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Abstract

Single-channel blind dereverberation for the enhancement of speech acquired in acoustic envi-

ronments is essential in applications where microphone arrays prove impractical. In many scenarios,

the source-sensor geometry is not varying rapidly, but in most applications the geometry is subject

to change, for example when a user wishes to move around a room. This paper extends a previous

model-based approach to blind dereverberation by representing the channel as a linear time-varying

all-pole �lter, in which the parameters of the �lter are modelled as a linear combination of known

basis functions with unknown weightings. Moreover, an improved block-based time-varying au-

toregressive model is proposed for the speech signal, which aims to re�ect the underlying signal

statistics more accurately on both a local and global level. Given these parametric models, their

coef�cients are estimated using Bayesian inference, so that the channel estimate can then be used for

dereverberation. This paper presents an in-depth discussion about the applicability of these models

to real speech and a real acoustic environment. Results are presented to demonstrate the performance

of the Bayesian inference algorithms.

I. INTRODUCTION

Audio signals acquired in con�ned acoustic spaces exhibit reverberation due to multiple

re�ections of the sound wave from surrounding obstacles. In addition to the direct path
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signal, the sensor receives time-shifted versions of the clean audio signal, leading to spectral

colouration and reduced intelligibility. The reverberant signal can be modelled as a linear

convolution of the source signal and the acoustic impulse response (AIR) of the room

between the source and sensor. Therefore, the source signal can be enhanced by deconvolving

the observations with the inverse of the degrading channel. However, in practice, neither

the source nor channel are known. Since only the observed signal is available, this blind

deconvolution problem is under-determined; i.e., more unknowns than observations must

be estimated from a single realisation of the measurement process at each time instance.

Incorporating prior knowledge of the statistical properties of the source and channel is

essential for solving this problem.

Spatial diversity of acoustic channels can be constructively exploited by multiple sensor

blind dereverberation techniques [1], [2] in order to obtain a clean speech estimate. However,

there are numerous applications where only a single measurement of the reverberant signal

is available. Single-sensor blind dereverberation is utilised in applications where numerous

microphones prove infeasible or ineffective due to the physical size of arrays. Examples

include hearing aids, hands-free telephony, and automatic speaker recognition.

Signal processing in acoustic environments is often approached assuming the AIR is time-

invariant. This is appropriate in scenarios where the source-sensor geometry is not rapidly

varying, for example, a hands-free kit in a car cabin, in which the driver and the microphone

are approximately �xed relative to one another, or in a work environment where a user is

seated in front of a computer terminal. However, there are many applications where the

source-sensor geometry is subject to change; the wearer of a hearing-aid typically wishes

to move around a room, as might users of hands-free conference telephony equipment. A

speaker moving in a room at 1m/sec covers a distance of 50 mm in 50 msec. This distance

might be enough for the AIR to vary suf�ciently that any assumption of a time-invariant

acoustic channel is no longer valid. An implicit assumption often made is that the room

acoustics are time-invariant, and that it is the variable source-sensor geometry that leads to

the changing AIR. However, it is not beyond possibility that the room acoustics may vary;

the changing state of doors, windows, or items being moved in the room will in�uence the

room dynamics.
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Although there is some recent work dealing with time-varying acoustic channels [3], [4],

generally the problem of single-channel blind dereverberation of speech from a moving

speaker has received little attention from the signal processing community, in part because

the case of a stationary speaker has not yet been solved satisfactorily. Nevertheless, it is still

an interesting and worthwhile problem to consider.

[Fig. 1 about here.]

This paper proposes a model based framework for single-channel blind dereverberation of

speech from a moving speaker by extending the work in [5]. In this approach, parametric

models are used for both the source and the channel, as shown in Fig. 1. The parameters of

the entire model are estimated using the Bayesian paradigm, and the source signal estimate

is obtained by inverse �ltering the observed signal with the estimated channel coef�cients.

There are two novel extensions discussed in this paper:

1) utilising a more general and �exible block-based time-varying AR (TVAR) process to

model the speech signal;

2) using a linear time-varying (LTV) all-pole �lter to represent the acoustic channel.

In each case, the time-varying nature of the unknown model parameters is captured by

modelling them by a linear combination of known basis functions with unknown weightings

as discussed in [6], [7].

Model-based approaches fundamentally rely on the availability of realistic and tractable

models that re�ect the underlying speech processes and acoustic systems. The choice of these

models is extremely important. The underlying time-varying nature of speech signals and the

rationale for the proposed model is discussed in section xII. Likewise, the proposed channel

model is discussed in section xIII based on observations of simulated and measured spatially-

varying AIRs. The mathematical framework and methodology for parameter estimation and

dereverberation is discussed in section xV. In section xVI, results using the proposed model

are presented. Conclusions are drawn in section xVII.
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II. SOURCE MODEL

A. Motivation

LTV all-pole �lters are a popular approach for modelling the vocal tract of a speaker due to

their ability to accurately model the continuous short-term spectrum of speech [8], [9]. Some

sounds that are generated through a coupling between oral and nasal tracts, for example

French nasals [10], must be represented by pole-zero pairs and cannot be represented by

all-pole �lters. Nevertheless, pole-zero speech models generally require non-linear methods

for estimating their parameters [11]. Speech can be modelled as a time-varying AR (TVAR)

process [11]�[14] in which the input to the all-pole �lter representing the vocal tract is a

white Gaussian excitation. A Qth-order TVAR process is de�ned by

s(n) = �
X

q2Q

bq(n)s(n� q) + e(n); (1)

where n 2 N is the time index over one segment of speech for N speech samples,1 e(n) �

N (0; �2
e(n)) is the time-varying excitation with variance �2

e(n), s(n) is the source signal,

and fbq(n)gq2Q are the TVAR coef�cients. In this framework, the problem of modelling

the speech signal itself reduces to an appropriate model for the TVAR parameters, bq(n).

Determining such a model is complicated, in part an open question, and is often constrained

by the availability of suitable and tractable parameter estimation techniques.

Many statistical estimation methods impose stationarity on the model of the signal primarily

to constructively exploit ergodicity. Since the vocal tract is continually changing with time,

such a limitation results in poor modelling. In order to partially reconcile global nonstation-

arity while utilising the advantages of local ergodicity in estimation methods, a compromise

approach is to model speech as a block-stationary process: the signal is divided into short

segments where the statistics of the signal are assumed to be locally stationary within blocks,

but globally time-varying, e.g.,

s(n) = �
X

q2Q

bqis(n� q) + e(n); (2)

1Unless stated otherwise, the set notation U = f1; : : : ; Ug, where U is an integer, is used for simplicity.
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where fbqigq2Q are the block stationary AR (BSAR) coef�cients in block i 2 L that are

stationary within each block but vary over different blocks i.

[Fig. 2 about here.]

To illustrate the time-varying nature of speech, consider taking a sliding window of

block length N over a segment of speech; the window moves by one sample in each of

L steps. In each window, the Q stationary autoregressive (AR) coef�cients are computed by

solving the standard Yule-Walker equations [15]. The corresponding poles are the roots of the

characteristic equation. For the two segments of speech shown in the grey regions in Fig. 2,

the corresponding pole variations introduced by the sliding window are shown in Figs. 3a

and 3b (grey dots). The poles exhibit smooth variation over these segments of speech; this

characteristic of pole movements is discussed in, for example, [14]. Smooth pole variation

often leads to relatively smooth parameter variation (Fig. 3c).

[Fig. 3 about here.]

Thus, the block-stationary AR model of eqn. (2) which assumes local stationarity within

such segments, will not generally capture the underlying statistics of the source signal. On

the other hand, the most general variation of the parameters, bq(n), in eqn. (1) is when the

parameters are completely uncorrelated at each sample. In this case, each sample of the signal

is represented by more than one unknown coef�cient. This over-determined parameterisation

results in numerical problems as there is not enough data from a single realisation of a

process to allow accurate parameter estimation.

B. Basis function representation

To introduce correlation to the model, the parameters could, for instance, be represented

by a random walk [16]. Alternatively, correlation is introduced by a transformation of the

nonstationary signal to a space where it can be analysed as a linear time-invariant (LTI)

process [6], [7], [13], [14], [17]�[19]. This corresponds to modelling the parameters as a

linear combination of basis functions. To ensure that the correct model order is chosen,

model order selection procedures should be implemented: [19] proposes such an algorithm
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based on the discrete Karhunen-Lo�eve transform.

Ideally, the pole locations rather than the parameter variation are represented as a function

of time by a parametric model. However, this is dif�cult as the relationship between poles

and parameters is non-linear and a closed-form expression for the pole positions for high-

order models cannot be derived. If the TVAR coef�cients can be represented by a linear

combination of basis functions, eqn. (1) can be formulated as [7], [13]:

s(n) = �
X

q2Q

(
X

k2F

bqkfk(n� q)

)

| {z }
bq(n)

s(n� q) + e(n); (3)

where F is the number of basis functions, b = fbqk : q 2 Q; k 2 Fg are the unknown

time-invariant basis coef�cients, and ffk(n)gk2F are the known time-varying basis functions.

To demonstrate that the speech pole movements can be approximated by the model in

eqn. (3), a least-squares (LS) �t to the AR parameters corresponding to the speech pole move-

ments in Figs. 3a and 3b is performed using the trigonometric Fourier basis set fsin (n!0t); cos (n!0t)g2
n=0

with fundamental frequency !0 = 2� 5
9 rad/sec. Due to the linearity of the source model in

eqn. (3), the basis coef�cients, b, are obtained as the linear LS estimate [15]. The full TVAR

coef�cients, fbq(n)g, are then estimated by multiplication of the basis functions with the linear

LS estimate of the basis coef�cients. The estimates of the TVAR parameters are depicted in

Figs. 3a and 3b in black dots, and show a good match to the actual poles (Fig. 3d). This

and the results in [7], [13], [14], [17], [18] lead to the conclusion that a model based on

the transformation from a LTV process to a LTI process through a set of basis functions can

capture appropriately the time-variation of short segments of speech.

C. Choice of basis functions

As the basis functions span the vector space to which the source signal is mapped, their

choice is essential. Unfortunately, no general rules for choosing these functions exist. The

choice of basis is therefore dependent on the prior belief of the variation of the parameters.

Amongst the wide range of basis functions that have been investigated [13], [14], [18],

[20], standard choices include Fourier functions, Legendre polynomials, and discrete prolate

spheroidal sequences (DPSS). These classes tend to assume smooth parameter behaviour
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and respond to abrupt changes as a low-pass �lter [14]. Hence, for abrupt changes in the

source signal, the parameters are not modelled correctly. Discontinuous basis like the step

function that is used for BSAR processes capture abrupt changes well, but cannot handle

smooth variations [14]. Modelling rapid parameter variation is theoretically possible by

utilising an in�nite number of basis functions. However, this would again reduce the model

to a time-varying process with uncorrelated parameters as described above, leading to over-

parameterised coef�cients since the model would have as many degrees of freedom as the

signal itself [14], [19].

A comparison of the performance of different basis sets for speech is beyond the scope

of this paper, although a comparison of signal modelling using Fourier, Legendre and DPSS

basis sets is detailed in Charbonnier et al. [18]. In this paper, it is assumed for simplicity that

the true speech parameters can be approximated by sinusoidal functions (Fourier basis), since

these are seen to be a good model the source parameter variations (grey line) as depicted in

Fig. 3c.

The dif�culty of abrupt parameter variations is seen in Fig. 3a, where some of the speech

poles evolve towards the origin and then abruptly jump away from it. Since the frequency

response of poles approaching the origin becomes increasingly �at, this pole behaviour

corresponds to a birth-death process. This effect does not occur for the same experiment using

a lower order due to a more parsimonious representation. In other words, the death and birth

of poles is an artifact introduced through the over-parameterisation of the model. Ideally,

the system should have a time-varying model order so as to capture poles that contribute to

the frequency response of the speech signal, and adjust the model order when poles become

redundant. Thus, the model order, Q, and the block-length, N , (see eqn. (4) in the next section)

are in principle also random variables and could be allowed to vary with the block index.

While this would capture any birth or deaths of poles, the estimation techniques required

such as reversible-jump Markov chain Monte Carlo (MCMC) methods greatly increase the

computational burden and implementation complexity.

D. Block-based time-varying approach

[Fig. 4 about here.]

October 24, 2007 DRAFT



8

An alternative approach to addressing the issue of abrupt parameter variations while using

a limited set of basis functions is proposed, and relies on a block-based time-varying model.

Here, the signal is segmented into shorter blocks that are modelled locally as well as globally

time-varying. Instead of utilising one set of parameters coping with rapid global variation,

several sets of parameters are introduced that capture the local variation within each block.

For suf�ciently short blocks, the time variation of the signal will be smooth and parameters

can be estimated accurately using a standard choice of basis functions.

This model thus attempts to incorporate the time-varying nature of the signal both locally

as well as globally. The advantages and disadvantages of stationarity and nonstationarity on

a local and global level are outlined in TABLE I.

In the block-based TVAR model, the source signal is expressed for a block of data, indexed

by i and of length Ni = Ti+1 � Ti, for samples n 2 Ti = fTi; : : : ; Ti+1 � 1g as:

s(n) = �
X

q2Q

(
X

k2F

biqk fk(n� Ti + Q� q)

)

| {z }
bq(n); n2Ti

s(n� q) + e(n); (4)

where e(n) � N
�
0; �2

e;i
�

has variance �2
e;i and the block boundaries are speci�ed by Ti and

Ti+1 in block i 2 L. This model is illustrated in Fig. 4, and reduces to the TVAR model

(eqn. (1)) in the case of a single block. Unlike the examples presented in section xII-A and

Fig. 3, the blocks in this model are non-overlapping. Note this model implicitly assumes

unvoiced speech segments as it uses a white excitation. An issue for further research is

whether the model also works effectively for voiced speech.

[TABLE 1 about here.]

III. CHANNEL MODEL

There are many different techniques for modelling an acoustic impulse response (AIR)

and, in general, each model applies to a different frequency range of the audible spectrum.

The acoustic response of a room, h(t), takes the general form:

h(t) =

8
><

>:

0 for t < 0
P

n
~Ane�~�n t cos

�
~!nt + ~�n

�
for t � 0

(5)
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where the coef�cients ~An implicitly contain the location of the source and observer, ~�n,

~!n, and ~�n are the damping constant, undamped natural frequency, and phase terms respec-

tively. Although this general parametric model completely characterises the acoustic impulse

response, it is intractable for many estimation problems and does not lead to an analytical

solution in this blind dereverberation framework. The problem from a signal processing

perspective is that there is no practical model for the entire audible frequency range [21].

A. Characteristics of room acoustics

Generally, the audible spectrum can be divided into four regions. Consider a single-tone

source with frequency f generated in a room with dimensions 2:78 � 4:68 � 3:2 m and

reverberation time of T60 = 0:23 sec. (as used section xIII-D).

Very Low Frequencies: For f < fw = c
2L , where c is the speed of sound, and L is the

largest dimension of the acoustic environment, there is no resonant support. Typically, fw is

around 35 Hz for this room.

Wave Acoustics: This region corresponds to frequencies for which the source’s wave-

length is comparable to the room dimensions. It spans the lowest resonant mode, given by

� fw, to the Schroeder frequency fg � 2000
q

T60
V (Hz) where V is the volume of the room.

Distinct resonants occur in which the quality-factor (Q-factor) is suf�ciently large that the

average spacing of resonant frequencies is substantially larger than the average half-width of

the resonant mode. For this room, distinct resonances occur between 35 Hz and 149 Hz.

Very low frequency regions and wave acoustics are generally irrelevant for speech derever-

beration as electro-acoustic systems have a limited bandwidth at low frequencies. Analytical

tools are thus utilised only for the following regions:

High Sound Frequencies: Above fg, there is such a strong model overlap that the concept

of a resonant mode becomes meaningless. However, below a frequency of around 4fg, the

wavelengths are too long for the application of geometric acoustics discussed below. Thus,

a statistical treatment is generally employed. For the room above, statistical theory would be

relevant between 149 Hz and 595 Hz.

Geometrical Acoustics: Above 4fg, geometrical room acoustics apply and assumes the

limiting case of vanishingly small wavelengths. This assumption is valid if the dimensions
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of the room and its walls are large compared with the wavelength of sound: this condition

is met for a wide-range of audio frequencies in standard rooms. In this frequency range,

specular re�ections and the sound ray approach to acoustics prevail. Geometrical acoustics

usually neglect wave related effects such as diffraction and interference. The image method

[22] for simulated AIRs is valid only in this frequency range.

B. Pole-zero and all-zero models

The solution of the acoustic wave equation indicates that a room transfer function can be

expressed by a rational expression, and therefore can be modelled by a conventional pole-

zero model. Mourjopoulos and Paraskevas [23] discuss pole-zero modelling of room transfer

functions (RTFs), and the model has often been used in the literature. From a physical point

of view, poles represent resonances, and zeros represent time delays and anti-resonances.

Another commonly used model is the all-zero model. There are several main limitations of

�nite impulse response (FIR) �lters imposed by the nature of room acoustics [23], [24]. First,

AIRs are, in general, very long and an all-zero �lter typically requires ns = T60fs coef�cients

where fs is the sampling frequency. For example, if T60 = 0:5 seconds and fs = 10 kHz,

the all-zero �lter requires ns = 5000 coef�cients. Secondly, the resulting FIR �lter may be

effective only for a limited spatial combination of source and receiver positions, as all-zero

models lead to large variations in the room transfer function for small changes in source�

observer positions [23], [24]. A further disadvantage of the pole-zero and all-zero models is

that estimation of the zeros requires solving a set of non-linear equations.

C. All-pole models and basis function representation

As an alternative, the all-pole model for approximating rational transfer functions is widely

used in many �elds. It is claimed that typical all-pole model orders required for approximating

room transfer functions are in the range 50 � P � 500 [23], although this depends on the

frequency range of the acoustic spectrum considered. A signi�cant advantage of the all-pole

model over the all-zero model is its lower sensitivity to changes in source and observer posi-

tions. Mourjopoulos and Paraskevas [23] conclude that in many signal processing applications

dealing with room acoustics, it may be both suf�cient and more ef�cient to manipulate all-pole
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model coef�cients rather than high-order all-zero models. All-pole models are particularly

useful for modelling resonances in the wave acoustics and high sound frequency regions.

If the source signal, s(n), is �ltered through an AIR modelled by an all-pole �lter of order

P , the observed signal, x(n), received at the microphone, can be expressed as

x(n) = �
X

p2P

ap(n)x(n� p) + s(n); (6)

where fap(n)gp2P are the time-varying all-pole channel coef�cients. Following the reasoning

in section xII-A, similar to eqns. (1) and (3), the channel coef�cients are represented by a

linear combination of basis functions, and hence the time-varying channel is formulated as

x(n) = �
X

p2P

(
X

‘2G

ap‘g‘(n� p)

)

| {z }
ap(n)

x(n� p) + s(n); (7)

where fap‘ : p 2 P ; ‘ 2 Gg are the G unknown time-invariant basis coef�cients, fg‘(n)g‘2G

are the known time-varying basis functions. Note that eqn. (7) applies over all blocks, i.e.,

the channel model is not block-based.

D. Choice of basis functions

[Fig. 5 about here.]

[Fig. 6 about here.]

In order to select an appropriate set of basis functions for modelling the variation of the

all-pole coef�cients, the spatially-varying nature of AIRs is brie�y investigated. Simulated

and measured AIRs are obtained for the acoustic set-up illustrated in Fig. 5 for a small

of�ce of size 2:78 � 4:68 � 3:2m (length � width � height). An acoustic source remains

�xed while the microphone sensor is moved from its initial position in 2 mm increments.

This experimental set-up mimics the spatially-varying nature of the AIR for non-stationary

sources.

The simulated AIRs are generated using the image method [22] with the re�ection coef�-

cient chosen to give a reverberation time of T60 = 0:23 seconds. This choice corresponds to

the measured reverberation time of the real of�ce. As the image model assumes geometric
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room acoustics, the simulated responses only apply above four times the Schroeder frequency,

fg, as discussed in section xIII-A, and in this case 4fg = 595 Hz. Using the simulated AIRs,

the RTF is modelled in the frequency range between 600 Hz to 1200 Hz by a 16th-order

sub-band AR model [25]. The variation of the resulting pole positions from the initial sensor

position to a �nal offset of 400 mm is plotted in Fig. 6a. The results indicate smooth pole

variation and, consequently, the TVAR parameters of the AIR vary relatively smoothly with

sensor spatial displacement. This can be con�rmed by measures of the changes in the AIR,

e.g., normalised projection misalignment.

For veri�cation of these results using real data, 910 AIRs were measured in a real of�ce

by moving a 26-microphone linear array in small increments over a distance of 70 mm. To

obtain comparable results to the simulated data, the pole variations are again acquired by

modelling the RTF as a 16th-order AR sub-band model in the range 600 Hz to 1200 Hz.

The poles for real AIRs are subject to larger variation than those for the simulated AIRs,

they cover a wider region within the unit circle, and intersect the trajectories of neighbouring

poles. To avoid cluttered pole trajectory plots, only a subset of the pole variations from the

microphone array for several microphones (labelled mics. 7 and 8) are displayed in Figs. 6c

and 6d. This corresponds to offsets from 432mm to 502mm for mic. 7 and from 504mm to

574mm for mic. 8. For comparison with equivalent results for simulated data see Fig. 6b.

The pole variations from the measured data clearly exhibit reasonably smooth trajectories,

validating the simulated results.

An in-depth discussion of the variability of room acoustics is beyond the scope of this

paper, and requires considerably more investigation than the results presented in this section.

Nonetheless, based on the results presented in Fig. 6, it is concluded that basis functions

could be used for capturing the smooth variations of the poles and parameters in the model

of the AIR. Following the discussion in section xII-C, Fourier basis functions will therefore

be utilised in the following.
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E. Modelling issues

Single-channel blind dereverberation is a notoriously dif�cult and challenging problem.

In the approach used here,2 the acoustic channel is blindly estimated from the reverberant

signal, and then used in deconvolution to obtain the anechoic signal. There are a number of

problems encountered when dealing with acoustic impulse responses (AIRs) [26].

High number of channel parameters: The length of AIRs, as discussed in section xIII-B,

make estimates dif�cult.

Nonminimum-phase responses: AIRs are often nonminimum-phase, and leads to dif-

�culties with channel modelling and inversion. The nonminimum-phase contribution to the

perception of reverberation is signi�cant [27], [28].

Robustness to estimation error: Any small error in an AIR estimate leads to a signi�cant

error in the inverse of the AIR. Thus, inversion can increase distortion in the enhanced signal

compared to the reverberant signal. Any deviation from the true AIR means that attempts

to equalise high-Q resonances can still leave high-Q resonances in the equalised response

degrading the intelligibility of the restored signal.

Variation of inverse of AIR: Similarly, while a small change in source-sensor geometry

might give rise to a small change in the AIR as shown previously, the corresponding changes

in the inverse of an AIR can sometimes be large.

Since the proposed channel estimation techniques and source recovery method implicitly

uses inverse-�ltering methods, these issues are particularly pertinent. Some of these problems

can be alleviated by neither attempting to process the full frequency range of the source, nor

attempting to invert the full-band RTF using a single �lter. In problems with long channels, it

is better to utilise sub-band methods that attempt to enhance the reverberant signal by inverting

the channel response over a number of separate frequency ranges. Modelling each frequency

band independently can lead to a parsimonious approximation of the RTF, lower model

orders, and an overall reduction in the total number of parameters needed to approximate the

acoustic channel [25]. Moreover, there may be only a few bands that have high-Q resonances

2Another distinct approach to blind dereverberation is as an optimal �ltering formulation in which estimates of the
unknown source signal are estimated directly from the reverberant data [3].
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which need careful equalisation, whereas other frequency bands have lower Q factors, so less

care is required.

An additional advantage of using sub-band models is that sub-bands possessing minimum-

phase characteristics can be inverted, despite the AIRs being nonminimum-phase over the full

frequency range. Hence, in the case of a nonminimum-phase response, where a causal inverse

does not exist, methods for detecting and equalising the minimum-phase sub-bands should

be developed: this follows the approaches in [29], [30]. Details of the sub-band methodology

are discussed in [25] and can be incorporated into the framework proposed in this paper.

IV. SOURCE AND CHANNEL IDENTIFIABILITY

Single-channel blind dereverberation is an inherently under-determined problem. For exam-

ple, if both source and channel are modelled as stationary AR processes, the observed signal

is also a stationary AR process. Consequently, it is not possible to attribute a particular pole

estimated from the observed signal to either the source or channel: there is an identi�ability

ambiguity. Source-channel ambiguities can be avoided by, for example, modelling the acoustic

source as a TVAR process, and the channel by a FIR �lter. The observed signal is then a

time-varying ARMA process, in which the poles belong to the source model and zeros to the

channel. Thus, there appears to be no ambiguity in distinguishing between the parameters

associated with each. This model is used in [3] for the case of separating and recovering

convolutively mixed signals. However, this is not always a realistic model, as it cannot be

ascertained that the source only has poles and no zeros, and the channel only has zeros, and

no poles.

In an earlier approach to single-channel blind dereverberation focusing on stationary speak-

ers [5], the locally-stationary nature of the source and the assumed time-invariance of the

channel were utilised to provide suf�cient information to distinguish between the two models.

In this approach it was argued that the statistics of speech signals remain quasi-stationary

for around 20-50 msec. The source signal is modelled by a BSAR process, while the AIR

is modelled by a LTI all-pole �lter. These models allow the acoustic channel to be uniquely

identi�ed up to a scaling ambiguity, since essentially any common poles estimated from

different blocks of the observed data must belong to the channel.
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As discussed in section xII, this paper presents an improved system model by using a block-

based TVAR model and a time-varying all-pole channel �lter. The question now is whether

there are identi�ability ambiguities in such a block-based TVAR-TVAR model. Although this

question is not comprehensively addressed here, the following are contributing factors to the

identi�ability issue.

1) While the cascade of two LTI systems commute, LTV systems, in general, do not.

Since the source and channel have different time-varying characteristics, the system is

likely to have a unique source-channel decomposition.

2) Consequently, a block-based source model, whether BSAR or block-based TVAR,

tends to reduce ambiguities in identifying the source and channel � since the channel

parameters are stationary over all data samples, whereas the source parameters vary on

a block basis.

3) If the chosen basis functions do not allow accurate tracking of the TVAR parameters,

the models will not �t the data accurately, and the estimates will be poor.

4) The source signal needs to be spectrally rich in order to provide suf�cient energy to

‘illuminate’ the channel, such that there is enough information in the observations for

identi�ability.

To illustrate this last point, consider taking a temporal average of the source signal. If the

source contains relatively little energy at spectral frequencies in which there is signi�cant

channel information, such as key resonances, the channel estimates in that spectral region will

be poor. Consequently, this suggests that the poles in the source and channel models need

to lie in a region where they contribute suf�ciently to the spectral content of the observed

signal. Thus, referring back to section xII-D, this indicates that poles which undergo a birth

and death procedure will be dif�cult to identify. Further discussion and results regarding this

are given in section xVI.

V. BAYESIAN BLIND MODEL PARAMETER ESTIMATION

The observed reverberant signal, x(n), is given by eqn. (7). If the channel parameters fap‘g

can be estimated, the source signal, s(n), can easily be recovered through a rearrangement

of eqn. (7), in what is essentially an inverse �ltering operation. However, �nding the channel
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parameters requires �nding the source parameters fbiqkg in eqn. (4) as well. Since the

source excitation is white Gaussian, the estimation of all the system model parameters

can be achieved using maximum-likelihood methods such as the Expectation-Maximisation

algorithm [31].

In this paper, Bayesian inference and associated numerical optimisation methods are used

for this parameter estimation. Bayes’s rule provides a learning procedure where knowledge of

the system is inferred from prior belief and updated through new data. Consider a data model,

M, with unknown parameters, �M, for the N samples of observed data, x = fx(n); n 2 Ng.

The posterior probability, p (� j x;M), for the unknown parameters is de�ned by Bayes’s

theorem as

p (�M j x;M) =
p (x j �M;M) p (�M j M)

p (x j M)
; (8)

where p (x j �M;M) is the likelihood, p (�M j M) is the prior distribution on �M. The term

p (x j M) is called the evidence, and is usually regarded as a normalising constant.

Given the likelihood function and the prior distributions, Bayesian methods aim to estimate

the unknown parameters from the posterior distribution. Although deterministic optimisation

methods for determining the maximum marginal a posteriori (MMAP) estimate could be used

to directly locate the mode of the posterior, this becomes unreliable for high-dimensional

multi-modal distributions. Thus, iterative stochastic sampling schemes are used: MCMC

methods are based on constructing a Markov chain that has the desired distribution as its

invariant distribution. In the following, the observation likelihood and prior distributions are

de�ned, and the Gibbs sampler introduced. The posterior density for the channel parameters

given the observations, as well as the conditional distributions required for Gibbs sampling

are outlined.

A. Likelihood for the source signal and observations

1) Source Model: Rewriting a vector of excitation samples, e(n), in eqn. (4) in block, i,

for n 2 Ti = fTi; : : : ; Ti+1 � 1g,

ei = Bi;blk si + Bi;ini si�1;Q (9a)

October 24, 2007 DRAFT



17

=
h
Bi;ini Bi;blk

i

| {z }
Bi2RNi�(Ni+Q)

2

4si�1;Q

si

3

5

| {z }
ŝi2R(Ni+Q)�1

= Bi ŝi; (9b)

where the error residual in block i, ei =
h
e(Ti) � � � e(Ti+1 � 1)

iT
, is a Ni� 1 vector with

Ni = Ti+1 � Ti samples per block, Ti and Ti+1 denotes the �rst samples of the current and

next block, respectively. The Ni � 1 vector containing the source signal samples in block i

is si =
h
s(Ti) � � � s(Ti+1 � 1)

iT
, and the Q � 1 vector containing the last Q samples of

the data in the previous block, i� 1, is si�1;Q =
h
s(Ti �Q) � � � s(Ti � 1)

iT
. This vector,

si�1;Q, is referred to as the initial conditions for block i. The Ni �Ni matrix, Bi;blk, of the

TVAR coef�cients in block i is appropriately de�ned and takes the form
2

66666666664

1 0 0 : : : 0 0

b1(Ti + 1) 1 0 : : : 0 0

b2(Ti + 2) b1(Ti + 2) 1 0 : : : 0
. . . . . .

� � � 0 bQ(Ti+1 � 1) : : : b1(Ti+1 � 1) 1

3

77777777775

:

The Ni �Q matrix containing the initial conditions of the TVAR coef�cients is

Bi;ini =

2

66666666666664

bQ(Ti) bQ�1(Ti) � � � b1(Ti)

0 bQ(Ti + 1) � � � b2(Ti + 1)

0 . . . . . . . . .

0 � � � 0 bQ(Ti + Q� 1)
...

...
...

...

0 � � � 0 0

3

77777777777775

:

Assuming e(n) in block i is stationary white Gaussian noise (WGN), then applying the

probability transformation ei 7! si, the likelihood of the source signal in block i is found as

pSi

�
si j bi; �2

e;i; si�1
�

=
1

�
2��2

e;i
�Ni

2

exp
�
�

1
2�2

e;i
kBi ŝik2

�
: (10)

Applying the probability chain rule to all the data across multiple blocks denoted by s =
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h
sT

0 : : : sT
L

iT
, the likelihood for all source data across L blocks of data is given by

pS (s j b; �e) = pS0 (s0)
Y

i2L

pSi

�
si j bi; �2

e;i; si�1
�

= pS0 (s0)
Y

i2L

1
�
2��2

e;i
�Ni

2

exp
�
�

1
2�2

e;i
kBi ŝik2

�
; (11)

where s0 is the data upon which the �rst block is conditional. The term pSi

�
si j bi; �2

e;i; si�1
�

represent the probability density function (pdf) for the signal in the ith block and is conditional

on values outside that block. The unconditional pdf pS0 (s0) representing the ‘initial’ data

for the �rst block takes on a more complex form as discussed in [32]. For a large amount

of data, it is reasonable and often assumed to be constant, so that this term can be omitted

from eqn. (11).

A linear-in-the-parameters (LITP) representation is obtained for the model by writing

eqn. (4) in matrix-vector form as

si = �
X

q2Q

Si;qFi;qbi;q + ei; (12)

where the Ni� 1 vector of source samples is si;q =
h
s(Ti � q) � � � s(Ti+1 � 1� q)

iT
and

the Ni �Ni matrix Si;q = diag [si;q], where diag [�] denotes a diagonal matrix. Furthermore,

Fi;q is a Ni�F matrix whose columns contain the F basis functions, such that the (j; k)-th ele-

ment of Fi;q is [Fi;q]jk = fk(j+Q�q). De�ning the Ni�FQ matrix Ui ,
h
Ui;1 : : : Ui;Q

i
,

where Ui;q = SqFq, and the FQ � 1 vector bi ,
h
bT

i;1 : : : bT
i;Q

iT
, where [bi;q]k = biqk,

eqn. (12) can be written as

ei = si + Uibi: (13)

Therefore, the source likelihood in eqn. (11) is equivalent to

pS (s j b; �e) �
Y

i2L

1
�
2��2

e;i
�Ni

2

exp
�
�

1
2�2

e;i
ksi + Uibik2

�
: (14)
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2) Channel Model: In a similar construction to eqn. (9b), eqn. (7) can be written as,

s = Ablk x̂ + Aini xini =
h
Aini Ablk

i

| {z }
A2RNx�(Nx+P )

2

4xini

x̂

3

5

| {z }
x2R(Nx+P )�1

= Ax; (15)

where n = fP; : : : ; N � 1g, N is the total number of output samples,3 and the actual

number of observations is Nx = N � P . Thus, let the Nx � 1 vector of the observations

be x̂ =
h
x(P ) � � � x(N � 1)

iT
, and assume the P � 1 vector of initial conditions in

xini =
h
x(0) � � � x(P � 1)

iT
is known. The Nx � 1 vector of source samples is s =

h
s(P ) � � � s(N � 1)

iT
. The Nx �Nx matrix containing the TVAR channel coef�cients is

Ablk =

2

66666664

1 0 0 : : : 0

a1(P + 1) 1 0 : : : 0
. . . . . .

� � � aP (N � 1) � � � a1(N � 1) 1

3

77777775

;

and the Nx � P matrix containing the initial conditions of the TVAR channel coef�cients is

Aini =

2

66666666666664

aP (P ) aP �1(P ) � � � a1(P )

0 aP (P + 1) � � � a2(P + 1)

0 . . . . . . . . .

0 � � � 0 aP (2P � 1)
...

...
...

...

0 � � � 0 0

3

77777777777775

:

Applying the probability transformation s 7! x to eqn. (15) and using eqns. (11) and (14),

the likelihood of the observations given the system parameters becomes

pX
�

x j a; b; �2
e
�

= pXini (xini)

2

4
Y

i2L

1
�
2��2

e;i
�Ni

2

exp
�
�

1
2�2

e;i
kBi ŝik2

�3

5

s=Ax

(16)

3Recall that the source is block-based, whilst the channel model is de�ned over all the data.
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= pXini (xini)

2

4
Y

i2L

1
�
2��2

e;i
�Ni

2

exp
�
�

1
2�2

e;i
ksi + Uibik2

�3

5

s=Ax

; (17)

where the vectors fsig, fŝig and matrices fUig are functions of the channel parameters and

observations, as dictated through the relationship s = Ax. Again, assuming pXini (xini) u

const., the initial terms can be omitted from the observation likelihood in eqn. (17).

B. Prior distributions of source, channel, and error residual

A prior re�ects the knowledge of the parameters before the data is observed. By means of

prior densities, the posterior can be manipulated by inferring any required statistic, leading

to a fully interpretable probability density function. If no prior knowledge is available, the

prior pdf should be broad and �at compared to the likelihood. Such priors are known as

non-informative and �convey ignorance of the values of the parameters before observing the

data� [31].

Since the terms in the likelihood for AR parameters are usually in the form of a Gaus-

sian distribution [32], and in order to obtain analytically tractable results, Gaussian priors

are imposed on the channel and source parameters, i.e., p (a j �2
a) = N

�
a
��0; �2

aIP
�

and

p
�

bi j �2
bi

�
= N

�
bi
��0; �2

bi
IQ
�
, where N

�
x
�� �; �

�
denotes a Gaussian pdf and IK is the

identity matrix of size K �K.

A standard prior for scale parameters, such as variances, is the inverse-Gamma density.4 The

prior distributions on the error residual variance as well as the hyperparameters of the channel

and source coef�cients are therefore assigned as p
�

�2
e;i

�� �e;i; �e;i
�

= IG
�
�2

e;i

���e;i; �e;i
�

for

the error residual variance, p
�

�2
bi

�� �bi ; �bi

�
= IG

�
�2

bi

���bi ; �bi

�
and p (�2

a j �a; �a) =

IG
�
�2

a

���a; �a
�

for the hyperparameters on the source and channel respectively.

C. Posterior distribution of the channel parameters

The joint-posterior pdf is found using Bayes’s theorem:

p (a; b; �e j x; �) / p (x j a; b; �e) � p (a; b; �e j �) (18)

4Inverse-Gamma pdf is: IG
�
x

�� �; �
�

= ��

�(�) x�(�+1) exp
�

� �
x

	
.
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where,

p (a; b; �e j �) = p
�

a j �2
a
�

p
�

�2
a

�� �a; �a
�

(19)

�
Y

i2L

p
�

bi j �2
bi

�
p
�

�2
bi

�� �bi ; �bi

�
p
�

�2
e;i

�� �e;i; �e;i
�

assuming the system parameters fa; b; �eg are independent. The set

� ,
n

�2
a; �a; �a;

�
�2

bi
; �bi ; �bi ; �e;i; �e;i

	
i2L

o
contains the hyperparameters, �2

fa;big and

hyper-hyperparameters, f�fa;bi;eig; �fa;bi;eigg on the channel and source coef�cients, and the

error residual variance.

Ideally, from eqns. (17) and (18), the nuisance parameters b and �e should be marginalised

out to form the marginal a posteriori pdf. This is derived, as shown in Appendix A, as:

p (a j x; �) / exp
�
�

aT a
2�2

a

�Y

i2L

j�ij�
1
2 E

�(Ni
2 +�e;i)

i ; (20a)

with Ej = 2�e;j + sT
j sj � sT

j Uj ��1
j UT

j sj; (20b)

and �j = UT
j Uj + ��2

bj
IF Q; (20c)

where j 2 L, �bj is a hyperparameter de�ned for analytical tractability as �2
bj

, �2
bj

�2
e;j .

In eqn. (20), it is understood that si and Ui are functions of the parameters a and the

observed data x. The maximum marginal a posteriori (MMAP) estimate is found by solving

âMMAP = arg maxa p (a j x; �).

D. Channel estimation using the Gibbs sampler

In practice, âMMAP is dif�cult to �nd as the a posteriori pdf is multi-modal and subject

to rapid parameter variation. Instead, MCMC methods can be utilised to sample from the

joint pdf of the channel and source parameters as well as the error residual. Gibbs sampling

[31], [33]�[35] is a MCMC method that proceeds by iteratively drawing random variates

from conditional densities in order to sample from their joint pdf. Independent of the initial

distribution, the probabilities of the chain are guaranteed to converge to the invariant distri-

bution, i.e., the joint pdf, after a suf�ciently long burn-in period. A minimum mean-square
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error (MMSE) estimate of the channel parameters is then obtained through marginalisation

of the nuisance parameters by computing the expected value of only the variates of interest.

To sample from the joint pdf of the source coef�cients in block i, bi, the channel coef�-

cients, a, the source and channel hyperparameters, �2
bi

and �2
a, and the error residual variance,

�2
e;i, in M runs, the Gibbs sampler iterates for j 2M through

a(j+1)  p
�

a j b(j); �(j)
e ; �(j)

�

b(j+1)
i  p

�
b j a(j+1); �(j)

e ; �(j)
�

�
�2

e;i
�(j+1)  p

�
�2

e;i

�� a(j+1); b(j+1); �e��2
e;j

; �(j)
�

�
�2

a
�(j+1)  p

�
�2

a

�� a(j+1); b(j+1); �(j+1)
e ; �(j)

��2(j)
a

�

�
�2

bi

�(j+1)  p
�

�2
bi

�� a(j+1); b(j+1)
i ; �(j+1)

e ; �(j)

��2(j)
bi

�
;

where ��� denotes � with element � removed. The initial distribution
n

a(0); b(0); �(0)
e ; �(0)

o

is determined randomly or deterministically. The conditionals are derived in Appendix B.

VI. EXPERIMENTAL RESULTS

The results presented in this paper aim to demonstrate the performance of the Bayesian

inference for the proposed models for both simulated and real data. As shown in sec-

tion xIII-D, the proposed time-varying all-pole �lter shows promise as a channel model;

future research will investigate the construction of a complete fullband signal model and

evaluate the algorithm for real AIRs. Therefore, the results presented are in a restricted

frequency range and for a simpli�ed acoustic channel: fullband signal enhancement could

be achieved using the subband method mentioned in section xIII-E. The acoustic channel is

based on the frequency response of an acoustic gramophone horn, as discussed in [5]. The

simulated data is chosen to re�ect the statistical nature of speech.

A. Channel Model

In each of the experiments, the acoustic channel is based on perturbations of an actual

acoustic gramophone horn response up to a frequency of 1225 Hz [5]. This range matches
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that of the investigations in section xIII-D. The magnitude frequency response of the original

time-invariant channel has four resonant modes which introduces a reasonable and noticeable

amount of acoustic distortion into a signal passed through the �lter. A time-varying response

is obtained by perturbing each of the original channel poles in a circle of small radius.

Despite there being a highly nonlinear relationship between the poles and �lter parameters,

it is possible to accurately model the parameter variation using the sinusoidal basis set:

fg‘(n)g = f1; sin(2�t); cos(2�t); sin(2:5�t); cos(2:5�t)g

[Fig. 7 about here.]

The variability of the channel is shown as the grey lines in Fig. 7. Here, the magnitude

frequency response of the channel is plotted at each time instance, assuming the parameters

represent an equivalent LTI system. The frequency response of the original unperturbed

channel corresponds to the black line; the actual pole variations are shown in Fig. 8b.

B. Single-block TVAR source model

[Fig. 8 about here.]

The �rst experiment considers globally modelling the source using a single-block TVAR.

A synthetic 4th-order TVAR process is used as the input to the 8th-order channel. The source

is generated with time-varying parameters that re�ect the pole variations of real speech.

The parameter variations are chosen to give the least-squares estimate (LSE) approximations

of the two leftmost pole trajectories shown in Fig. 3b: these trajectories are reproduced in

Fig. 8a to reiterate this. The procedure for determining this approximation is outlined in

section xII; thus, the basis set used for the source corresponds to the Fourier set ffk(n)g =

fsin (n!0t); cos (n!0n)g2
n=0 with fundamental frequency !0 = 2� 5

9 rad/sec. The total number

of source samples used is N = 2; 000, and is chosen to give suf�cient data that the channel

estimates have low variance. In practice, of course, this is 4 times the number of samples in

Fig. 3b. With regards to eqn. (4), L = 1, T1 = 4 and T2 = N , where Ti are the changepoints,

i.e., T1 is the index of the �rst sample in the block and T2 is the index of the last sample in

the block.
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The Gibbs sampler is executed for 5000 iterations with a burn-in period of 500 (10%)

samples, although the estimates tend to converge within a few hundred samples. A Monte

Carlo experiment with 100 runs is executed to ensure that the performance is consistent

and not dependent on the excitation sequence used in the synthetic source. The averaged

estimated pole trajectories are shown in Fig. 8. Any individual run gives very similar results

to the averaged performance: source and channel pole estimates (grey dots) are relatively

close to the actual trajectories (black dots).

Although the channel is identi�ed with reasonable accuracy in the case shown here, in

other (unshown) single-block simulations, the MCMC estimates do in fact indicate possible

source-channel ambiguities. The multi-block case is more robust to this problem, as discussed

in section xIV.

C. Block-based TVAR approach

The single-block TVAR model will not adequately capture the full time-varying nature

of a real speech signal and therefore, as discussed in section xII-D, a block-based model is

more �exible. To demonstrate the algorithm in this case, the source model in section xVI-B is

modi�ed into a multi-block-based time-varying AR model, where the pole variation in each

block is smooth, but abrupt change in variation occurs for pole positions between blocks.

There are 4 blocks, each 2000 samples long, and the model order in each block is again 4.

The pole variations for the source in each block are shown in Figs. 9a and 9b. The source

basis functions and settings for the Gibbs sampler are as described in section xVI-B. As

can be seen from Figs. 9a, 9b, and 9c, the algorithm is able to accurately detect the pole

trajectories. The estimated source, sMMSE(n) is obtained by solving eqn. (7) with the given

channel estimate. An error signal is de�ned as:

�MMSE(n) = (sMMSE(n)� s(n))2 (21)

Typical signals are shown in Fig. 10, and a typical histogram of one of the channel parameter

samples is shown in Fig. 9d.

[Fig. 9 about here.]
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[Fig. 10 about here.]

D. Identi�ability issues for real speech signals

As expected, the results for synthetic data generated according to the proposed models

demonstrate the estimation algorithm works well, and good enhancement is possible. This is

subject to the discussion in section xIV in which it is seen that suf�cient pole movement near

the unit circle is required for identi�ability. With regards to arbitrarily chosen real speech

data, often the source pole movement is not suf�cient for identi�ability. Therefore, it is

necessary to identify blocks of observed data for which there is enough pole movement for

good parameter estimation. But what is ‘suf�cient movement’?

The pole variations in Fig. 9 are such that, on average, there is suf�cient energy at different

spectral regions for the channel to be estimated correctly. In the following, the simulation in

section xVI-C is repeated, with the same parameters, except the pole trajectories in Fig. 9

are shortened by a scalar factor �. When � = 1, the poles follow the full variation in Figs. 9a

and 9b; when � = 0, the poles are �xed and stationary at the initial pole position. The basis

functions used in section xVI-A are still appropriate for modelling these variations. De�ning

the log normalised estimation error as �̂MMSE(n) = 20 log10 �MMSE(n)=s2(n) from eqn. (21),

Fig. 11 shows �̂MMSE(n) as a function of pole variability: a source with larger variability in

pole movements leads to improved signal enhancement. In particular, note the block-stationary

model does not provide enough ‘spectral excitation’ for good channel identi�cation compared

to the TVAR model.

[Fig. 11 about here.]

E. Results for real speech

Fig. 12 shows results for the case when real speech is �ltered through the channel. The

‘true source poles’ (black dots) are estimated from the known clean speech for comparison �

model-order 6. Again, the basis functions and Gibbs sampler settings are as in section xVI-B.

The variability of the poles in Fig. 12, estimated from arbitrary segments of speech, is

signi�cant. As predicted in sections xIV and xVI-D, they are thus more dif�cult to estimate,
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and the channel estimates, although in the right regions, are considerably off compared to

the simulated examples. There is, however, still a 2:2 dB reduction in signal error and thus

some speech enhancement.

[Fig. 12 about here.]

An open question remains about the choice of model order for the source signal. Whereas

for BSAR speech models, the model order is generally greater than, say, 15, in these exper-

iments the source is modelled as a low-order TVAR process where, say, 5 basis functions

are needed to model each parameter. Thus, for a 6-th order model, 30 parameters must be

estimated. Since the TVAR process is more �exible than a BSAR model, can lower model

orders be used?

VII. CONCLUSIONS

Blind dereverberation of speech from a moving speaker is a challenging problem that has a

number of practical applications. A previous approach to single-channel blind dereverberation

[5] focusing on stationary speakers assumed a locally-stationary source signal and uses the

time-invariance of the channel to resolve estimation ambiguities. This paper provides a novel

contribution towards approaching single-channel blind dereverberation from a moving speaker

by utilising a more general and �exible block-based TVAR process to model the speech signal,

and a LTV all-pole �lter for the acoustic channel. Simulations show that the channel estimates

are more accurate when the multi-block model is used over the single-block case, and it is

argued the multi-block model provides the necessary �exibility for modelling long segments

of speech.

A Bayesian inference algorithm is developed to estimate the system parameters. As ex-

pected, simulated results show that parameter estimates are good when the data �ts the model.

Substantial discussion is given justifying the models used for real data. Further work includes:

1) dealing with speech segments in which the spectral excitation is weak; 2) further model

validation, and algorithmic testing on data obtained in a realistic acoustic environments; 3)

developing an algorithm that does not implicitly rely on inverse �ltering of the channel

which would fail for ill-conditioned channels; 4) utilising subband models; 4) dealing with
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non-minimum phase channels that are the norm for real acoustic environments.

APPENDIX A

POSTERIOR PDF OF CHANNEL PARAMETERS

Inserting the priors in section xV-B and the likelihood from eqn. (17) into the joint pdf

in eqn. (18) gives:

p (a; b; �e j x; �) / exp
�
�

aT a
2�2

a

�

�
LY

i=1

1
�
�2

e;i
�Ni

2

exp
�
�

1
2�2

e;i
ksi + Uibik2

�
(22)

�
1

�
�2

e;i
�F Q exp

�
�

bT
i bi

2�2
bi

�2
e;i

�
1

�
�2

e;i
��e;i+1 exp

�
�

�e;i

�2
e;i

�
;

where for analytical tractability, set �2
bk

= �2
bk

�2
e;j , where k 2 L, �2

bk
is a hyperparameter,

and also where terms that involve hyperparameters have been ignored since they are assumed

known. To obtain p (a; b�bk ; �e j x; �), marginalise bk:

p (a; b�bk ; �e j x; �) / exp
�
�

aT a
2�2

a

� LY

‘=1

1
�
�2

e;‘

�R‘

�
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j 6=i=1

exp
�
�1

2�2
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�
ksi + Uibik2 +

bT
i bi

2�2
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+ 2�e;i

��

�
1Z

�1
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(
�1

2�2
e;j

 

ksj + Ujbjk2 +
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j bj

2�2
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+ 2�e;j

!)
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| {z }
�j

;

(23)

with Rk = Nk+F Q+2(�e;k+1)
2 . Writing the integrand of �k as:

Ik = exp
�
�

1
2�2

e;k

�
2�e;k + sT

k sk + 2sT
k Uk bk+

� bT
k
�
UT

k Uk + ��2
bk

IF Q
�

bk

��
:
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Comparing the integral �k with the standard Gaussian identity,
Z

RP
exp

�
�

1
2
�
� + 2�T y + yT �y

��
dy

=
(2�)

P
2

j�j
1
2

exp
�
�

1
2
�
�� �T ��1�

��
;

where Ek and �k are de�ned in section xV-C. Thus:

�k =
(2��2

e;k)
F Q

2

j�kj
1
2

exp

(

�
Ek

2�2
e;k

)

:

Hence, eqn. (23) simpli�es, and repeating over all k:

p (a; �e j x; �) / exp
�
�

aT a
2�2

a

�

�
LY

i=1

1
j�ij

1
2

1
�
�2

e;i
�Ri� F Q

2
exp

�
�

Ei

2�2
e;i

�

| {z }
	i

: (24)

The conditional pdf of the channel parameters, p (a j x; �), is found by marginalising the

error residual variance, �2
e;i:

p (a j x; �) /
1Z

0

� � �
1Z

0

p (a; �e j x; �) d�2
e;L � � ��

2
e;1: (25)

The integrand, 	i, from eqn. (24) is solved using the identity:

Z 1

0

1
(�2)(�+1) exp

n
�

�
�2

o
d�2 =

�(�)
�� :

Since the f�2
e;ig’s are independent, eqn. (20a) thus follows.

APPENDIX B

GIBBS SAMPLER � CONDITIONAL PDFS

According to Bayes’s theorem, the conditional pdfs are:

p (a j ��a) / p (x j a; b; �e) p
�

a j �2
a
�

(26a)

p (bi j ��bi) / p (x j a; b; �e) p
�

bi j �2
bi

�
(26b)
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p
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where � = fa; b; �e; �g. The likelihood function is found in eqn. (17), and the priors are

de�ned in section xV-B.

A. Channel coef�cients

Recall eqn. (9b), ei = Bi ŝi, such that the likelihood is given by eqn. (16). It is desired

to write ŝi as a linear function of a. Consider writing the model in eqn. (7) for the values

needed to de�ne ŝi in eqn. (9b): n 2 fTi � Q; : : : ; Ti+1 � 1g. Let N̂i = Ni + Q, and the

N̂i � 1 vector

xi;p =
h
x(Ti �Q� p) � � � x(Ti+1 � 1� p)

iT
:

Then x̂i = xi;0 is a N̂i� 1 vector and Xi;p = diag [xi;p] is a N̂i� N̂i diagonal matrix; Gi;p is

a Ni�G matrix whose columns are the G basis functions evaluated between n = fTi�Q�

p; : : : ; Ti+1� 1� pg, such that the (j; k)-th element of Gi;p is [Gi;p]jk = gk(j + Ti + Q� q).

Hence, it follows that Vi is the Ni � GP matrix Vi =
h
Vi;1 � � � Vi;P

i
where Vi;p =

Xi;p Gi;p, and a =
h
aT

1 : : : aT
P

iT
is a GP �1 vector, where [ap]k = ap‘. This is equivalent

to writing:

ŝi = x̂i + Via:

Substituting into eqn. (16) gives:

pX (x j a; b; �e) /

"
LY

i=1

1
�Ni

e;i
exp

(

�
kBi x̂i + BiViak2

2�2
e;i

)#

s=Ax

:

De�ning Vbi = BiVi and xbi = Bix̂i, inserting p (a j �2
a) and this likelihood into eqn. (26a),

it follows the conditional pdf of the channel coef�cients is multivariate Gaussian, p (a j x; b; �e; �) =

N
�
a
���a; �a

�
, with inverse covariance

��1
a =

IGP

�2
a

+
LX

i=1

1
�2

e;i
VT

bi
Vbi (27)
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and mean �a = ��a

LX

i=1

1
�2

e;i
VT

bi
xbi ; (28)

Note that the vector xbi can be calculated ef�ciently by writing xbi = Bix̂i = ~xi;0 + Wi bi,

where

~xi;q =
h
x(Ti � q) � � � x(Ti+1 � 1� q)

iT
;

and Wi is the Ni � FQ matrix W =
h
Wi;1 � � � Wi;Q

i
where Wi;q = ~Xi;q Fi;q with

~Xi;q = diag [~xi;q]. Similarly, observe that each column of the matrix Vi;b = BiVi can also

be written in a similar fashion; thus, de�ning vi;r = [Vi]r as being the r-th column of Vi,

then Bi vi;r � ~vi;r + Wi;r bi using similar de�nitions to above.

B. Source coef�cients

Using eqn. (17) and p
�

bi j �2
bi

�
, then from eqn. (26b):

p (bi j x; a; �e; �)

/ exp
�
�

1
2

�
2

�2
e;i

sT
i Ui bi + bT

i

�
1

�2
e;i

UT
i Ui +

IF Q

�2
a

�
bi

��

s=Ax

:

De�ne xa;i as the vector si with s = Ax, and similarly Yi as the matrix Ui with samples s(n)

replaced by s = Ax. Then, the conditional pdf of the source parameters is also Gaussian,

p (bi j x; a; �e; �) = N
�
bi
���bi

; �bi

�
, with:

inverse covariance ��1
bi

=
1

�2
e;i

YT
i Yi +

1
�2

bi

IGF (29)

and mean �bi
= �

1
�2

e;i
�biY

T
i xa;i; (30)

Consider the term xa;i = Ai x, where the matrix Ai 2 RNi�Ni is de�ned appropriately. This

can be calculated ef�ciently by writing it in the form xa;i = �x0 + �W a.

C. Error residual variance and hyperparameters

De�ning Ei = kxa;i + Yi bik2, and inserting the likelihood and p
�

�2
e;i

�� �e;i; �e;i
�

into

eqn. (26e), it follows the error residual variance has an inverse-Gamma distribution:

p
�

�2
e;i

�� x; a; b; �
�
� IG (�e;i + Ni=2; Ei=2 + �e;i) (31)
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Similarly, the sampling distribution for the hyperparameters of the source and channel coef�-

cients are found from eqns. (26c) and (26d) to be inverse-Gamma distributions: p (�2
a j x; a; b; �) �

IG
�
PG=2 + �a; aT a=2 + �a

�
, and p

�
�2

bi

�� x; a; bi; �
�
� IG

�
QF=2 + �bi ; bT

i bi=2 + �bi

�
.
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Fig. 1: Model based approach to blind dereverberation
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Fig. 2: Speech segment; shaded areas are of length 204 msec or 500 samples at sampling
frequency of fs = 2:45 kHz.
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(a) Birth and death of poles for true poles (grey dots) and
LSE (black dots) for the left shaded area in Fig. 2.
Model order: Q = 8.
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(b) True poles (grey dots) and LSE (black dots) for speech
segment in right shaded area of Fig. 2. Model order:
Q = 6.

0 100 200 300 400 500
0.2

0.3

0.4

0.5

0.6

0.7

Sliding window step number, $M$

C
oe

ffi
ci

en
t v

al
ue

Comparison of actual and LS estimate of the 6th coefficient

 

 
LS estimate
Actual coefficient

(c) Smooth pole variation (Fig. 3b) corresponds to rela-
tively smooth parameter variation.
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(d) Close-up of Fig. 3b showing LSE (black dots) matching
true poles (grey dots).

Fig. 3: Pole and parameter variations from the speech segment in Fig. 2 for model order
Q = 6 and 8, block length N = 500, L = N steps, sampling frequency fs = 2:45 kHz.
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Fig. 4: Block-based time-varying model
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Fig. 5: Source and sensor locations in experimental set-up; all measurements in millimeters.
Source and sensor elevation is 845 mm, room height of 3200 mm. The sensor is moved
downwards from its initial position in 2 mm increments.
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(a) Simulated: offsets 0 to 400mm (b) Simulated: offsets 432 to 574mm

(c) Measured: offsets 432 to 502mm (corresponding to
variation observed at mic. 7)

(d) Measured: offsets 504 to 574mm (corresponding to
variation observed at mic. 8)

Fig. 6: Simulated and experimental results for spatio-temporal variation of the poles in all-
pole modelling of AIRs; pole trajectories illustrated through colour map from black (starting
point) to light grey (ending point). Model order: 16.
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Fig. 7: Equivalent frequency response variation of the LTV all-pole channel
.
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(a) Time-varying source (b) Time-varying channel

Fig. 8: Actual poles (black dots) vs. Gibbs sampler estimates (grey dots) using 5000 Gibbs
sampler iterations, burn-in period of 500 samples, and 100 runs for Monte Carlo simulation.
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(a) Source poles: blocks 1 (left) and 2 (right)

(b) Source poles: block 3 (left) and 4 (right)

(c) Channel poles (d) Channel histogram

Fig. 9: Pole trajectories in block-based simulation. Actual poles indicated by black dots,
blind estimates by grey dots.
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Fig. 10: Observed, source, estimated, and error signals. Vertical line denotes the changepoint
position.
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Fig. 11: Estimation error as function of pole variability, �.
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(a) Source poles: blocks 1 (left) and 2 (right)

(b) Source poles: block 3 (c) Channel poles

Fig. 12: Pole trajectories for real speech signal. Clean speech poles indicated by black dots,
blind estimates by grey dots.
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Stationarity Nonstationarity
Local - not modelling parameter variation + model smooth parameter variation

+ simpler model - cannot model abrupt changes
Global - discontinuities at block boundaries + discontinuities of boundaries less important

+ simpler model

TABLE I: The advantages (+) and disadvantages (-) of stationarity and nonstationarity on
a local and global level
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