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ABSTRACT

Barotropic eddy fluxes are analysed through a geometric decomposition of the eddy stress tensor. Specifi-
cally, the geometry of the eddy variance ellipse, a two-dimensional visualization of the stress tensor describing
the mean eddy shape and tilt, is used to elucidate eddy propagation and eddy feedback on the mean flow. Lin-
ear shear and jet profiles are analysed and theoretical results are compared against fully nonlinear simulations.
For flows with zero planetary vorticity gradient, analytic solutions for the eddy ellipse tilt and anisotropy are
obtained that provide a direct relationship between the eddy tilt and the phase difference of a normal mode
solution. This allows a straightforward interpretation of the eddy-mean flow interaction in terms of classical
stability theory: the initially unstable jet gives rise to eddies which are tilted “against the shear” and extract
energy from the mean flow; once the jet stabilises, eddies become tilted “with the shear” and return their
energy to the mean flow. For a nonzero planetary vorticity gradient, ray-tracing theory is used to predict el-
lipse geometry and its impact on eddy propagation within a jet. An analytic solution for the eddy tilt is found
for a Rossby wave on a constant background shear. The ray tracing results broadly agree with the eddy tilt
diagnosed from a fully nonlinear simulation.

1. Introduction

The dynamics of large scale ocean motions are strongly
dependent upon the effect of the small scale turbulent eddy
field. The Gent-McWilliams parameterisation (Gent and
McWilliams 1990; Gent et al. 1995) is now a key ingredi-
ent in coarse resolution ocean circulation models (e.g., Fox
Kemper et al. 2013) and can be interpreted as modelling
the vertical flux of momentum due to eddy form stresses
(Greatbatch 1998). This vertical transfer of momentum by
eddies plays a fundamental role in the the dynamics of the
large-scale circulation– for example it is a leading order
term in the dynamics of the Souther Ocean (e.g., Johnson
and Bryden 1989; Danabasoglu et al. 1994).

While horizontal eddy momentum fluxes are less sig-
nificant from a global perspective, they can play impor-

�Corresponding author address: Department of Earth and Planetary
Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
E-mail: talia.tamarin@weizmann.ac.il

tant roles in the dynamics of inertial jets. For exam-
ple, they influence the dynamics of western boundary cur-
rents, where they are instrumental in transferring energy
between the mean flow shear and eddies (Waterman and
Jayne 2011; Waterman et al. 2011; Waterman and Jayne
2012). Horizontal eddy stress is not captured by the Gent
and McWilliams parameterisation, and its effects are not
typically represented in coarse resolution ocean models
beyond the influence of increased explicit or numerical
dissipation (see Eden 2010 for an exception). This pa-
per focuses on the study of the geometric properties of the
local horizontal eddy momentum stress, and specifically
studies these properties in a series of idealised barotropic
shear and jet problems. The geometric framework holds
promise for elucidating the important roles of the horizon-
tal eddy momentum fluxes in these systems, as well as
for suggesting ingredients for a parameterization of their
larger-scale effects.

Generated using v4.3.2 of the AMS LATEX template 1
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In the mean barotropic vorticity equation, the eddies in-
fluence the mean flow through the divergence of an eddy
vorticity flux vector. The vector flux, and hence the influ-
ence of the eddies on the mean flow, is conveniently vi-
sualised in the usual manner via plots of directed arrows,
with the length indicating the local magnitude of the flux
and the orientation indicating the local direction. In the
corresponding mean momentum equation, the eddies in-
fluence the mean flow through the divergence of an eddy
momentum stress tensor, whose components are related to
the eddy Reynolds stresses, and which is equal to the eddy
velocity covariance tensor. This stress can no longer be
visualised as directed arrows – instead the natural visuali-
sation is as an oriented eddy variance ellipse (Preisendor-
fer 1988; Wilkin and Morrow 1994; Morrow et al. 1994),
with a well-defined eddy ellipse tilt and eccentricity.

Eddy vorticity fluxes are equal to the divergence of an
eddy momentum stress tensor, of which the velocity co-
variance (and hence the eddy Reynolds stresses) forms a
part, through the Taylor-Bretherton identity (Taylor 1915;
Bretherton 1966b; Plumb 1986). In the barotropic vortic-
ity equation only the double divergence of the barotropic
part of the momentum stress tensor can influence the mean
dynamics directly. Specific geometric properties of the
eddy velocity covariance which can influence the mean
dynamics (i.e. which do not vanish under this double
divergence) are identified in Waterman and Lilly (2015).
Three dimensional quasi-geostrophic generalisations to
the geometric eddy variance ellipse view are discussed in
Hoskins et al. (1983), Marshall et al. (2012), and Maddi-
son and Marshall (2013).

In the formulation we employ here, the average size of
the eddy variance ellipse is proportional to the square root
of the local eddy kinetic energy, and similarly to the square
root of an average magnitude of the local eddy momentum
stress1. The direction of the major axis indicates the di-
rection in which the corresponding component of the eddy
velocity leads to the largest variance (Wilkin and Morrow
1994), and consequently the greatest stress. The ratio of
the size of the ellipse in the major and minor axis direc-
tions is equal to the square root of the ratio of the vari-
ances associated with the components of the eddy veloc-
ity in each of these directions, and similarly to the ratio of
square root of the magnitude of the eddy stress due to these
components. These properties are illustrated in Fig.1. The
ellipse associated with the eddy velocity covariance tensor
can be characterized by three key geometric properties:

1In Wilkin and Morrow (1994) and Morrow et al. (1994), the semi-
major axes of the ellipse scale with the principal velocity variances. In
Waterman and Lilly (2015) the semi-major axes are set equal to the
square root of the principal velocity variances. In this article, the semi-
major axes are instead set equal to the square root of twice the principal
velocity variances, in which case the ellipse yields a fit to observed val-
ues of eddy zonal velocity u0 and eddy meridional velocity v0, on a u0-v0

plot, as discussed in section 2 and shown in Fig.10.

a magnitude, tilt, and eccentricity. Together these cap-
ture the complete structure of the local eddy momentum
stress2. Formally these geometric properties arise from a
principal component analysis of the eddy velocity covari-
ance tensor (Preisendorfer 1988).

Eddy variance ellipses and their geometric properties
are useful diagnostics to characterize the eddy field and
its mean flow interactions. For example, eddy variance el-
lipses are used to compare observational and model eddy
variability in Wilkin and Morrow (1994). Southern Ocean
satellite altimetry derived eddy velocity covariance is anal-
ysed using this approach in Morrow et al. (1994). Associ-
ations between ellipse geometry and topography, and be-
tween anisotropy and the mean flow, are noted. A similar
analysis is applied in Scott et al. (2008), and associations
between the eddy velocity covariance and topography are
not in general found, although some association between
ellipse orientation and topographic features in the South-
ern Ocean is discussed. Zonal versus meridional velocity
variance is analysed over regions of the Pacific Ocean in
Huang et al. (2007) for observational data and a numeri-
cal ocean model. The magnitude of the ratio is dependent
upon the time window over which the velocity field is av-
eraged, prior to computing velocity variances via further
averaging. A recent study in Stewart et al. (2015) extends
these earlier studies using observational data and a 1=12�

resolution ocean model. An association between increased
velocity covariance anisotropy and topography is observed
and, in the numerical model, an association between topo-
graphical slope and near-bottom covariance orientation is
found. Differences between near-surface and near-bottom
eddy velocity covariance properties are studied via decom-
position of the model velocities into barotropic and baro-
clinic components.

It is known from linear theory that perturbations lean
with the shear in stable configurations, and against the
shear in unstable configurations (e.g. Pedlosky 1987, sec-
tion 7.3). Moreover in the idealised barotropic jet con-
figuration of Waterman and Hoskins (2013) it is observed
that eddy variance ellipses orient themselves in a manner
consistent with stability properties of the mean flow. The
time mean eddy variance ellipses show orientations con-
sistent with instability in the upstream unstable region of
the jet, and with wave radiation in the downstream region.
Similar behaviour is observed in Klocker et al. (2016) in
an idealised primitive equation model of the Antarctic Cir-
cumpolar Current.

The primary purpose of this paper is to provide an ex-
plicit link between predictions from linear stability the-

2A crucial point to note is that that the eddy variance ellipse does
not relate directly to the spatial structure of the eddy field. A locally
highly isotropic eddy variance ellipse does not imply that the eddies are
physically circular – rather it implies that, at that location, there is no
component of the eddy velocity which preferentially leads to local eddy
stress.
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FIG. 1. Illustration of the geometric properties of the eddy vari-
ance ellipse: the magnitude, tilt, and eccentricity. A: Two ellipses with
equal tilt and eccenticity and differing magnitude, corresponding to lo-
cally higher (solid line) and lower (dashed line) eddy kinetic energy. B:
Two ellipses with equal magnitude and eccentricity and differing tilt,
corresponding to the case where the x-component of the eddy velocity
results in the greatest eddy momentum stress (solid line) and where the
component at 45 degrees to the x-axis results in the greatest eddy mo-
mentum stress (dashed line). C: Two ellipses with equal magnitude and
tilt and differing eccentricity, corresponding to higher (solid line) and
lower (dashed line) eddy momentum stress magnitude resulting from
the component of the eddy velocity in the minor axis direction.

ory and resulting eddy variance ellipses. The paper is
organized as follows. Section 2 reviews the local ge-
ometric properties of the eddy velocity covariance ten-
sor: the kinetic energy, horizontal eddy momentum stress
anisotropy, and horizontal eddy momentum stress tilt.
These are related to eddy variance ellipse properties, and
their relation to wave group propagation is discussed. In
Section 3 these geometric properties are calculated for
a piecewise linear shear layer and a piecewise linear jet
on an f -plane. Analytic solutions are derived from lin-
ear theory, and in the latter case these solutions are com-
pared against calculations from a fully non-linear numeri-
cal model. In a further numerical calculation the geometric
properties are diagnosed for a piecewise linear jet on a b -
plane, and the results are compared against the results for a
zonally evolving barotropic jet described in Waterman and
Hoskins (2013). In Section 4 ray tracing theory is used to
calculate eddy variance ellipse properties for the piecewise
linear jet on a b -plane. The predicted spatial patterns of
the geometric properties are compared against those diag-
nosed from the numerical model. The paper concludes in
Section 5.

2. Eddy momentum stress decomposition

In this section the geometric decomposition of local
horizontal eddy momentum stress are reviewed. For fur-
ther details see, for example, Hoskins et al. (1983), Mar-
shall et al. (2012), Waterman and Hoskins (2013), and Wa-
terman and Lilly (2015).

a. Geometric decomposition and interpretation

The mean baroptropic vorticity equation is:

¶q
¶ t

+ u �Ñq =�Ñ � (u0q0); (1)

where forcing and dissipation have been neglected, Ñ is
the horizontal gradient operator, and t is time. A bar signi-
fies a mean quantity and a prime denotes a deviation from
the mean3. The absolute vorticity is:

q = f +(ẑ�Ñ) �u; (2)

where f is the planetary vorticity and u is the non-
divergent velocity with x- and y-components u and v re-
spectively.

Via the Taylor-Bretherton identity (Taylor 1915;
Bretherton 1966b; Plumb 1986) the eddy vorticity flux
u0q0 can be related to the eddy velocity covariance tensor
u0
u0 via (Hoskins et al. 1983):

u0q0 = (ẑ�Ñ) �u0
u0� ẑ�ÑK
= Ñ �T; (3)

where the eddy momentum stress tensor T has compo-
nents:

T =

�
N M
M �N

�
: (4)

Here K is the eddy kinetic energy:

K =
1
2

�
v02 + u02

�
; (5)

and M and N are the eddy Reynolds stresses:

M =
1
2

�
v02�u02

�
; (6a)

N = u0v0: (6b)

The flux tensor T may be decomposed (Hoskins et al.
1983; Marshall et al. 2012; Waterman and Hoskins 2013):

T = gK
�

sin2q �cos2q

�cos2q �sin2q

�
; (7)

where three geometric parameters appear: the eddy kinetic
energy K, an eddy momentum stress anisotropy g which
is bounded 0 � g � 1, and an eddy momentum stress tilt
q . These geometric parameters may be computed directly
from the Reynolds stresses M and N (see e.g. Marshall
et al. 2012, equations 17 and 21).

At a given spatial location, the eddy velocity forms
some general trace in a u0-v0 plot. The geometric prop-
erties in (7) can be related to an elliptical fit to this trace,
with components:�

ũ0 (f)
ṽ0 (f)

�
=

�
ũ0 cosf

ṽ0 sin(f + e)

�
: (8)

Here f parameterises the ellipse and ũ0, ṽ0, and e deter-
mine the specific ellipse geometry. If the bar corresponds

3The averaging operator is a Reynolds operator, commutes with the
partial derivatives ¶=¶x, ¶=¶y, ¶=¶ t and satisfies a Cauchy-Schwartz
inequality such that a0b0

2 � a02 b02, with a02 � 0.
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FIG. 2. a) u0-v0 space ellipse which captures the geometric structure
of the local eddy covariance tensor, with semi-major axis A, semi-minor
axis B, and focus separation 2F (see also Marshall et al. (2012) Fig. 3
(a) and Waterman and Lilly (2015) Fig. 1). b) Tilt angle q octants, and
the corresponding signs of the eddy Reynolds stresses M and N (see
also Waterman and Hoskins 2013, figure 2).

to a long time average, then the eddy stress and eddy ki-
netic energy resulting from the observed local eddy veloc-
ity u0 are identical to those resulting from an eddy velocity
which, on a u0-v0 plot, traces along this ellipse at a constant
rate of change of f . This ellipse is illustrated in Fig.2a,
and its relation to the signs of the Reynolds stresses M and
N is shown in Fig.2b.

With this ellipse definition, the eddy kinetic energy K is
equal to one quarter of the mean square of the semi-major
and semi-minor axes, and the tilt q is the angle of the el-
lipse major axis to the x-axis. The ratio of the semi-minor
axis B to semi-major axis A, r = B=A, is related to the
anisotropy parameter g via (Hoskins et al. 1983; Marshall
et al. 2012):

g =
1� r2

1 + r2 : (9)

The ratio of the focus separation 2F to the major axis 2A,
equal to the ellipse eccentricity e, is given by:

e =
F
A

=

s
2g

1 + g
: (10)

Additional properties of the eddy velocity covariance
tensor have previously been discussed in the literature.
In Huang et al. (2007) and Scott et al. (2008) a non-
dimensional zonal-meridional anisotropy is defined4:

a =
u0u0� v0v0

u0u0+ v0v0
; (11)

which is related to the geometric decomposition via:

a =�M
K

= g cos2q : (12)

4This non-dimensional anisotropy is denoted a in Huang et al.
(2007), and M in Scott et al. (2008).

In Waterman and Lilly (2015) and Stewart et al. (2015) a
dimensional anisotropy is defined5, equal to one half of
the difference between the maximal and minimal eddy ve-
locity variance:

L =
1
4
�
A2�B2�

= gK: (13)

This is further related to the geometry of the ellipse via:

L =
1
4

F2 (14)

where F is one half of the ellipse focus separation.

b. Spatial structure and mean flow forcing

The mean momentum equation is:

¶u
¶ t

+ u �Ñu + f ẑ�u =� 1
r0

Ñ(p +r0K)� ẑ� (Ñ �T);

(15)
where again forcing and dissipation have been neglected,
p is the pressure, and r0 is a constant reference density.
Consider a flow oriented in the x-direction (or, more gen-
erally, rotate coordinates locally so that the flow is in the
x-direction). Then substitution of the geometric decompo-
sition (7) results in a zonal eddy momentum forcing:

[�ẑ� (Ñ �T)] � x̂ =
¶M
¶x
� ¶N

¶y
(16)

= (gÑK + KÑg) �
�

cos(2q �p)
sin(2q �p)

�
+2gKÑq �

�
cos
�
2q � p

2

�
sin
�
2q � p

2

� � ;

which relates the local mean momentum forcing by the
eddies to the geometric paramers K, g , and q , and to their
local gradients.

Now limiting consideration to the case where zonal av-
eraging is applied, the zonal mean zonal velocity forcing
by the eddies is:

¶M
¶x
� ¶N

¶y
=�¶N

¶y
=

�
g

¶K
¶y

+ K
¶g

¶y

�
sin(2q �p)

(17)

+2gK
¶q

¶y
cos(2q �p) :

For zonally periodic systems, such as the idealised sys-
tems considered in this article, this local mean momentum
forcing by the eddies cannot be balanced by a mean pres-
sure gradient, and corresponds directly to a local mean ac-
celeration. Differing geometric parameter patterns which

5Denoted L in Waterman and Lilly (2015) and Stewart et al. (2015),
and M̂ in Hoskins et al. (1983).
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FIG. 3. Illustration of geometric parameter patterns which, subject
to zonal averaging, lead to an eastward momentum tendency. In each
case exactly one of K, g , or q varies with y. A: K decreasing with y,
with 0 < q < p=2. B: K increasing with y, with �p=2 < q < 0. C:
g decreasing with y, with 0 < q < p=2. D: g increasing with y, with
�p=2 < q < 0. E: q decreasing with y, with �p=4 < q < p=4. F: q

increasing with y, with �p=2 < q <�p=4 or p=4 < q � p=2.

lead to an eastward momentum tendency are illustrated in
Fig. 3, and patterns which lead to a westward momentum
tendency are illustrated in Fig. 4.

In more general cases, only the non-divergent compo-
nent of the eddy momentum tendency is associated with
a local forcing (see e.g. Maddison et al. 2015). A more
general approach is taken in Waterman and Lilly (2015),
where instead spatial patterns of geometric parameters
which lead to local forcing of the mean absolute vortic-
ity are considered.

c. Wave group propagation

The intrinsic group velocity of a slowly varying wave
packet under the WKB approximation (Buhler 2009, sec-
tion 2.1.6) is related to the ellipse tilt angle q . This pro-
vides a link between the geometric properties of the eddy
velocity covariance and wave activity propagation, which
will be used to develop an analysis based upon ray trac-
ing in section 4. For further details see Hoskins et al.
(1983) (and also Maddison and Marshall 2013; Waterman
and Hoskins 2013).

Consider a plane wave with stream function perturba-
tion:

y
0 = ´

�
ŷei(kx+ly�wt)

�
; (18)

where k is the zonal wavenumber, l the meridional
wavenumber, and w the angular frequency, with u0 =
ẑ�Ñy 0. It follows that this leads to an anisotropy g = 1
and a tilt:

tanq =�k
l
: (19)

FIG. 4. Illustration of geometric parameter patterns which, subject
to zonal averaging, lead to a westward momentum tendency. In each
case exactly one of K, g , or q varies with y. A: K increasing with y,
with 0 < q < p=2. B: K decreasing with y, with �p=2 < q < 0. C:
g increasing with y, with 0 < q < p=2. D: g decreasing with y, with
�p=2 < q < 0. E: q increasing with y, with �p=4 < q < p=4. F: q

decreasing with y, with �p=2 < q <�p=4 or p=4 < q � p=2.

The intrinsic group velocity (group velocity minus mean
velocity) is (Hoskins et al. (1983) equations 11–15, Mad-
dison and Marshall (2013) equation 2.60, Waterman and
Hoskins (2013) equation 4):

cgR =

�
¶w

¶k
¶w

¶ l

�
�u

=
1

(k2 + l2)2

 �
k2� l2

�
¶q
¶y �2kl ¶q

¶x�
k2� l2

�
¶q
¶x + 2kl ¶q

¶y

!

=
1

1
2 q0q0

TÑq; (20)

where here the mean potential vorticity gradient Ñq is
treated as a column vector. Substitution of the geometric
decomposition (7) leads to (see e.g. Hoskins et al. 1983,
equation 16):

cgR = g
K

1
2 q0q0

jÑqj
�

cos
�
2q �qÑq� p

2

�
sin
�
2q �qÑq� p

2

� � ; (21)

(noting that g = 1 here) with:

qCgR = 2q �qÑq�
p

2
; (22)

where qÑq and qCgR are the angles that the mean potential
vorticity gradient and intrinsic group velocity make with
the x-axis respectively.

3. Geometric decomposition for piecewise linear flows

The approach used here for framing the wave instability
problem is the counter-propagating Rossby wave (CRW)
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perspective (following Rossby 1939; Bretherton 1966a),
which is an insightful pedagogical framework for explain-
ing the fundamentals of linearized shear flows instabili-
ties (see also Hoskins et al. 1985 and Davies and Bishop
1994). Heifetz et al. (1999) performed a case-study on the
CRW interaction in the simple barotropic Rayleigh model
(Rayleigh 1880), as well as a modified version consist-
ing of a jet-like flow featuring two strips of vorticity with
opposite signs. The growing normal mode solutions for
these configurations, obtained by Heifetz et al. (1999), are
used in the current study to diagnose and interpret the eddy
fields in the geometric decomposition framework.

a. Piecewise linear shear layer on an f -plane

Consider the Rayleigh (1880) model background veloc-
ity profile, whose zonal mean zonal velocity (Fig.6a) and
vorticity are given by:

u(y) =

8><>:
+Lb y� b
+Ly �b� y� b
�Lb y��b

; q(y) =

8><>:
0 y > b
�L �b < y < b
0 y <�b

:

(23)
Let the bar and prime now indicate zonal mean and per-

turbation respectively. A linear perturbation evolves via
the linearised absolute vorticity equation:

¶q0

¶ t
+ u

¶q0

¶x
=�v0

¶q
¶y

: (24)

The PV gradient ¶q=¶y is concentrated in two d -functions
at y = �b. Vorticity perturbations away from these loca-
tions can neither grow nor decay, and hence the vorticity
perturbations with time dependent amplitude are concen-
trated in d -functions at y = �b. For a given wavenumber
k the corresponding total perturbation is written:

q0k (x;y; t) = Qk (t)
h
eie+b

k d (y�b)+ eie�b
k d (y + b)

i
eikx;

(25)
where e

�b
k (t) are the phases of two waves at y = �b. In

an unstable configuration the ratio of the two wave ampli-
tudes asympotes to one as the waves grow (Heifetz et al.
1999), and hence here their amplitudes are both set equal
to Qk (t). The perturbation stream function is (following
Heifetz et al. 1999):

y
0
k (x;y; t) =�Qk (t)

2k

h
eie+b

k e�kjy�bj+ eie�b
k e�kjy+bj

i
eikx:

(26)
Noting that, subject to zonal averaging:

u0q0 =
¶M
¶y

; v0q0 =�¶N
¶y

; (27)

it follows that in regions where q0 = 0 the Reynolds
stresses M and N are independent of y, and hence M and

FIG. 5. Schematic illustration of two isolated vorticity waves and
their induced velocities, when the waves are (a) in phase (ek = 0), and
(b) p=2 out of phase (ek = p=2). The �q represent the vorticity anoma-
lies, the circular arrows show the circulation they induce, and the thick
arrows represent their associated velocities. The red and dashed blue ar-
rows represent the induced velocities from the upper and lower waves,
respectively. The figure illustrates how jMj (jNj) is maximized when
the waves are in phase (p=2 out of phase).

N take uniform values in each of the three regions y <�b,
�b < y < b, and y > b. Specifically, outside of the shear
layer, jyj> b, the velocity perturbations are:

u0k = iv0k =
Qk (t)

2

h
eie+b

k ek(y�b) + eie�b
k ek(y+b)

i
eikx (28a)

u0k =�iv0k =�Qk (t)
2

h
eie+b

k e�k(y�b) + eie�b
k e�k(y+b)

i
eikx

(28b)

for y <�b and y > b, respectively. Substituting these into
equations (6) yields:

M = N = 0 for y <�b and y > b; (29)

as required. However inside of the shear layer, jyj< b, the
velocity perturbations are:

u0k = +
Qk (t)

2

h
eie+b

k ek(y�b)� eie�b
k e�k(y+b)

i
eikx (30a)

v0k =�Qk (t)
2

i
h
eie+b

k ek(y�b) + eie�b
k e�k(y+b)

i
eikx (30b)
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leading to:

M = +
Qk (t)2

4
e�2kb cosek; (31a)

N =�Qk (t)2

4
e�2kb sinek; (31b)

for �b < y < b, where ek = e
+b
k � e

�b
k is the (time inde-

pendent) phase difference between the two waves. The
linearised normal mode solution then yields an analytic
expression for the geometric parameters in the eddy stress
tensor decomposition within the shear layer:

K =
Qk (t)2

4
e�2kb cosh(2ky); (32a)

g = sech(2ky); (32b)

q =
ek

2
� p

2
; (32c)

where the sign in (32c) is chosen so that�p=2� q � p=2.
The Reynolds stresses vanish outside the shear layer

and have constant values within, in the latter case depend-
ing on the phase difference between the two interacting
waves. As illustrated in Fig. 5, jMj (jNj) is maximized
when the phase difference is zero (p). Outside the shear
layer, the superposition of the velocities always tends to
cancel out M and N, regardless of the phase difference be-
tween the waves. Inside the shear layer, the phase differ-
ence determines how the velocities interfere, and hence the
resulting values of M and N. However, these values (and
hence the tilt and anisotropy) remain constant within the
shear layer. This result is generalized in Appendix A for
a continuous vorticity profile and shown to hold between
any two vorticity waves.

The eddy kinetic energy K, anisotropy g , and eddy
ellipses, corresponding to the most unstable mode, are
shown in Fig.6. The eddy ellipse tilt is constant within the
shear layer. The eddy kinetic energy and anisotropy both
vary inside the shear layer, with a minimum in the kinetic
energy and maximum in the anisotropy at the centre. How-
ever their product, equal to the dimensional anisotropy
L = gK, is constant. This corresponds, as per equation
(14), to a constant eddy ellipse focus separation within the
shear layer. Outside the shear layer the eddy “ellipses”
are circular, with undefined tilt and with decreasing eddy
kinetic energy as y!�¥.

N is constant within the shear layer and vanishes out-
side. This indicates that there is no mean momentum ten-
dency due to the eddies away from y = �b. At y = +b,
moving across the boundary from inside to outside the
shear layer, the eddy kinetic energy and anisotropy both
decrease (discontinuously) with an eddy tilt�p=2 < q < 0
on the non-zero shear side. This corresponds to cases A
and C of Fig.3, and hence to a westward momentum ten-
dency. Conversely at y =�b, moving across the boundary

FIG. 6. Normalised eddy kinetic energy K=Q2
k and anisotropy g for

the most unstable mode for the Rayleigh profile (with equal amplitude
waves at y =�b). The background velocity profile is shown on the left.
Corresponding eddy ellipses are shown on the right, with the foci of the
ellipses indicated by red filled circles.

from outside to inside the shear layer, the eddy kinetic en-
ergy and anisotropy both increase (discontinuously) with
an eddy tilt �p=2 < q < 0 on the non-zero shear side.
This corresponds to cases A and C of Fig.4, and hence to
an eastward momentum tendency. In both cases the un-
stable linear perturbation implies a local mean momentum
tendency which opposes and decelerates the flow. In this
idealised case the implied deceleration is applied over d -
functions at y =�b.

As discussed in Heifetz et al. (1999), unstable solutions
are composed of two phased locked counter propagating
Rossby waves at y = �b, with the waves mutually ampli-
fying each other and with a phase difference 0 < ek < p .
Conversely, for stable solutions the waves mutually de-
stroy each other, with a phase difference �p < ek < 0.
From equation (32c), the eddy ellipse for an unstable per-
turbation leans against the shear, with �p=2 < q < 0,
while the eddy ellipse for a stable perturbation leans with
the shear, with 0 < q < p=2. This behaviour is as dis-
cussed in Marshall et al. (2012).

Linear stability analysis gives that the most unstable
mode has wavenumber kmax with 2kmaxb � 0:797 and
phase difference ekmax � 0:646p (values from Heifetz et al.
1999). This yields an eddy tilt within the shear layer of
q ��0:177p . Note that this differs from the value �p=4
which might be expected based upon the argument that the
eddies should lean maximally according to the local shear.
This maximal tilt of �p=4 would corresponds to a phase
difference of e = p=2. Linear perturbation growth requires
phase locking between the perturbations at y = �b, and
hence the phase difference ek and wavenumber k are not
independent for growing perturbations – the choice of one
implies a value for the other. As discussed in Heifetz et al.
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(1999), the phase difference of the fastest growing mode
arises as a compromise – in particular increasing ek be-
yond ekmax (leading to an increased eddy tilt) implies an
increased value of k, a decrease in the amplitude of each
wave as seen by the other, and a net decrease in the per-
turbation growth rate. This behaviour is a manifestation
of the nonnormality of the system (Heifetz and Methven
2005).

b. Piecewise linear jet on an f -plane

Following a similar procedure as for the piecewise lin-
ear shear layer, one can find the analytic linear normal
mode solutions for a piecewise linear jet, which consists
of two constant and opposite sign vorticity strips (e.g.,
Heifetz et al. 1999).

The background profile (Fig.7a) is given by

u(y) =

8>>><>>>:
0

L(b� y)

L(b + y)

0

y� b
0� y� b
�b� y� 0

y��b

; (33)

q(y) =

8>>><>>>:
0
L

�L

0

y > b
0 < y < b
�b < y < 0

y <�b

:

In this case a non-neutral linear perturbation consists of
three waves at each of the interfaces y = 0, �b, and the
vorticity perturbation for a given wavenumber k is written
as

q0k (x;y; t) = [Qb
k(t)eieb

k d (y�b)+ Q0
k(t)eie0

k d (y) (34)

+Q�b
k (t)eie�b

k d (y + b)]eikx:

For a symmetric normal mode solution, which corre-
sponds to equal growth rate of all three waves, one finds
Qk(t) = Qb

k(t) = Q�b
k (t) = Q0

k(t)=2, eb
k = e

�b
k , and the cor-

responding stream function perturbation is (Heifetz et al.
1999)

y
0
k (x;y; t) =�Qk(t)

2k

h
e�kjy�bj+ 2eiek e�kjyj+ e�kjy+bj

i
eikx;

(35)
where ek � e0

k �eb
k = e0

k �e
�b
k is a time-independent phase

difference.
On each side of the jet, the Reynolds stresses are again

independent of y, and the geometric properties of the eddy
ellipse are given by

K =
Qk (t)2

2
e�kb

�
1
2

e�kb cosh(2ky)+ e�2ky
�

cosek + ekb
��

(36a)

FIG. 7. (a) The piecewise linear jet model of two shear layer with
constant vorticity of opposite signs embedded by two infinite layers of
zero vorticity. At y = 0;�1 the mean flow vorticity is discontinuous,
and supports the existence of three waves on each of the interfaces. (b)
Snapshot of relative vorticity (s�1) at some initial time evolution, after
t = 57 days, shows the most unstable normal mode configuration of
three phase locked waves which are tilted against the shear. (c) The
eddy ellipse tilt given by the theoretical normal mode solution for the
infinite domain (blue line) is constant within each side of the jet, and
equals q �= �0:2p , This is in good agreement with the snapshot from
a numerical simulation (red dashed line) at t = 57 days. (d) The eddy
ellipse anisotropy from the analytic solution (blue) and the numerical
simulation (dashed red). At y = 0 and near the interfaces at y = �1
the anisotropy maximizes. Here y and x are the meridional and zonal
coordinates, respectively, normalized by b.

g =

q
1 + 1

4 e�2kb + e�kb cosek

1
2 e�kb cosh(2ky)+ e�2ky(cosek + ekb)

; (36b)

tan2q =� sinek

cosek + 1
2 e�kb

; (36c)

where the negative sign in (36c) corresponds to the north-
ward side of the jet with negative shear (0 < y < b) and
the positive sign to the southward side of the jet with
positive shear (�b < y < 0). The eddy ellipse tilt is no
longer directly proportional to the normal mode phase dif-
ference due to the interaction with the third vorticity wave,
which gives an additional 1

2 e�kb term in the denominator
of (36c).

To examine the validity of the analytic normal mode
solution, we compare the calculated eddy ellipse tilt and
anisotropy to those found from a fully nonlinear simula-
tion (Fig.7). Details regarding the numerical model are
given in Appendix B. The non-differentiable piecewise-
linear jet in (33) is approximated by a smooth “tanh” pro-
file whose vorticity is given by

q0 =
L

2

�
2tanh

� y
d

�
� tanh

�
y + b

d

�
� tanh

�
y�b

d

��
(37)
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where L is the shear, the interfaces of the layers are located
at y = 0;�b (b = 75 km), and d is a parameter that mea-
sures the relative thickness of the transition regions at the
interfaces. In the limit d! 0, one recovers the piecewise
linear profile. Here a small value of d = 0:05b is chosen.
The zonal mean flow of the approximated piecewise linear
jet at the initial moment, at t = 0 days, is shown in Fig. 8a
(black solid line).

A snapshot of the relative vorticity at early stages of
the simulation, after t = 57 days (Fig.7b), shows that the
vorticity perturbation is localized at the three interfaces
y = 0;�b. The system picks up a mode n = 3 solution,
corresponding to a wavelength of l � 290 km (the x do-
main size is Lx = 872 km) and a normalized wavenum-
ber of 2kb = 3:24. Due to the quantization requirement
of our periodic domain, this is slightly larger then the
marginally most unstable normal mode 2kmaxb = 2:452
(given in Heifetz et al. 1999, for the case of a jet in an in-
finite domain). Our normal mode solution has a phase dif-
ference of ek �= 0:418p (substituting 2kb = 3:24 in equa-
tion (20) of Heifetz et al. 1999), which gives from (36c)
an eddy ellipse tilt of q �= 0:194p on the northward side of
the jet and q �=�0:194p on the southward side of the jet.
Hence, the eddy ellipse is tilted against the shear in each
side of the jet, consistent with an unstable normal mode
solution, fluxing momentum out of the jet core and into its
flanks. Note that the tilt angle found here is not far from
the one found for the single shear layer in the previous sec-
tion (q �= �0:177p). In addition, it is similar to the value
one finds for the most unstable normal mode solution of
the jet in an infinite domain case, q �=�0:208p , achieved
by substituting in (36c) the theoretical values for the infi-
nite domain case (2kmaxb = 2:452 and ek �= 0:628p).

Fig. 7c,d show the zonally averaged eddy ellipse tilt
and anisotropy, respectively, from the numerical simula-
tion (dashed red line) and the analytic normal mode so-
lution (blue line). The analytic solution is calculated by
interpolating the stream function expression (35) for the
normal mode solution onto a numerical grid and differen-
tiating to find the velocity field. The results are in good
agreement, and show that the eddy tilt is constant in each
side of the jet, positive (negative) in the negative (positive)
shear, with a jump towards�p=2 at y = 0. The anisotropy
structure in each of the layers is similar to that for the sin-
gle shear layer case, though here it maximizes closer to the
edges y = �b rather than in the middle of the layer. Both
M and N are constant within the layers, and hence only
the perturbation kinetic energy K controls the meridional
structure of the anisotropy g (which is inversely propor-
tional to K).

The constant tilts remain close to the theoretical value
even at later stages of the simulation, when the waves
merge into vortices (not shown). At much later stages
of the development, however, the linear solution does not
describe the dynamics adequately. In addition, once the
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t=0
t=135:7=
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FIG. 8. (a) Zonal mean velocity (normalized by U0max = 0:24ms�1)
at three different times of the evolution of the nonzero beta case. The
initial piecewise linear jet (t = 0 days, black solid line) weakens and
broadens significantly due to eddies fluxing momentum out of the jet
(t = 135 days � 7t , red), but later strengthens due to upgradient fluxes
(t = 172 days � 9t , dashed blue). (b) Zonal mean potential vorticity
(normalized by L = 3:2� 10�6 s�1) and (c) mean potential vorticity
gradient (normalized by b�1L = 4:2�10�11 m�1s�1), for three differ-
ent times of the evolution. Time is in units of days, where t = 19 days
and y is the meridional coordinate normalized by b.

mean vorticity gradient becomes nonzero, the tilt is no
longer constant. This is examined in more detail in the
next section in which a background planetary vorticity gra-
dient is added. Since there are many similarities between
the results obtained on the f -plane and b -plane, a more
detailed discussion is deferred until the latter case.

c. Piecewise linear jet on a b -plane

A more physically relevant case is when a background
planetary vorticity gradient is included. The normal mode
solution derived in the previous section is no longer valid
in this case. However, the fastest growing mode and its
growth rate are very similar to those found for the zero
beta case. In order to describe the meridional dependence
of the tilt, ray tracing will be applied in Section 4, but
first a qualitative description of the evolution of the flow is
given.

1) TIME EVOLUTION AND GEOMETRIC DECOMPOSI-
TION

Fig.8 shows the initial flow as well as selected times of
the zonal mean velocity (Fig.8a), mean potential vortic-
ity (Fig.8b) and mean potential vorticity gradient (Fig.8c).
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FIG. 9. Snapshots of the potential vorticity for the non zero beta jet
(s�1) at different times of the evolution (time units is given in days).
(a) t = 57 days � 3t , the most unstable mode is apparent and the in-
terfaces are characterized by a wavy structure. (b) t = 115 days � 6t ,
the system is no longer in the linear stage as the waves merged into
vortices, however they are still clearly tilted against the shear. (c)
t = 155 days � 8t , the tilt flips and the vortices are now tilted with the
shear. (d) t = 270 days� 14t , the vortices break and the system equili-
brates. Time is in units of days (t = 19 days) and coordinates (x,y) are
normalized by b.

The initial zonal mean velocity (Fig.8a, black solid line
shows t = 0 days) is identical to that used in the zero beta
case, i.e. the smooth approximation of the piecewise lin-
ear jet. It satisfies the necsassry conditions for barotropic
instability, since the absolute vorticity gradient changes
sign within the domain (Fig.8c, black solid line). By
t = 135 days � 7t (where t = 1

Le�kbsinek
� 1

6�10�7 sec �
19 days, the inverse growth rate of the fastest growing
wavenumber from the simulation, calculated from the lin-
ear theory for the unbounded jet on the f-plane given in
Heifetz et al. 1999), the mean flow has become signifi-
cantly weaker (red solid line in Fig.8a), due to the transfer
of energy from the mean flow to the eddies. At this in-
stant, the behaviour of the system changes: ¶q=¶y ceases
to change sign within the domain (red solid line in Fig.8c),
so the jet can no longer support the existence of linearly
unstable solutions. Later on, jet sharpening can be identi-
fied (dashed blue line in Fig.8a, t = 172 days� 9t days).

Snapshots of the total potential vorticity are shown in
Fig.9. At early times, the system behaves linearly, and
the potential vorticity at the interfaces is characterized by
a wavy structure, with a mode n = 3 corresponding to a
wavenumber k = 3:7�10�6m�1 or normalized wavenum-
ber of 2kb = 3:24 (Fig.9a, t = 57 days � 3t). At later
times (t = 115 days � 6t , Fig.9b), the solution is dom-
inated by vortices, which appear to be oriented (in spa-
tial structure) against the shear in each layer. The orien-
tation of the vortices changes shortly afterwards (Fig.9c,
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FIG. 10. Scatter plots of (u0;v0) at different times and meridional
locations (ms�1): at the initial linear stage, t = 57 days � 3t (left col-
umn), at some intermediate time, t = 115 days� 6t , before the eddy tilt
had flipped (middle column) and at t = 155 days� 8t after the eddy tilt
had flipped (right column). This is shown for meridional locations of
y = b (upper row), y = 0 (middle row) and y =�b (lower row). The red
ellipse in each panel shows the corresponding ellipse. Time is in units
of days, where t = 19 days.

t = 155 days � 8t), and become tilted with the shear (in
spatial structure). This is consistent with the jet sharpen-
ing that was identified (dashed blue line in Fig.8a), where
the mean flow strengthens as a result of up-gradient eddy
momentum fluxes into the core of the jet. Eventually,
(t = 270 days � 14t , Fig.9d), the vortices break nonlin-
early and the system equilibrates.

The transition in the behaviour of the eddy-mean flow
interaction can be seen by calculating the eddy variance
ellipse at different locations and times of the simulation.
Fig. 10 shows scatter plots of u0 and v0 at the interfaces
y = �b, 0 for three different times, as well as their cor-
responding ellipses. At t = 57 days � 3t (left column),
the anisotropy is close to one near the interfaces, and the
eddy ellipses are elongated. In addition, the tilts are con-
sistent with the linear instability picture, i.e. positive (neg-
ative) tilt on the negative (positive) shear on each side of
the jet. By t = 115 days � 6t , anisotropy at the flanks
y =�b has become gradually smaller (hence the eddy el-
lipses appear more round), though they are still character-
ized by a tilt that implies barotropic instability. However,
this changes at later times (t = 155 days � 8t), when the
ellipses at y = �b are tilted oppositely, implying that the
eddies are fluxing momentum up-gradient into the jet, with
back-scatter of eddy energy to the mean flow. Note that at
y = 0 (the center of the jet), we always find a large g , and
q = p=2 (in fact, q = p=2 or 0 is required by symmetry).
Equivalently, N �= 0 and M > 0, the latter implying that
v02� u02 so that the eddy variance ellipse is elongated in
the meridional direction.
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FIG. 11. Temporal evolution and meridional structure of (a) eddy
ellipse tilt (normalized by p), (b) anisotropy, (c) N (m2s�2), (d) M
(m2s�2), (e) log(K=K0) (where K0 = 1m2s�2), and (f) log(L=L0)
(where L = gK and L0 = 1m2s�2). Note that the colorbar is cyclic in
(a), and that log scale with base 10 is used in (e) and (f). Time is given
in units of t = 19 days, and y is the meridional coordinate normalized
by b.

Fig. 11 shows the temporal development and meridional
dependence of the zonally averaged eddy ellipse tilt and
anisotropy, and of the Reynolds stresses M and N. Fig.11a
confirms that during the initial development of the system,
in the time interval t < 135 days� 7t , the eddy tilt shows
the signature of instability with positive tilts on the north-
ward side of the jet and negative tilts on the southward side
of the jet. Gradually, the tilt (absolute value) on both sides
of the jet approaches p=2, until at t = 135 days� 7t all the
eddies within the jet are characterized by q = p=2. The tilt
then flips, consistent with the onset of stability and the mo-
mentum fluxes being directed up-gradient into the core of
the jet. This holds until approximately t = 172 days� 9t .
After that, there is an indication for another flip in the tilt,
implying that the eddies are strengthening again. How-
ever, after t = 210 days � 11t the tilt is single signed
within the jet, and its sign changes periodically. This is
consistent with the sign of N oscillating periodically after
t = 210 days� 11t (Fig.11c).

Fig. 11b shows the time evolution of the eddy
anisotropy. During the initial time development there are
three distinct regions where anisotropy is close to unity,
at each of the interfaces y = �b, 0. During the transi-
tion period (t = 135 days� 7t), this picture changes dras-
tically, with anisotropy being maximized in a broad merid-
ional region around the jet center (the quasi-circular area
of anisotropy close to unity around t = 135 days � 7t).
After t = 187 days � 10t , eddy anisotropy becomes sig-
nificantly smaller. However, there is a secondary (though
smaller) peak in anisotropy at the jet core, around t =

t
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FIG. 12. Direction of the implied intrinsic (relative) group velocity
qcgR . Arrows show (cosqcgR ;sinqcgR ) and therefore denote only the
direction of propagation. Time is given in units of t = 19 days (where
t is the inverse growth rate of the fastest growing wavenumber on the
f-plane), and y is the meridional coordinate normalized by b

238 days � 12:5t . This is consistent with a similar sec-
ondary maximum observed in M (Fig.11d).

Looking immediately to the north of the jet in the early
stage of the evolution (at around t = 57 days � 3t), near
the jet core the tilt decreases with latitude with p=4 < q �
p=2, corresponding to panel F of Fig. 4 and a deceleration
of the mean flow. The anisotropy decreases with latitude
while the eddy kinetic energy increases, with 0 < q < p=2.
Their combined effect is a decrease in the value of L with
latitude and a net acceleration of the mean flow. Hence,
there is a competing effect between the anisotropy, which
acts to accelerate the jet core, and the tilt and eddy kinetic
energy, which act to decelerate the jet core. The net com-
bined effect is a deceleration of the zonal mean flow near
the jet core. Conversely, after the tilt angle flips, the tilt
increases with y, while kinetic energy and anisotropy de-
crease with y. Hence, all three act to accelerate the flow
(Fig.3 F,A and C, respectively).

2) INTRINSIC GROUP VELOCITY AND RELATION TO
EDDY ELLIPSE TILT

The direction of the intrinsic group velocity from the
simulation, estimated from the ratio N=M as per Equation
(22), is plotted in Fig.12.

During the unstable period (t < 135 days � 7t), the
eddy ellipse tilt is consistent with an inward directed group
velocity. Shortly after the initial time development, by
t = 25 days� 1:3t), the implied group velocity direction is
almost independent of y and cgRy (the meridional compo-
nent of y) is negative on the northward side of the jet, and
positive on the southward side of the jet. Hence, momen-
tum is fluxed out of the jet. The direction of the implied
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intrinsic group velocity at t = 25 days � 1:3t is approxi-
mately qcgR � �0:65p on the northwards and southward
sides of the jet, respectively. Shortly afterwards, however,
the direction of the implied intrinsic group velocity is no
longer independent of y; instead it increases in the north-
ward side and decreases in the southward side of the jet,
with qcgR ! 0 at the jet core.

As the jet transitions to the stable regime, once the
absolute vorticity gradient ceases to change sign (at t =
135 days � 7t) and the eddy ellipse is meridionally elon-
gated (q = p=2), all the rays become zonal (qcgR = 0).
Immediately thereafter, we enter the stable regime, with
outward radiating rays. The sign of the eddy tilt flips and
correspondingly the meridional component of the implied
group velocity changes to positive on the northward side
and northward and southward sides of the jet. Going away
from the jet core, the ray becomes refracted such that it
becomes more meridional.

3) COMPARISON WITH WATERMAN AND HOSKINS
(2013)

A comparison can be made between the results obtained
here and those obtained by Waterman and Hoskins (2013)
for the case of a zonally evolving jet in statistically steady
state. In Waterman and Hoskins (2013) an unstable jet is
forced at the boundary of the domain, and the geometric
properties of the eddy velocity covariance tensor are de-
fined via time mean averaging, rather than zonal averag-
ing. The analysis shows a similar picture to that described
here: eddies tilting against the shear in the upstream unsta-
ble region, and an eddy tilt consistent with wave radiation
in the downstream stable region. The broad structure of M,
N, K and the corresponding eddy ellipses described in Wa-
terman and Hoskins (2013) are remarkably similar to those
found here, though, importantly, in Waterman and Hoskins
(2013) the structure varies spatially along the flow direc-
tion, whereas here the structure varies temporally through
the flow evolution.

There are, however, some key differences. First, in Wa-
terman and Hoskins (2013), the location where the eddy
kinetic energy maximizes occurs downstream of the loca-
tion where the potential vorticity gradient ceases to change
sign as a consequence of mean flow advection, whereas
here they occur simultaneously in time (at t = 135 days�
7t). At the point of maximum eddy kinetic energy Wa-
terman and Hoskins find a “bullet of M”, implying merid-
ional elongation of the eddies there. Downstream of eddy
kinetic energy maximum, Waterman and Hoskins find that
forcing solely from M is responsible for strengthening and
extending the jet, eventually forcing their time-mean re-
circulation gyres. A similar “bullet of M” is found here
(Fig.11d) and meridional elongation at the time of maxi-
mum eddy kinetic energy. However, since a zonally sym-
metric jet is being considered here, the zonal mean vor-

ticity forcing from M vanishes identically, and the mean
flow forcing arises solely from N. Hence, no recircula-
tion gyres can develop in our configuration, and the eddy
forcing is instead responsible only for the acceleration or
deceleration of the jet.

4. Ray tracing

For a barotropic jet on a b -plane during the unstable
regime, the eddy ellipse tilt is no longer constant within the
shear layers (see Fig. 14a), but rather it increases towards
the jet core. This effect is due to the nonzero potential vor-
ticity gradient within the shear layers, and is intrinsically
related to the wave propagation there.

Here ray tracing theory is employed to study the propa-
gation of waves within the shear layers under the influence
of the b effect and a constant shear. The analytic solution
obtained from the ray equations agrees well with the fully
nonlinear simulation, aiding in the prediction of the merid-
ional structure of the eddy ellipse tilt.

a. Theoretical background

The wave activity propagates at the group velocity. In
a homogeneous medium a ray (which is the path parallel
to the group velocity at every point) will propagate in a
straight line. In an inhomogeneous medium, however, re-
fraction can occur. Ray tracing theory (Whitham 1974;
Lighthill 1977, also see Buhler 2009 and Salmon 1998
for overviews) gives the leading order asymptotic descrip-
tion of a slowly varying wave packet in a medium that
varies slowly compared to the scale of the waves (through
the WKB approximation, see Hoskins and Karoly 1981;
Hoskins and Ambrizzi 1993).

For such conditions, the stream function can be repre-
sented locally by a plane wave,

y(x;y; t)� ŷeif(x;y;t) (38a)
f � kx + ly�wt; (38b)

where

w(x;y; t) =�¶f

¶ t
; k(x;y; t) =

¶f

¶x
; l(x;y; t) =

¶f

¶y
(39)

are slowly varying. Note that here a distinction is made
between the local value of the angular frequency, w(x;y; t),
and the dispersion relation, W(k; l;x;y; t), with w(x;y; t) =
W(k(x;y; t); l(x;y; t);x;y; t).

Cross-differentiation yields the ray equations

dk
dt

=�¶W

¶x
;

dl
dt

=�¶W

¶y
; (40)

along rays defined by

dx
dt

= cgx =
¶W

¶k
;

dy
dt

= cgy =
¶W

¶ l
; (41)
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where
d
dt

=
¶

¶ t
+ cg �Ñ: (42)

These are equivalent to Hamilton’s equations. In the ab-
sence of explicit time dependence in W(k; l;x;y; t), the ana-
logue of the Hamiltonian, is conserved along ray path.

b. Analytic ray tracing solution

In the case considered here, away from the interfaces,
the solutions can be approximated as plane wave whose
dispersion relation is governed by the Rossby wave dy-
namics and given by

W = uk� bk
k2 + l2 : (43)

It follows that

dk
dt

= 0;
dl
dt

=�k
¶u
¶y

=�kL; (44)

dx
dt

= u +
b (k2� l2)

(k2 + l2)2 ;
dy
dt

=
2bkl

(k2 + l2)2 ; (45)

where � refers to y > 0 and y < 0 respectively. Hence,

k = k0; l = l0� k0Lt (46)

where k0 and l0 are initial zonal and meridional wavenum-
bers.

The ray equations (44) and (45) may be solved analyti-
cally (see Appendix C for a full derivation). The analytic
solution for the eddy ellipse tilt as a function of the merid-
ional location gives

q(y) =�1
2

cos�1
�

cos2q0�
2Lk2

0
b

(y� y0)

�
: (47)

where �2Lk2
0=b is positive in the northward side of the

jet (y > 0) and negative in the southward side of the jet
(y < 0). This expression allows the investigation of how
the ray solution depends on the parameters of the prob-
lem, namely b ;k0 and the shear L. Note that the solution,
conveniently, does not depend explicitly on l0, but rather
on the initial tilt q(y0) = q0, which can be calculated di-
rectly from the Reynolds stresses.

For example, for an outward radiating ray on the north-
ward side of the jet, originating at the jet center, we would
have y0 = 0, q0 = p=2 and ¶u=¶y =�L, giving

q(y) =
1
2

cos�1
�

2Lk2
0

b
y�1

�
; (48)

which is only valid for 0 < y� b=Lk2
0.

For nonzero b and L, going away from the jet core to-
wards the flank at y = b, the tilt becomes gradually smaller,
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FIG. 13. (a) Direction of intrinsic group velocity from ray tracing
results for the inward radiating ray, for varying zonal wavenumbers:
k0 = 0:25k?;0:3k?;0:4k?;0:5k?;0:9k?. The leftmost ray corresponds to
the smallest wavenumber. The track for k0 = 0:4k? is highlighted in
blue. (b) The time evolution of the highlighted ray with k0 = 0:4k?, in
the same zonal location. (c) Outward radiating ray, for varying zonal
wavenumbers: k0 = 0:2k?;0:26k?;0:3k?;0:34k?;0:38k?. The leftmost
ray corresponds to the largest wavenumber. The track for k0 = 0:3k? is
highlighted in blue. (d) The time evolution of the highlighted ray with
k0 = 0:3k?, in the same zonal location. Note that in all panels arrows
are unitless and show only the direction of intrinsic group velocity, at
zonal locations that propagate with the full group velocity. Here y and
x are the meridional and zonal coordinates, respectively, normalized by
b.

approaching q! 0 for y! b=Lk2
0. This is consistent with

the results of the previous section for the outward radiating
ray (compare with Fig.12). The analytic solution also im-
plies that for larger wavenumber, larger shear, or smaller
b , the tilt decreases faster when moving away from the jet
core, which means that the ray is refracted more. Since
it is the shear which is responsible for the refraction of
the rays (through changing the meridional wavenumber
l = l0�k0Lt), it is clear that a larger shear will cause larger
refraction. The wavenumber dependence is also clear,
since larger wavenumbers corresponds to smaller waves,
which are more easily influenced by the background shear.
Finally, b has a competing effect with the shear.

c. Comparison with numerical results

The validity of the analytic solution is now verified by
comparing it with numerical ray tracing results. The ray
equations (44) and (45) are solved using a basic forward
Euler time-stepping. In Fig. 13 results of the ray tracing
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are plotted for different choices of initial zonal wavenum-
ber, k0. For the inward radiating ray, the ray is initiated just
slightly below and above the upper and lower interfaces
y = b, �b respectively. k0 is specified and l0 computed
such that the eddy ellipse tilt (assuming plane wave solu-
tions) is equal to the value diagnosed at that point from the
simulation. That is, given k0 and y0, we find l0 such that

tan2q(y0) =
2k0l0

k2
0� l2

0
; (49)

which gives two possible solutions for l0. The sign is cho-
sen such that the ray is directed towards the jet, i.e., l0 < 0
in the northward side of the jet and l0 > 0 in the south-
ward side of the jet. The possible values for k0 can be
estimated using k? � (v0v0=y 0y 0)1=2. This gives a typi-
cal value of k? � 2:06�10�5 m�1 or, in normalized units,
2k?b�= 3:1 (where b = 75km is the width of the shear layer
in each side of the jet). This is similar to the wavenumber
that emerged in the simulation (mode n = 3, which corre-
sponds to 2kb�= 3:24).

In Fig.13a the implied intrinsic group velocity from
the ray tracing is plotted, for rays with varying zonal
wavenumbers k0 = 0:25k?, 0:3k?, 0:4k?, 0:5k? and
0:9k?, where the leftmost ray corresponds to the smallest
wavenumber. The track for k0 = 0:4k? is highlighted in
blue. In all cases, the initially southwestward pointing ray
ends up pointing eastward, i.e., qcgR tends towards zero as
the rays approach the core of the jet, just as was found in
the results from the numerical simulation, analysed in sec-
tion 3.2. The meridional component of the intrinsic group
velocity, however, remains negative in the northward side
of the jet, implying a positive eddy ellipse tilt, and vice-
versa in the southward side of the jet, i.e. the momen-
tum fluxes point out of the jet. Since the rays are plotted
as a function of the zonal location x rather than time (as
in Fig.12), in Fig. 13b the time development of the high-
lighted ray with k0 = 0:4k? is plotted, in the same zonal lo-
cation (the upper most arrow corresponds to t = 0, and the
ray deflects as time progresses and it propagates towards
the jet core). Note the remarkable similarity with Fig.12
for the inward radiating ray during the unstable regime (al-
beit with a specific choice of k0).

For the outward radiating ray, the ray is initiated very
close to the jet core (y = 0) and hence l0 = 0 is cho-
sen, which implies q = p=2 and qcgR = 0. The sign of
the ray tracing solution is chosen such that the ray is di-
rected outwards from the jet, i.e., l positive on the north-
ward side of the jet and negative on the southward side of
the jet. In Fig. 13c, the intrinsic group velocity from the
ray tracing is plotted for the outward propagating rays for
zonal wavenumbers k0 = 0:2k?, 0:26k?, 0:3k?, 0:34k? and
0:38k? where the leftmost ray corresponds to the largest
wavenumber. This is consistent with our earlier inspec-
tion of the analytic solution for the outward radiating ray,
where it was found that larger wavenumbers will tend to
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Ray tracing
Ray tracing (anal.)
Estimated (simu.)

FIG. 14. Eddy ellipse tilt (normalized by p), for (a) inward radiating
ray (t = 57 days� 3t ) and (b) outward radiating ray (t = 155 days� 8t

). Compared are actual tilt from the simulation calculated directly
from the Reynolds stresses (black), estimated value using the planewave
assumption with estimated wavenumbers k�; l� from the simulation
(dashes red), ray tracing results from numerical (light blue) and analytic
(blue stars) solutions. See text for explanation. Here y is the meridional
coordinate normalized by b.

be refracted more. The track for k0 = 0:3k? is highlighted
in blue. In all cases, qcgR increases on the northward side
and decreases in the southward side towards the jets flanks,
similar to that observed in the simulation for the stable
outward radiating regime. The meridional component of
the intrinsic group velocity remains positive, which im-
plies a negative eddy ellipse tilt in the northward side of
the jet and vice-versa on the southward side of the jet, i.e.,
momentum fluxes into the jet. In Fig. 13d, the time de-
velopment of the highlighted ray with k0 = 0:3k? is plot-
ted, in the same zonal location. This is remarkably similar
to Fig.12 for the stable outward radiating regime (albeit,
again, with a specific choice for k0).

Finally, in Fig. 14a,b the eddy ellipse tilts from the sim-
ulation and the ray tracing are compared, for the inward
(t = 57 days � 3t) and outward (t = 155 days � 8t) ra-
diating rays, respectively. This uses both the actual value
for the tilt (black thick line), calculated from the simula-
tion using the Reynolds stresses, as well as the estimated
value (dashed thin red line) for a plane wave solution
(19) using the estimated meridional and zonal wavenum-
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bers l? � (u0u0=y 0y 0)1=2, k? � (v0v0=y 0y 0)1=2, respec-
tively, evaluated locally at every y. For the ray tracing
solution, k0 = 0:4k? is chosen for the inward radiating ray
and k0 = 0:3k? for the outward radiating ray (the blue rays
in Figs.13a and 13c, respectively). As a check for the
analytic solution from the ray tracing equations, both the
numerical (blue thin line) and the analytic solution (blue
stars) are plotted for the eddy ellipse tilt, and these indeed
coincide. The ray tracing agrees well with the simulation,
albeit with the particular choices for the zonal wavenum-
bers as described above, and captures correctly the overall
dependence of the tilt with y. These results validate the
use of ray tracing predictions to predict eddy tilt.

5. Summary and discussion

In this manuscript, the role of eddy Reynolds stresses
in accelerating and decelerating barotropic ocean jets has
been revisited. In particular, the eddy Reynolds stresses
have been analysed by exploring a geometric decomposi-
tion of the eddy stress tensor. This decomposition involves
describing the eddy stress tensor in terms of an eddy vari-
ance ellipse, the geometry of which characterizes the mean
eddy shape and orientation, the direction of eddy activity
propagation, and the eddy forcing of the mean flow.

Idealized linear shear and jet profiles have been anal-
ysed and analytical results have been compared against
fully nonlinear simulations. For flows with zero plane-
tary vorticity gradient, analytic solutions have been ob-
tained that provide a direct relationship between the ge-
ometric eddy tilt and the phase difference of a normal
mode solution. This allows a straightforward interpreta-
tion in terms of familiar concepts in classical stability the-
ory. The initially unstable jet gives rise to eddies which are
tilted “against the shear”; hence perturbations can grow
and extract energy from the mean flow. However, as the
jet becomes gradually weaker, at a given moment it can no
longer satisfy the conditions for instability. Once the jet
stabilizes, eddies become tilted “with the shear”, all per-
turbations decay as they return their energy to the mean
flow and strengthen the jet. For cases with a non-zero
planetary vorticity gradient, ray-tracing theory has been
used to investigate eddy propagation within the jet, and
make predictions for the evolution of the eddy wavenum-
ber, which in turn can indicate the evolution of the eddy
ellipse tilt. An analytic solution for the eddy tilt is found
for the case of a linear plane Rossby wave propagating
on a constant background shear. The ray tracing solu-
tion captures the essence of the observed eddy propagation
and agrees well with the eddy tilt diagnosed from a fully
nonlinear simulation, subject to a choice of initial zonal
wavenumber.

We propose that the geometric framework explored in
this manuscript could be used as a diagnostic tool to un-
derstand the role of Reynolds stresses in maintaining and

decelerating inertial jets in ocean models and observa-
tions. For example, similar ideas have already been ap-
plied to separated western boundary currents such as the
Gulf Stream and Kuroshio (Waterman and Hoskins 2013)
and are currently being applied to the Southern Ocean to
elucidate zonal jets embedded within the Antarctic Cir-
cumpolar Current (Klocker et al. 2016). For such prob-
lems, it would be interesting to apply the same ray tracing
methods employed here to see if they can provide similar
insights for flows that vary in a greater number of dimen-
sions.

Moreover, we propose that the approach taken here
might be employed to develop a simple parameterization
of eddy Reynolds stresses for ocean general circulation
models that are able to (at least partially) resolve inertial
jets. While it is surely impractical to contemplate solv-
ing ray equations in such models, one could imagine as-
suming that some of the eddy energy generated through
baroclinic instability is back-scattered to the mean flow
by up-gradient momentum transfer, as found in some of
the idealized jet profiles in this manuscript, and proposed,
for example, by Marshall and Adcroft (2010) and Jansen
and Held (2014). The linear theory presented here sug-
gests that the eddy tilt slightly deviates from that which
might be expected from the argument that eddies should
lean maximally with the mean shear, although the gen-
eral picture of unstable eddies leaning (in the sense of
eddy variance ellipse tilt) against the mean shear is ob-
served. The anisotropy and eddy kinetic energy have in
some cases been observed to counteract each others ef-
fects. In the zero beta cases the anisotropy and eddy ki-
netic energy both vary within the non-zero shear regions,
but their product is constant. For the jet on a beta plane in
the immediate jet core the eddy kinetic energy decreases
with latitude, while the anisotropy increases.

The findings of this paper might be useful ingredi-
ents for a parameterization of horizontal eddy momen-
tum fluxes. Exploiting the fact that the component of the
eddy stress tensor involving the eddy Reynolds stresses
is bounded by the eddy kinetic energy, assuming the mo-
mentum fluxes are directed either up-gradient or down-
gradient, depending on the mean flow stability properties,
and prescribing a typical value for the eddy anisotropy,
it should be possible to develop a parameterization that
is both energetically consistent and rooted in the under-
lying geometry of the eddy dynamics. However, even at
the simplest level there remain many questions to be ad-
dressed. For example, should such a parameterization be
applied to the depth-integrated flow? Furthermore it will
be necessary to model the formation, propagation and dis-
sipation of eddy kinetic energy, as discussed by Eden and
Greatbatch (2008); Marshall and Adcroft (2010); Jansen
et al. (2015). Despite these challenges, we believe this ap-
proach holds some promise and is worth exploring further.
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APPENDIX A

Generalization of the relations for M and N between a
pair of vorticity waves

The two isolated d -function vorticity waves can be gen-
eralized to the case where the vorticity field is continu-
ous. Consider a zonal Fourier component of the vorticity
anomaly,

q0(x;y; t) = eqk(y; t)eikx = eQk(y; t)ei(kx+ek(y;t)); (A1)

inducing a stream function anomaly of the form

y
0(x;y; t) =

Z eqk(x;y0; t)G(y;y0)dy0eikx; (A2)

where the Green’s function is given by

G(y;y0) =� 1
2k

e�kjy�y0j: (A3)

After some algebra, we obtain

M =
ZZ eQk(y0; t) eQk(y00; t)

4
e�k(y0�y00)

cos(ek(y00; t)� ek(y0; t))dy0dy00 (A4a)

N =�
ZZ eQk(y0; t) eQk(y00; t)

4
e�k(y0�y00)

sin(ek(y00; t)� ek(y0; t))dy0dy00 (A4b)

Hence the values of M and N at some location y can be re-
garded as resulting from the continuum of infinite number
of pairs of vorticity waves sandwiching y from below (y0

contributions in the integral) and from above (y00 contribu-
tions in the integral).

APPENDIX B

Numerical model description

For this study, we use PEQUOD (“Parallel Quasi-
Geostrophic Model”), a finite difference code for solv-
ing quasi-geostrophic equations in a rectangular domain,
configured in a one layer barotropic zonally periodic
configuration. The numerical method implemented in
PEQUOD and used here incorporates the Compact Ac-
curately Boundary Adjusting high-Resolution Technique
(CABARET) for advection of relative potential vorticity,
combined with integration of the advection of planetary
vorticity. Further details regarding CABARET can be
found in Karabasov and Goloviznin (2007) and Karabasov
et al. (2009). The potential vorticity inversion is per-
formed using a fast Poisson solver using a customized ver-
sion of FFTPACK.

The simulations are conducted in a rectangular domain
�L � x � L, �0:5L � y � 0:5L where L = 436 km, with

a no-slip boundary condition applied to the perturbation
from the background profile, at all lateral boundaries. The
model is integrated using a grid of nx = 256 and ny = 129
nodes in the zonal and meridional directions, respectively,
corresponding to 3:4 km resolution and with a time step
size of 52s. The model is then run for 287 days. The ed-
dies are defined as deviations from the zonal mean, and the
corresponding eddy quantities such as eddy kinetic energy,
Reynolds stresses and the eddy variance ellipse parameters
calculated accordingly.

The flow is initialised with the zonally symmetric jet U0,
and perturbed with small random noise. The numerical
model essentially solves

Dq
Dt

= nÑ
2q� r(q�qeq) (B1)

where q = Ñ2y + by is the absolute vorticity, n =
106m2 s�1 is a Laplacian viscosity coefficient parameter,
and r = 5:2� 10�7 s�1 is the relaxation time scale to-
wards the background equilibrium flow qeq = q0. The jet
strength is U0max = 0:24ms�1, and the jet half width is
b = 75km. This corresponds to a shear of L = U0max=b�=
3:2�10�6 s�1. For the case where the planetary vorticity
gradient is nonzero, we use b = 2�10�11 m�1 s�1 which
corresponds to a non dimensional b (which measures the
relative importance of the planetary vorticity gradient rel-
ative to the mean shear) of b � = bb=L�= 0:47. In midlat-
itudes, a typical ocean jet has U � 0:5ms�1 at the surface
(e.g., Sheen et al. 2013), whereas the barotropic jet used
here has a value more typical of the a depth-mean over the
main thermocline.

APPENDIX C

Analytic solution for the ray tracing equations

Solving the ray equations (44) and (45) gives

k(t) = k0; l(t) = l0� k0Lt; (C1)

where k0, l0 are the initial wavenumbers.
Now using

dy
dt

=
2bkl

(k2 + l2)2 =
2b

k2
0

�
l0
k0
�Lt

�
�

1 +
�

l0
k0
�Lt

�2
�2 ; (C2)

gives

y(t) = yc�
b

Lk2
0

1�
1 +
�

l0
k0
�Lt

�2
� (C3)

where yc is an integration constant. Similarly, using

dx
dt

=
b (k2� l2)

(k2 + l2)2 ; (C4)
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gives

x(t) = xc�
b

Lk2
0

�
l0
k0
�Lt

�
�

1 +
�

l0
k0
�Lt

�2
� : (C5)

These are the analytic solutions describing the ray path,
following the intrinsic group velocity.

Now substituting (C1) in (19),

cotq =� l0
k0
�Lt (C6)

and, substituting into (C3),

y(t)� yc =� b

Lk2
0

sin2
q =� b

2Lk2
0

(1� cos2q) : (C7)

At t = 0, we find:

y0� yc =� b

2Lk2
0

(1� cos2q0) : (C8)

Hence

y(q) = y0�
b

2Lk2
0

(cos2q � cos2q0) : (C9)

Finally, solving for q gives

q(y) =�1
2

cos�1
�

cos2q0�
2Lk2

0
b

(y� y0)

�
; (C10)

which is (47), where�2Lk2
0=b is positive in the northward

side of the jet (y > 0) and negative in the southward side of
the jet (y < 0). The two possible � solutions corresponds
to the two possible solutions for l.

Acknowledgments. The authors would like to grate-
fully acknowledge useful discussions with Laure Zanna
and helpful comments by Julian Mak. The authors would
also like to thank Stephanie Waterman and Malte Jansen
for comments that significantly improved the article. TT
acknowledges support by the Israeli Science Foundation
through a grant to Yohai Kaspi (ISF 1310/12). JRM and
DPM acknowledge the support of the Natural Environ-
ment Research Council grant number NE/L005166/1. The
numerical code used in this article was developed from
an original code provided by Pavel S. Berloff (see also
Karabasov et al. 2009).

References
Bretherton, F. P., 1966a: Baroclinic instability, the short wave cutoff in

terms of potential vorticity. Q. J. R. Meteorol. Soc., 92, 335–345.

Bretherton, F. P., 1966b: Critical layer instability in baroclinic flows.
Quarterly Journal of the Royal Meteorological Society, 92 (393),
325–334.

Buhler, O., 2009: Waves and Mean Flows. Cambridge University Press,
341 pp.

Danabasoglu, G., J. C. McWilliams, and P. R. Gent, 1994: The role of
mesoscale tracer transport in the global ocean circulation. Science,
264, 1123–1126.

Davies, H. C., and C. H. Bishop, 1994: Eady edge waves and rapid
development. J. Atmos. Sci., 51, 1930–1946.

Eden, C., 2010: Parameterising meso-scale eddy momentum fluxes
based on potential vorticity mixing and a gauge term. Ocean Mod-
elling, 32 (1-2), 58–71.

Eden, C., and R. J. Greatbatch, 2008: Towards a mesoscale eddy clo-
sure. Ocean Modelling, 20 (3), 223–239.

Fox Kemper, B., R. Lumpkin, and F. Bryan, 2013: Lateral trans-
port in the ocean. Ocean Circulation and Climate (Second edition),
G. Siedler, J. Church, J. Gould, and S. Griffies, Eds., 185–209.

Gent, P. R., and J. C. McWilliams, 1990: Isopycnal mixing in ocean
circulation models. Journal of Physical Oceanography, 20 (1), 150–
155.

Gent, P. R., J. Willebrand, T. J. McDougall, and J. C. McWilliams, 1995:
Parameterizing eddy-induced tracer transports in ocean circulation
models. Journal of Physical Oceanography, 25 (4), 463–474.

Greatbatch, R. J., 1998: Exploring the relationship between eddy-
induced transport velocity, vertical momentum transfer, and the
isopycnal flux of potential vorticity. J. Phys. Oceanogr., 28, 422–
432.

Heifetz, E., C. H. Bishop, B. J. Hoskins, and P. Alpert, 1999: Counter-
propagating Rossby waves in barotropic Rayleigh model of shear
instability. Q. J. R. Meteorol. Soc., 125, 2835–2853.

Heifetz, E., and J. Methven, 2005: Relating optimal growth to coun-
terpropagating Rossby waves in shear instability. Phys. Fluids,
17 (6), 064 107, doi:10.1063/1.1937064, URL http://scitation.aip.
org/content/aip/journal/pof2/17/6/10.1063/1.1937064.

Hoskins, B. J., and T. Ambrizzi, 1993: Rossby wave propagation on a
realistic longitudinally varying flow. J. Atmos. Sci., 50, 1661–1671.

Hoskins, B. J., I. N. James, and G. H. White, 1983: The shape, prop-
agation and mean-flow interaction of large-scale weather systems.
Journal of the Atmospheric Sciences, 40 (7), 1595–1612.

Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of
a spherical atmosphere to thermal and orographic forcing. J. Atmos.
Sci., 38, 1179–1196.

Hoskins, B. J., M. E. McIntyre, and A. W. Robertson, 1985: On the
use and significance of isentropic potential vorticity maps. Q. J. R.
Meteorol. Soc., 111, 877.

Huang, H.-P., A. Kaplan, E. N. Curchitser, and N. A. Maximenko, 2007:
The degree of anisotropy for mid-ocean currents from satellite obser-
vations and an eddy-permitting model simulation. Journal of Geo-
physical Research: Oceans, 112 (C9), c09005.

Jansen, M., A. Adcroft, R. Hallberg, and I. Held, 2015: Parameteri-
zation of eddy fluxes based on a mesoscale energy budget. Ocean
Modell., doi:10.1016/j.ocemod.2015.05.007.

Jansen, M., and I. Held, 2014: Parameterizing subgrid-scale eddy ef-
fects using energetically consistent backscatter. Ocean Modell., 80,
36–48.



18 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

Johnson, G. C., and H. L. Bryden, 1989: On the size of the Antarctic
Circumpolar Current. Deep Sea Res., 36, 39–53.

Karabasov, A., P. Berloff, and V. Goloviznin, 2009: CABARET in the
ocean gyre. Ocean Modeling, 30, 155–168.

Karabasov, A., and V. Goloviznin, 2007: A new efficient high-
resolution method for non-linear problems in fluid mechanics. New
Trends in Fluid Mechanics Research, Springer, 1, 269–272.

Klocker, A., J. R. Maddison, D. P. Marshall, and A. C. Naveira Gara-
bato, 2016: Wave-turbulence-mean flow interaction in the Antarctic
Circumpolar Current. Under review in Journal of Physical Oceanog-
raphy.

Lighthill, J., 1977: Waves in Fluids. Cambridge University Press, 504
pp.

Maddison, J. R., and D. P. Marshall, 2013: The Eliassen-Palm flux ten-
sor. Journal of Fluid Mechanics, 729, 69–102.

Maddison, J. R., D. P. Marshall, and J. Shipton, 2015: On the dynamical
influence of ocean eddy potential vorticity fluxes. Ocean Modelling,
92, 169–182.

Marshall, D. P., and A. J. Adcroft, 2010: Parameterization of ocean
eddies: Potential vorticity mixing, energetics and Arnold’s first sta-
bility theorem. Ocean Modelling, 32 (3-4), 188–204.

Marshall, D. P., J. R. Maddison, and P. S. Berloff, 2012: A framework
for parameterizing eddy potential vorticity fluxes. Journal of Physi-
cal Oceanography, 42 (4), 539–557.

Morrow, R., R. Coleman, J. Church, and D. Chelton, 1994: Surface
eddy momentum flux and velocity variances in the Southern Ocean
from Geosat altimetry. Journal of Physical Oceanography, 24 (10),
2050–2071.

Pedlosky, J., 1987: Geophysical fluid dynamics. 2nd ed., Springer-
Verlag.

Plumb, R. A., 1986: Three-dimensional propagation of transient quasi-
geostrophic eddies and its relationship with the eddy forcing of
the time-mean flow. Journal of the Atmospheric Sciences, 43 (16),
1657–1678.

Preisendorfer, R. W., 1988: Principal component analysis in meteo-
rology and oceanography, Developments in Atmospheric Science,
Vol. 17. Elsevier.

Rayleigh, L., 1880: On the stability, or instability, of certain fluid mo-
tions. proc. London Math. Soc., 9, 57–70.

Rossby, C., 1939: Relation between variation in the intensity of the
zonal circulation of the atmosphere and the displacement of the semi-
permanent centers of action. J. Mar. Res., 2, 38–55.

Salmon, R., 1998: Lectures on geophysical fluid dynamics. Oxford Uni-
versity Press.

Scott, R. B., B. K. Arbic, C. L. Holland, A. Sen, and B. Qiu, 2008:
Zonal versus meridional velocity variance in satellite observations
and realistic and idealized ocean circulation models. Ocean Mod-
elling, 23 (3-4), 102–112.

Sheen, K. L., and Coauthors, 2013: Rates and mechanisms of turbu-
lent dissipation and mixing in the Southern Ocean: Results from the
Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean
(DIMES). J. Geophys. Res. Ocean., 118, 2774–2792.

Stewart, K. D., P. Spence, S. Waterman, J. Le Sommer, J.-M. Molines,
J. M. Lilly, and M. H. England, 2015: Anisotropy of eddy variability
in the global ocean. Ocean Modelling, 95, 53–65.

Taylor, G. I., 1915: Eddy motion in the atmosphere. Philosophical
Transactions for the Royal Society of London. Series A, Containing
Papers of a Mathematical or Physical Character, 215, 1–26.

Waterman, S., N. G. Hogg, and S. R. Jayne, 2011: Eddy-mean flow
interaction in the Kuroshio Extension region. Journal of Physical
Oceanography, 41 (6), 1182–1208.

Waterman, S., and B. J. Hoskins, 2013: Eddy shape, orientation, prop-
agation, and mean flow feedback in western boundary current jets.
Journal of Physical Oceanography, 43 (8), 1666–1690.

Waterman, S., and S. Jayne, 2012: Eddy-driven recirculations from a
localized, transient forcing. J. Phys. Oceanogr., 42, 430–447.

Waterman, S., and S. R. Jayne, 2011: Eddy-mean flow interactions in
the along-stream development of a western boundary current jet: An
idealized model study. Journal of Physical Oceanography, 41 (4),
682–707.

Waterman, S., and J. M. Lilly, 2015: Geometric decomposition of eddy
feedbacks in barotropic systems. Journal of Physical Oceanography,
45 (4), 1009–1024.

Whitham, G., 1974: Linear and Nonlinear Waves. New York: Wiley-
Interscience.

Wilkin, J. L., and R. A. Morrow, 1994: Eddy kinetic energy and mo-
mentum flux in the Southern Ocean: Comparison of a global eddy-
resolving model with altimeter, drifter, and current-meter data. Jour-
nal of Geophysical Research: Oceans, 99 (C4), 7903–7916.


