “right” may be interpreted as a
confirmation, as well as a rejection, if intended cynically,
and so may the absence of an utterance. Preliminary studies
have shown that the consideration of social cues may help
to improve the robustness of semantic and pragmatic analy-
sis [21] (see Section 5).

Finding the right level of sensitivity is very important in
creating seamless interaction, and this requires strong adap-
tation skills for the agent. Mike Mozer’s early experiments
on the adaptive Neural Network House established that peo-
ple tolerate only to a limited extent the mistakes of an “in-
telligent” system [82]. This is true for social signals as well;
agents that act and react inappropriately will most likely irri-
tate users [6]. Treating all user behaviours as possible input
to the agent (called the “Midas Touch Problem” [55]) will
result in poor interactions, and confused users.

Recent work by the “Natural Interaction with Social Robots
Topic Group” 2 (NISR-TG) proposes to use several levels to
describe the social ability of an agent:

– Level 0: the agent does not interact with the human;
– Level 1: the agent perceives the human as an object (use-

ful for orienting and navigating);
– Level 2: the agent perceives the human as another agent

that is represented explicitly, and can be re-identified
time and again;

– Level 3: a two-way interaction is possible, provided that
the interacting human knows and obeys some conven-
tions and behaviours required by the agent’s system;

– Level 3a: a two-way interaction is possible with the abil-
ity of spoken language interaction;

– Level 4: the agent adapts its behaviour to the interaction
partners during the interaction;

– Level 5: the agent recognizes different users and adjusts
its behaviour accordingly;

2 http://homepages.stca.herts.ac.uk/̃comqkd/TG-
NaturalInteractionWithSocialRobots.html

– Level 6: the agent is capable to interact with more than
one users;

– Level 7: the agent is endowed with personality traits that
can be recognised as such by the users and result into
displaying different behaviours in the same situations;

– Level 8: the agent is capable to learn and accumulate
experience over multiple interactions;

– Level 9: the agent is capable to build and sustain rela-
tionships with its users.

Progressing through the levels, the agent is expected to gain
one-way and two-way interaction capabilities, followed by
a more advanced set of skills including adaptation, multi-
party interaction management, and the incorporation of so-
cial constructs like personality.

Humans adapt their social behaviours during interactions
based on explicit or implicit cues they receive from the in-
terlocutor. In order to establish longer lasting relationships
between artificial companions and human users, artificial
companions need to be able to adjust their behaviour on the
basis of previous interactions. That is, they should remem-
ber previous interactions and learn from them [10]. To this
end, sophisticated mechanisms for the simulation of self-
regulatory social behaviours will be required. Furthermore,
social interactions will have to be personalized to individu-
als of different gender, personality and cultural background.
For example, cultural norms and values determine whether
it is appropriate to show emotions in a particular situation
[76] and how they are interpreted by others [75]. While of-
fline learning is prevalent in current systems exploiting SSP
techniques, future work should explore the potential of on-
line learning in order to enable continuous social adaptation
processes. For the integration of context, novel sensor tech-
nologies can be used by the agent in ways that are not avail-
able to humans in an ordinary interaction [35, 129]. Multi-
modality can also be harnessed in expressing social signals
in novel ways, for instance by adding haptic cues to visual
displays [15, 43].

At a finer level, a single interaction between two agents
also involves an interactive alignment ( also see Section 3),
where the interacting parties converge on similar represen-
tations at different levels of linguistic processing [45, 94].
The alignment at higher-levels (e.g. common goals), relies
on the alignment of lower-levels (e.g. objects of joint atten-
tion). This requires that the agents model their interaction
partners, anticipate interaction directions, align their com-
munication acts, as well as actions [105]. We can safely as-
sume that research in cognitive science and linguistics will
be essential in achieving these goals (see Section 5).
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Fig. 1 A layered view of human-machine interaction (ASR and TTS stand for Automatic Speech Recognition and Text to Speech, respectively).

5 Computational Models of Interaction

Broadly based on the work of Tomasello [120, 121] (and
others) human-human interaction can be represented as a
three-step process: sharing attention, establishing common
ground and forming shared goals (a.k.a. joint intentionality).
Two prerequisites for successful human-human communica-
tion via joint intentionality are:

– the ability to form a successful model of the cognitive
state of people around us, i.e., decoding not only overt,
but also covert communication signals also referred to as
“recursive mind-reading”;

– establishing and building trust, a truly human trait.

Affective computing, SSP and Behavioural Signal Process-
ing (BSP) address the first prerequisite, building machines
that can understand the emotional, social and cognitive state
of an individual. A layered view of human-machine interac-
tion from the cognitive and computational perspectives are
shown in Figure 1. This section reviews computational mod-
els and associated challenges for each layer.

5.1 Joint Attention and Saliency

Unlike computers, humans are able to process only the most
salient parts of an image, a sound or a brochure, literally ig-
noring the rest. Being able to model and predict what a hu-
man sees and hears in an audio-visual scene is the first step
towards forming a cognitive representation of that scene, as
well as establishing common ground in interaction scenar-
ios.

Saliency- and attention-based models have played a sig-
nificant role in multimedia processing in the past decade
[22, 33, 42, 58, 63, 70, 83, 98, 118], exploiting low-level
cues from the (mostly) visual, audio, and spoken language

(transcription) modalities: they have proved very successful
in identifying salient events in multimedia for a variety of
applications. However, attention-based algorithms typically
use only perceptually motivated low-level (frame-based) fea-
tures and employ no high-level semantic information, with
few exceptions in very specific cases (mostly in the visual
domain) [83].

Challenges still remain on: 1) mid- and high-level fea-
ture extraction including incorporating semantics (scenes,
objects, actions) and 2) computational models for the multi-
modal fusion of the bottom-up (gestalt-based) and top-down
(semantic-based) attentional mechanisms. Also applying these
multimodal salient models to realistic human-human (espe-
cially) and human-computer interaction scenarios remains a
challenge. The most promising research direction for these
challenges seems to be deep learning, where the integration
among levels of diverse granularity of knowledge is the core
skill [14]. Finally, identifying the dynamics of attention, i.e.,
constructing joint (interactional) attention models remains
an open problem in this area.

5.2 Common Ground and Concept Representations

While interacting, humans process and disambiguate mul-
timodal cues, integrating low-, mid- and high-level cogni-
tive functions, specifically using the low-level machinery of
cue selection (as discussed above) via (joint) attention, the
mid-level machinery of semantic disambiguation via com-
mon ground and shared conceptual representations, and the
high-level machinery of intention reading.

Since establishing common ground is a prerequisite for
successful communication, an essential module of an ideal
interacting machine should model an extensive cognitive se-
mantic/pragmatic representation, that is, a network of con-



Roadmap 9

cepts and their relations that form the very essence of com-
mon ground, and in this sense formal ontologies may help.

Formal Ontologies [51] are a top-down (knowledge-based)
semantic representation that has been used for interaction
modeling mainly by the research community, e.g., [132].
The main advantages of ontologies are description clarity
(via mathematical logic) and inference power. However, the
following challenges remain to make ontologies a viable
representation for practical interactional systems:

– mapping between the semantic and lexical/surface repre-
sentations, a.k.a. the “lexicalization” of ontologies nec-
essary both for natural language (NL) understanding [28]
and for NL generation [8]; the same problem holds also
in the visual domain, where a proper “visual ontology”
is missing, or available in very restricted domains [122];

– representing ambiguous semantics [4];
– representing complex semantics, e.g., time relationships

[13];
– combining ontology-driven semantics with bottom-up (data-

driven) approaches, e.g., for grammar induction [46] and
in general for computer vision.

Grounding exists only in the context of our semantic, affec-
tive and interactional cognitive representations and should
be addressed as such. This poses the grand challenge of us-
ing “big data” to construct such cognitive representations, as
well as defining the “topology” (unified vs. distributed) and
processing logic (parallel/serial) of these representations. Cog-
nitively motivated conceptual representations and novel ma-
chine learning algorithms (representation and transfer learn-
ing [89]) can be used to face these issues by designing algo-
rithms that 1) achieve rapid learning and adaptation to new
concepts and situations from very few examples (situational
learning and understanding), and 2) provide grounding in in-
teraction and problem-solving settings (negotiating common
ground).

5.3 From Semantics to Behaviour and Interaction

Even if it was possible to solve the multimodal understand-
ing problem by mapping from signal(s) to semantics (a mon-
umental task by itself), it would still be only half of the way.
Assuming that a conceptual representation is in place (see
above), this section discusses how to model jointly seman-
tics and affect.

Given that the cognitive semantic space is both distributed
and fragmented into subspaces, the mapping from semantics
to affective labels should also be distributed and fragmented.
Semantic-affective models (SAM) [72, 123] are based on the
assumption that semantic similarity implies affective simi-
larity. Thus affective models can be simply constructed as
mappings from semantic neighborhoods to affective scores.
In the SAM model proposed in [72, 73], the affective label

of a token can be expressed as a map (trainable linear com-
bination) of its semantic similarities to a set of seed words
and the affective ratings of these words. The model can be
extended to also handle many-to-many mappings between
multiple layers of cognitive representations. The model is
consistent with (and implementable via) the multi-layered
cognitive view of representation and deep learning models.

Although good performance can be obtained for lan-
guage and image processing applications, the challenge re-
mains on how to apply this model to audio and video, where
the segmentation of the stream into tokens is not straightfor-
ward. Also, the model works very well at estimating the af-
fective content of single tokens (words, images); going from
a single token to a sequence of tokens (e.g., word to sen-
tences) is a hard open problem. Last but not least, general-
izing this model to other behavioural labels remains a grand
challenge.

5.4 Open Issues and Challenges

The previous sections have identified major challenges that
lie ahead in the fields of affective, social and behavioural
signal processing as it pertains to interaction modeling. The
sections have also argued that it is very improbable that one
can successfully address these major challenges without tak-
ing into account the peculiarities of human cognition.

The proposition of this paper is that the solution of these
problems should be grounded on human cognition, includ-
ing modeling the errors (cognitive biases) and non-linear
logic of humans [101]. Although “pure” machine learning
algorithms often achieve good performance for classifica-
tion of low- and mid-level labels, they are less successful
with higher-level behavioural classification tasks. This can
be partially attributed to the ambiguity, abstraction, subjec-
tivity and representation depth inherent in high-level cog-
nitive tasks. Cognitively inspired models can represent the
very errors, biases, subjective beliefs and attitudes of a hu-
man. Thus, adopting a human-centered approach becomes
increasingly important as we move from signals to behaviours
and interaction. The recent achievements of cognitively mo-
tivated machine learning paradigms such as representation,
transfer and deep learning further validate this view. Inter-
action modeling poses new challenges and opens up fruitful
research directions for the years to come.

6 Applications

Effectiveness in real-world applications is the ultimate test
for any technology-oriented research effort. While being an
opportunity for methodological progress and acquisition of
key-insights about human psychology and cognition, research
on modeling, analysis and synthesis of human behaviour
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aims at achieving impact in terms of both commercial ex-
ploitation, i.e. development of products that reach the market
and result into jobs creation, and solutions to societal prob-
lems, i.e. development of systems that improve the quality of
life, especially when it comes to disadvantaged categories.

Addressing the issues and challenges presented in this
work will certainly advance the state-of-the-art, but it will
increase the chances of success for a wide spectrum of real-
world technologies as well (the list is not exhaustive):

– Analysis of agent-customer interactions at call centres3

with the goal of improving the quality of services [44];
– Improvement of tutoring systems aimed at supporting

students in individual and collective learning processes [111];
– Creation of speech synthesizers4 that convey both verbal

and nonverbal aspects of a text [114];
– Enrichment of multimedia indexing systems with social

and affective information [6];
– Recommendation systems that take into account stable

individual characteristics (e.g., personality traits) and tran-
sient states (e.g., emotions) [119];

– Socially intelligent surveillance and monitoring systems [34].

The rest of this section focuses on three application domains
that address crucial issues and aspects of everyday life, namely
healthcare, human-machine interactions and human-human
conversations. The three cases account for three major steps
in the process that leads from the laboratory to the real-
world:

– The development of a vision based on current state-of-
the art and major technological trends in the case of health-
care personal agents (see Section 6.1);

– The realization of a prototype that addresses one spe-
cific application (intelligent control centres), but results
into the definition of principles that can be transferred to
other areas (see Section 6.2);

– The definition of concrete steps bridging the gap be-
tween research, industry and society in the case of con-
versational technologies (see Section 6.3).

The description of the case studies above will provide in-
sights regarding the interdependency between the challenges
outlined so far and application-driven needs.

6.1 The Healthcare Personal Agent: a Vision for the Future
of Medicine

Advances in mobile technologies such as voice, video, touch-
screens, web 2.0 capabilities and integration of various on-
board sensors and wearable computers, have rendered mo-
bile devices as ideal units for delivery of healthcare services

3 See http://www.cogitocorp.com for a company working on
the analysis of call centre conversations.

4 See https://www.cereproc.com for a company active in the
field.

[11]. At the same time the dawn of the data-driven economy
has stirred the innovation of processes and products. Unfor-
tunately, the innovation has been slow in the healthcare sec-
tor where much innovation is needed to improve the qual-
ity of the service at various end-points (hospitals, healthcare
professionals, patients) and reduce costs.

The 2012 survey in [84] reports that in Europe there
were more than one hundred health apps in a variety of lan-
guages (Turkish, Italian, Swedish, etc..) and domains (men-
tal problems, self-diagnosis, heart-monitoring, etc.). Such
growing number of smartphone applications can track user
activity, sleeping and eating habits and covert and overt sig-
nals such as blood pressure, heart rate, skin temperature,
speech, location, movement, etc. by either using the on-board
sensors of the smartphone or interacting with various wear-
able and healthcare monitoring devices.

In the recent years there has been a growing research in-
terest in creating such applications which can interact with
people though context-aware multimodal interfaces and have
been used for various healthcare services ranging from mon-
itoring and accompanying the elderly [11, 79], to providing
healthcare interventions for long-term behaviour changes [81].
Such agents can be useful in keeping track of patient activ-
ity in-between visits or to ensure the patients are taking their
medicines on time, or that they follow their advised health
routine (see Section 4 for challenges related to “always on”
agents).

In the future, Healthcare Personal Agent research and
development should plan for an agenda where current lim-
itations are addressed and new avenues are explored. Such
agenda can directly impact the quality of life and health of
people by disrupting current models of delivering health-
care services. Agents will have different physical and vir-
tual appearance (see Section 4 for challenges in embodi-
ment) ranging from avatars to robots (e.g. [79]). Covert sig-
nal streams from wearable and mobile sensors may be ef-
fectively used to model user state in terms of his/her phys-
iological responses to external stimuli, events and medical
protocol he/she is following (see Section 3 for challenges
related to behaviour analysis).

Personal Agents need to be able to handle basic and
complex emotions such as empathy. In the healthcare do-
main, the ability to handle emotions is critical to manage and
support, for instance, daily healthcare routine. The affective
signals and communication need to be adapted for target pa-
tient groups such as children, elderly people, etc. By far one
of the most important social and cognitive skills of a con-
versational agent is the ability to carry out a dialogue with
a human (see Section 6.3). Different models of user inter-
action might be needed for different users/user-groups and
different application domains (e.g. robotic surgery vs bank
fund transfer vs information seeking). An application track-
ing brushing habits of kids might achieve better results with
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Fig. 2 Left: Comfortable sensor-equipped chair. Micro gestures allow for natural interaction during lengthy passive monitoring periods. Middle:
Operators at workstations are tracked and an acoustic interface targets sound at a particular operator without disturbing others. Right: Collaboration
and distribution of urgent tasks via hand gestures and shared screens.

gamification, while an obesity monitoring agent should use
motivational feedback to improve user compliance.

6.2 Building a Working Prototype: The Example of
Intelligent Control Centres

Human-Computer Interaction is one of the domains that di-
rectly benefit from multimodal technologies for human be-
haviour understanding. This applies in particular to applica-
tions where machines must adapt as intelligent as possible
to the natural and spontaneous behaviour of their users be-
cause these need to concentrate their attention and cognitive
efforts on difficult and demanding tasks.

Reducing the cognitive load and enabling immediate re-
action to alarms in idle times are key requirements that have
driven the development of the innovative control centre de-
scribed in [61]. Comparable efforts on concrete applications
have worked on ship bridges [66] and crises response con-
trol rooms [56].

In control centers, teams of human operators collabo-
rate to monitor and manipulate external processes, such as in
industrial production, IT and telecommunication infrastruc-
ture, or public infrastructure such as transportation networks
and tunnels. In this domain, innovation towards user inter-
faces has been picked up slowly since it is limited by govern-
mental regulation or short-term return-on-investment con-
siderations. Surprisingly, many of the systems in use were
first built decades ago and have been extended iteratively
without proper re-design of their user-interfaces until today.
Recent generations of operators, however, are digital natives
and hence familiar with mobile devices, gesture interfaces
and touch screens, for example. While considerable busi-
ness opportunities can be expected in the next decade to re-
design the interfaces in such control rooms, many research
challenges remain to be addressed.

Most current systems feature redundant input devices,
little context awareness, and expose operators to information
overflow. The support for distribution of tasks and collabo-
ration in general leaves to be desired. One key enabling fac-

tor in the re-design of such complex systems is the dynamic
interpretation of the operators’ actions and interactions as
a team while taking the current situation (goal, alarm and
stress level, etc.) into account (see Section 3 for the chal-
lenges related to understanding the behaviour of groups).
Inspired by a human-centered design approach, the concept
recently proposed in [61] experiments with the combina-
tion of visual cues, micro (i.e. fingers and hands only) and
macro gestural interaction, an acoustic interface with indi-
vidualized sound radiation, and intelligent data processing
(Semantic Lifting, see [62]) into a single, universal inter-
face. The concept is considering specific needs of the opera-
tors and the length of work shifts, which for example led to
the omission of wearable devices such as headsets. Figure
2 illustrates several components of this multimodal interac-
tion concept [61]. The work made clear that while research
has been addressing the combination of input and output de-
vices of multiple modalities, a lot more applied research is
required on their interplay regarding specific tasks in real
industry settings.

In a safety critical environment, user interaction requires
different levels of robustness and precision according to the
tasks. Control center operators conduct very specific tasks
that call for different interaction devices and concepts. Their
integration and dynamic adaptation is a challenge. An un-
derlying aim is to actively manage the cognitive load of the
operators, mainly to ensure quick reaction in alarm situa-
tions. There are idle times where operators essentially take a
break but don’t leave their workplace, lengthy passive mon-
itoring tasks, and very urgent alarm handling situations. A
significant impact can be expected in this domain by im-
proved user behaviour analysis.

6.3 Roadmapping Research and Innovation in
Conversational Interaction Technologies

The research community in multimodal conversational inter-
action has advanced significantly in recent years, however –
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despite the fast growth of multimodal smartphone technolo-
gies, for example – innovation and commercial exploitation
is not always closely connected to research advances. To de-
velop and integrate research and innvovation in this area, it
is thus important to identify the key innovation drivers and
most promising elements across science, technology, prod-
ucts, and services on which to focus in the future.

Technology roadmapping is a process to lay out a path
from science and technology development through integrated
demonstration to products and services that address business
opportunities and societal needs. Often performed by indi-
vidual businesses, it can also be used to put together all of
the different viewpoints and information sources available
in a large stakeholder community as a way of helping them
work together and achieve more. The EU ROCKIT project,
driven by a broad vision for conversational interaction tech-
nologies, has constructed a technology roadmap for Con-
versational Interaction Technologies (http://www.citia.
eu).

In consultation with researchers and companies of every
size (including several workshops involving about 100 re-
sesarchers and technologists), the ROCKIT support action
constructed a technology roadmap for Conversational Inter-
action Technologies. Since research and business environ-
ments can change rapidly, the resultant roadmap is struc-
tured to enable stakeholders to steer through change and un-
derstand how they can achieve their goals in a changing con-
text. For this reason, the roadmap is not just a series of steps
that go from current science and technology outcomes to
future profitable products and services, but conveys the re-
lationships among societal drivers of change, products and
services, use cases for them, and research results.

The ROCKIT roadmap connects the strong research base
with commercial and industrial activity, and with policy mak-
ers. To develop the roadmap, and and to make tangible links
between research and innovation a small number of target
scenarios have been developed. Each scenario includes its
societal and technological drivers, research aspects, market
and business drivers, and potential testbeds. We identified a
number of common themes coming out of ROCKIT’s con-
sultations with stakeholders, in particular accessibility, mul-
tilinguality, the importance of design, privacy by design, sys-
tems for all of human-human, human-machine, and human-
environment interactions, robustness, security, potentially ephemeral
interactions, and using the technology to enable fun.

Building on these themes, together with the different so-
cial, commercial, and technological drivers, we have identi-
fied five possible target application scenarios:

– Adaptable interfaces for all: Interfaces which recognize
who you are, where you are, and eventually what you
want, by drawing on a profiled knowledge base about
your habits and preferences. They will therefore be able
to adapt to your disability, language, visual competency,

specific need for speech or typed input depending on
whether you are driving/working with two hands on a
repair job or are seated in front of a keyboard, physical
or virtual, or are prostrate in bed (see Section 4 for chal-
lenges related to agents with internal representations of
users and ability to adapt to context and interactions).

– Smart personal assistants: Multisensory agents able to
integrate heterogeneous sources of knowledge, display
social awareness, and behave naturally in multiuser sit-
uations (see Section 4 for challenges related to synthesis
of social behaviour).

– Active access to complex unstructured information: Link-
ing knowledge to rich interaction will enable the devel-
opment of agents which can search proactively and can
make inferences from their (possibly limited) knowledge,
to enable people to be notified of relevant things faster,
and to help people reach understanding of complex situ-
ations involving many streams of information (see Sec-
tion 5 for challenges in representing knowledge and cog-
nitive processes).

– Communicative robots: Embodied agents able to display
personality and to generate and interpret social signals
(see Sections 3 and 4 for related challenges).

– Shared collaboration and creativity: Empowering and
augmenting communication between people. This will
include new approaches to social sharing (across lan-
guages), design platforms which enable people to build
their own tools, and scalable systems that enable groups
to collaborate with shared goals, facilitating problem solv-
ing, and providing powerful mechanisms for engagement.

7 Conclusions

This article has described some of the most important chal-
lenges and issues that need to be addressed in order to achieve
substantial progress in technologies for the modeling, anal-
ysis and synthesis of human behaviour, especially for what
concerns social interactions. Section 2 has shown that data,
while being a crucial resource, cannot become an asset for
the community without widely accepted practices for de-
sign, collection and distribution. Section 3 has proposed to
move the focus of analysis approaches from individuals in-
volved in an interaction to phenomena that shape groups of
interacting people (e.g., interpersonal influence and social
contagion). Section 4 highlighted the need of endowing ma-
chines, in particular embodied conversational agents, with
an internal representation of their users. Section 5 has fo-
cused on the possibility of integrating models of human cog-
nitive processes and semantics in technologies dealing with
human behaviour. Finally, Section 6 has overviewed appli-
cation domains that can benefit, or are already benefiting,
from technologies aimed at modeling, analysis and synthe-
sis of behaviour.



Roadmap 13

While addressing relatively distinct problems, the chal-
lenges above have a few aspects in common that might guide
at least the first steps required to address them. The first is
that human behaviour is always situated and context depen-
dent. Therefore, technologies for dealing with human be-
haviour should try to address highly specific aspects of the
contexts where they are used rather than trying to be generic.
Conversely, it should be always kept in mind that an ap-
proach effective in a given situation or context might not
work in others. The second is the need of considering both
verbal and nonverbal aspects of human-human and human-
machine interactions. So far, verbal content and semantics
tend to be neglected, the reason being that nonverbal aspects
are more honest and, furthermore, taking into account what
people say violates the privacy. The third is to model explic-
itly the processes that drive interactive behaviour in humans
like, e.g., the development of internal representation of oth-
ers.

The last part of the article has considered three applica-
tion case studies that account for different steps of the pro-
cess that leads from laboratory to real-world applications.
Healthcare personal agents have been proposed as a case of
research vision that builds upon current technology trends
(in particular the diffusion of mobile devices and the avail-
ability of large amounts of data) to design new applications
of technologies for analysis of behaviour. The case of the in-
telligent control centres has shown that the implementation
of an application-driven prototype provides insights on how
technologies revolving around behaviour should progress.
Finally, the case of conversational technologies has given an
example of how a roadmapping process can contribute to
bridge the gap between research and application.

Needless to say, the issues proposed in this article do
not necessarily cover the entire spectrum of problems cur-
rently facing the community. Furthermore, new challenges
and issues are likely to emerge while the community ad-
dresses those described in this work. However, dealing with
the problems proposed in this article will certainly lead to
substantial improvements of the current state-of-the-art.
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André E (2014) Exploring social augmentation con-
cepts for public speaking using peripheral feedback
and real-time behavior analysis. In: Proceedings of the
International Symposium on Mixed and Augmented
Reality

36. Delaherche E, Chetouani M (2010) Multimodal coor-
dination: exploring relevant features and measures. In:
Proceedings of the International Workshop on Social
Signal Processing, pp 47–52

37. Delaherche E, Chetouani M, Mahdhaoui M, Saint-
Georges C, Viaux S, Cohen D (2012) Interpersonal
synchrony : A survey of evaluation methods across dis-
ciplines. IEEE Transactions on Affective Computing
3(3):349– 365

38. Delaherche E, Dumas G, Nadel J, Chetouani M (2015)
Automatic measure of imitation during social inter-
action: a behavioral and hyperscanning-EEG bench-
mark. Pattern Recognition Letters (to appear)

39. DuBois JW, Chafe WL, Meyer C, Thompson SA
(2000) Santa Barbara Corpus of Spoken American En-
glish. CD-ROM. Philadelphia: Linguistic Data Con-
sortium

40. Edlund J, Beskow J, Elenius K, Hellmer K,
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