Maximising use of population data on cardiometabolic diseases

Citation for published version:

Digital Object Identifier (DOI):
10.1016/S2213-8587(21)00328-4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The Lancet Diabetes and Endocrinology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Maximizing Use of Available Population-Based Data on Cardiometabolic Diseases

David Flood, David Guwatudde, Albertino Damasceno, Jennifer Manne-Goehler, Justine I. Davies, for the Global Health & Population Project on Access to Care for Cardiometabolic Diseases (HPACC)

1 Division of Hospital Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; 2 Center for Indigenous Health Research, Wuqu’ Kaoq, Tecpán, Guatemala; 3 Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala; 4 Department of Epidemiology and Biostatistics, School of Public Health, Makerere University, Kampala, Uganda; 5 Department of Public and Forensic Health Sciences and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal; 6 EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal; 7 Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique; 8 Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; 9 Medical Practice Evaluation Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; 10 Institute for Applied Health Research, University of Birmingham, UK; 11 Centre for Global Surgery, Department of Global Health, Stellenbosch University, Cape Town, South Africa; 12 Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit, Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa

* Joint senior authors

† Members listed at end of paper

* Members listed at end of paper
Corresponding author:
Justin I. Davies, MD
Institute for Applied Health Research
University of Birmingham
Birmingham, United Kingdom
B15 2TT
J.davies.6@bham.ac.uk

Word count: 907942
References: 10
The absolute worldwide burden of adult cardiometabolic diseases such as hypertension, diabetes, obesity, and dyslipidemia continues its relentless ascent. Scaling up the prevention, management, and control of cardiometabolic diseases is cost-effective but requires strong health systems. Building these strong health systems requires data that are accurate, timely, and transparent, as we have previously argued in this journal. In particular, data from high-quality population-based surveys are critical, as they reflect the spectrum of community-dwelling adults in a particular geography, including those who are not reached by the health system.

There has been tremendous progress in making population-based survey data available for cardiometabolic diseases. Emblematic of this has been the release in 2018 of the World Health Organization (WHO) Noncommunicable Disease (NCD) Microdata Repository. This hosts over 130 surveys conducted using the STEPwise approach to NCD surveillance (STEPS) methodology that are now available after users who submit a brief application. Most STEPS surveys are conducted in low- and middle-income countries (LMICs) where a majority of the cardiometabolic disease burden occurs. Thus, this resource fills a critical gap in openly accessible population-based survey data on cardiometabolic risk factors and health care access in these settings.

Yet, there is more work to be done. The availability of population-based data, while necessary, is insufficient by itself to ensure their effective use to shape programs, strategies, and policies addressing cardiometabolic diseases. In this Comment, we highlight three other crucial actions needed to maximize the use of population data: harmonization, alignment with monitoring indicators to benchmark health system performance, and capacity-building initiatives to democratize data use.
Our perspective is informed by our experience in the Global Health and Population Project on Access to Care for Cardiometabolic diseases (HPACC), an international research consortium with collaborators in more than 30 countries. HPACC has created a dynamic repository of harmonized, nationally representative survey data currently representing 1.3 million individuals in more than 75 LMICs (including more than 50 STEPS surveys) to address questions of relevance to health system planning and evaluation for cardiometabolic diseases.

First, while population-based data can and should be used at the national level, these data also should be harmonized to maximize its use by international advocacy organizations, policymakers, and researchers. Harmonization refers to the process of bringing together distinct data sources into a single comparable format. Harmonized survey data are available in the area of maternal and child health, but no such resource exists for cardiometabolic diseases. Such harmonized data allow for assessing health system effectiveness and responsiveness, as our study of the state of hypertension care in 44 LMICs illustrates. Harmonization also provides larger and more diverse samples, giving added power to study variations in cardiometabolic risk factors, including biological measures such as blood glucose and behavioral risk factors such as physical activity and diet. Understanding these variations is important, as it cannot be assumed that epidemiologic patterns of clinical relevance observed in well-studied high-income countries will be conserved in LMICs. Indeed, we have found that the association between diabetes and body mass index (BMI) is highly variable across world regions, implying that BMI thresholds generated using European or North American data cannot simply be applied elsewhere in other world regions. Harmonization also allows for the construction of sophisticated clinical and policy models for the prevention, treatment, and control of cardiometabolic diseases. Importantly, to ensure that data are useful for cross-country comparisons, prior to data collection, time should be spent ensuring survey instruments and data collection are standardized and aligned with the highest priority global health metrics.
Second, population data on cardiometabolic diseases should be harnessed to benchmark and monitor health system performance. At present, these data are underutilized for this purpose. Harmonized data from STEPS and similar non-STEPS surveys can reveal progress on monitoring indicators in the NCD Global Monitoring Framework\(^7\) and inform new targets such as those proposed by the WHO Global Diabetes Compact, a recently established initiative to improve global diabetes care.\(^8\) To show global variation in health system performance, harmonized data ideally should include not only LMICs but also high-income countries, though unfortunately data from high-income countries are currently less available.

Third, given limited research capacity in many LMICs, there is a need to build capacity to ensure the wide usability of population data on cardiometabolic diseases, most especially by those who have collected it. Local researchers—especially those in LMICs—who design and conduct surveys should be empowered to use harmonized data to answer their policy-relevant questions, conduct independent analyses, and publish in lead-author roles.\(^9\) In addition to this being a step towards decolonialization of global health, these collaborators add critical contextual interpretation that may not be fully perceived or appreciated by those outside their settings.

While we focus on maximizing use of available population data on cardiometabolic diseases, it is important to continue data-sharing efforts. Many STEPS and comparable household surveys remain unavailable, as are more than two dozen nationally representative health facility surveys conducted using the WHO Service Availability Readiness Assessment (SARA) methodology.\(^10\) Additionally, many other data sources, for example, from subnational research studies, remain inaccessible. Finally, cardiometabolic disease epidemiology is rapidly evolving, but data are often historical. As is done for HIV, data collection for cardiometabolic
diseases needs to be ongoing to assess temporal trends in disease prevalence and health
system performance.

The staggering burden of cardiometabolic diseases brings with it an imperative to maximize the
use of these data. Many countries and individuals LMICs already have invested substantial
resources in producing these data, which are a global public good. However, while they are
increasingly available, in practice they are still too sparse and underutilized given the
toll these diseases are taking on people worldwide. We call on funders and international health
organizations to invest in efforts to collect, harmonize and make available these data with an
urgency befitting the magnitude of the global burden of cardiometabolic diseases.
References


HPACC members


Affiliations

1Division of Hospital Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA; 2Center for Indigenous Health Research, Wuqu’ Kawaq, Tecpán, Guatemala; 3Research Center for the Prevention of Chronic Diseases, Institute of Nutrition of Central America and Panama, Guatemala City, Guatemala; 4Department of Epidemiology and Biostatistics, School of Public Health, Makerere University, Kampala, Uganda; 5Department of Public Health and Social Development, Faculty of Medicine, University of Porto, Porto, Portugal; 6EPIUnit, Institute of Public Health, University of Porto, Porto, Portugal; 7Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique; 8Monitoring Evaluation and Operational Research Project, Aboo, Kathmandu, Nepal; 9Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA; 10Department of Global Health and Social Medicine, Harvard Medical School, Harvard University, Boston, MA, USA; 11Heidelberg Institute of Global Health, Heidelberg University, Heidelberg, Germany; 12Africa Health Research Institute, Somkhele, South Africa; 13Harvard Center for Population and Development Studies, Cambridge, USA; 14Institut National de Santé Publique, Burkina Faso; 15Ministry of Health, Victoria, Seychelles; 16Institute of Social and Preventive Medicine, Lausanne, Switzerland; 17The Fred Hollows Foundation New Zealand; 18University of Medicine and Pharmacy Carol Davila, Bucharest, Romania; 19Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; 20Division of Non-Communicable Diseases, Ministry of Health, Nairobi, Kenya; 21Division of Primary Care and Population Health, Stanford University; 22Health Research and Epidemiology Unit, Ministry of Health, Thimphu, Bhutan; 23Laboratory of Epidemiology of Chronic and Neurological Diseases, Faculty of Health Sciences, University of Abomey-Calavi, Cotonou, Benin; 24Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon; 25Global Academy of Agriculture and Food Security, The University of Edinburgh, Midlothian, United Kingdom; 26Department of Public Health, University of Copenhagen, Copenhagen, Denmark; 27National Institute for Medical Research, Dar es Salaam, Tanzania; 28Department of Community Medicine and Public Health, Institute of Medicine, Tribhuvan University, Kathmandu, Nepal; 29Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa; 30EPIUnit Institute of Public Health, University of Porto, Porto, Portugal; 31Department of Economics and Centre for Modern Indian Studies, University of Göttingen, Göttingen, Germany; 32Faculty of Medicine and Health Sciences, National University of East Timor, Dili, Timor-Leste; 33Ministry of Health and Social Welfare, Elderly, Gender and Children, Zanzibar, Tanzania; 34Bergen Centre for Ethics and Priority Setting (BCEPS), Department of Global Public Health and Primary Care, University of Bergen, Norway; 35Faculté de Médecine, Université de Genève, Geneva, Switzerland; 36National Center for Public Health, Ulaanbaatar, Mongolia.
Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Diabetes Unit, Massachusetts General Hospital, Boston, United States of America; Epidemiology and Population Health Department, Faculty of Health Sciences American University of Beirut, Beirut, Lebanon; Uganda Martyrs University | Saint Francis Hospital Nsambya, Kampala, Uganda; Department of Global Health, Boston University School of Public Health, Boston, United States of America; Non-Communicable Disease Department, National Center for Disease Control and Public Health, Tbilisi, Georgia; Laboratory of Epidemiology and Public Health, Center for Life Sciences, Nazarbayev University, Astana, Kazakhstan; Ministry of Health, Mbabane, Eswatini; School of Medicine, University of Leeds, Leeds, West Yorkshire, United Kingdom; Nazarbayev University School of Medicine, Nur-Sultan, Kazakhstan; Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; Medical Practice Evaluation Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Institute for Applied Health Research, University of Birmingham, UK; Centre for Global Surgery, Department of Global Health, Stellenbosch University, Cape Town, South Africa; Medical Research Council/Wits University Rural Public Health and Health Transitions Research Unit, Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa;