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Abstract. Predicting disease progression always involves a high degree
of uncertainty. White matter hyperintensities (WMHs) are the main neu-
roradiological feature of small vessel disease and a common nding in
brain scans of dementia patients and older adults. In predicting their
progression previous studies have identi ed two main challenges: 1) un-
certainty in predicting the areas/boundaries of shrinking and growing
WMHs and 2) uncertainty in the estimation of future WMHSs volume.
This study proposes the use of a probabilistic deep learning model called
Probabilistic U-Net trained with adversarial loss for capturing and mod-
elling spatial uncertainty in brain MR images. This study also proposes
an evaluation procedure named volume interval estimation (VIE) for im-
proving the interpretation of and con dence in the predictive deep learn-
ing model. Our experiments show that the Probabilistic U-Net with ad-
versarial training improved the performance of non-probabilistic U-Net
in Dice similarity coe cient for predicting the areas of shrinking WMHs,
growing WMHs, stable WMHSs, and their average by up to 3.35%, 2.94%,
0.47%, and 1.03% respectively. It also improved the volume estimation
by 11.84% in the \Correct Prediction in Estimated Volume Interval”
metric as per the newly proposed VIE evaluation procedure.

Keywords: Progression prediction - White matter hyperintensities -
Volume interval estimation.

1 Introduction

White matter hyperintensities (WMHSs) are neuroradiological features often seen
in T2-FLAIR brain MRI, characteristic of small vessel disease (SVD), which are



2 Rachmadi M. F. et al.

DISEASE EVOLUTION PREDICTED DEM LABELS
MAP (DEM) 4 Channels of i Non-WMHs & Non-WMHSs & Non-WMHs &
MANUAL LABELS Representation Growing WMHs Shrinking WMHs Stable WMHs

Non-WMHs /
Background
(no color)

Stable WMHs
(blue)

Fig. 1. (Left) Example of Disease evolution map (DEM) produced by subtracting
manually generated labels of WMHs at baseline (t0) from manually generated labels
of WMHs at follow-up (t1). Green regions are for growing WMHs, red regions are for
shrinking WMHSs, and blue regions are for stable WMHSs (i.e., no changes from t0 to
t1). Note there is another channel used to represent the non-WMHs/background in
the supervised deep learning model. (Right) Di erent visualizations can be produced
based on which channels are used in the testing/inference. From left to right: (A) All
predicted channels are used to visualize the whole segmentation, (B) only the predicted
non-WMHs and growing WMHs channels are used to visualize the segmentation of
growing WMHs, (C) only the predicted non-WMHSs and shrinking WMHSs channels are
used to visualize the segmentation of shrinking WMHs, and (D) only the predicted
non-WMHs and stable WMHSs are used to visualize the segmentation of stable WMHs.

associated with stroke and dementia progression [12]. Clinical studies indicate
that the volume of WMHSs on a patient may decrease (i.e., regress), stay the
same, or increase (i.e., progress) over time [2,12].

Previous studies have proposed various unsupervised and supervised deep
learning models to predict the progression (i.e., evolution) of WMHSs [8,9]. In the
supervised approaches, a deep learning model learns to perform multi-class seg-
mentation of non-WMHs, shrinking WMHSs, growing WMHSs, and stable WMHs
from the namely disease evolution map (DEM). The DEM is produced by sub-
tracting manually generated labels of WMHSs at baseline (t0) from manually
generated labels of WMHSs at follow-up (t1) (see Fig. 1).

One study [8] exposed two big challenges in predicting the progression of
WMHs: 1) spatial uncertainty in predicting regions of WMHs dynamic changes
and their boundaries (i.e., voxels of growth and shrinkage), and 2) uncertainty
in the estimation of future WMHSs volume (i.e., closeness between the predicted
volume of WMHSs and the true future volume of WMHS). In relation to the rst
challenge, it was observed that it isdi cult to distinguish the intensities/textures
of shrinking and growing WMHs in the MRI sequence used by the study (i.e., T2-
FLAIR). This type of uncertainty is commonly known as aleatoric uncertainty
[4]. In relation to the second challenge, the study showed that di erent predictive
models produced similar error and correlation values in estimating the future
volume of WMHs, making it harder to determine the best predictive model.

Our main contributions are listed as follows. Firstly, we propose a combina-
tion of probabilistic deep learning model with adversarial training to capture spa-
tial uncertainties to predict WMHSs evolution. Secondly, we propose a new evalu-
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Fig. 2. lllustration of the deep learning models’ training phase used in this study. We
investigate three di erent training schemes, which are (A) deterministic training using
U-Net [10], (B) probabilistic training using Probabilistic U-Net [5], and (C) adversarial
training using a GAN discriminator [3,7], all of which can be combined together. Symbol

stands for OR operation. Full schematics (i.e., gures) of all networks are available
in the Supplementary Materials.
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Fig. 3. lllustration of the testing/inference phase of the deep learning model used in
this study. In this study, we perform two types of inference (based on the training phase
previously performed): (A) deterministic inference using U-Net and (B) probabilistic
inference using Probabilistic U-Net.

ation procedure, which we name volume interval estimation (VIE), for achieving
better interpretation and higher con dence in our predictive models in estimat-
ing the future volume of WMHSs. The codes and trained model are available on
our GitHub page (https://github.com/febrianrachmadi/probunet-gan-vie).

2 Proposed Approach

2.1 Probabilistic Model for Capturing Spatial Uncertainty

Uncertainties are unavoidable when predicting the progression of WMHSs, and
a previous study showed that incorporating uncertainties into a deep learning
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model produced the best prediction results [8]. However, the models evaluated
in [8] only incorporate external uncertainties (i.e., non-image factors of stroke
lesions’ volume and unrelated Gaussian noise) and not primary/secondary infor-
mation coming from brain MRI scans (e.g. statistical spatial maps showing the
association of speci ¢ WMHSs voxels with clinical variables like smoking status).

In this study, we propose the use of the Probabilistic U-Net [5] to capture un-
certainties from the brain MR images when predicting the progression of WMHs.
The Probabilistic U-Net combines a U-Net [10] with an auxiliary decoder net-
work called Prior Net. The Prior Net models uncertainty in the data as a multi-
variate Gaussian distribution called prior latent space. The Prior Net learns the
prior latent space from another decoder network called Posterior Net that gener-
ates a posterior latent space from training data (Fig. 2(B)). The posterior latent
space and the Posterior Net are only available during training. Kullback-Leibler
Divergence (Dk ) score is used during training to make the prior latent space
similar to the posterior latent space. In testing/inference (Fig. 3), the learned
prior latent space is used to sample z, which are broadcasted and concatenated
to the original U-Net for generating some variations in the predicted segmenta-
tion for the same input image. While variations of prediction are inferred from a
few samples from a low-dimensional latent space (i.e., sample z), most informa-
tion used for predicting the evolution of WMHSs in spatial space still comes from
the U-Net (i.e., U-Net’s feature maps that are concatenated with the samples).

2.2 Adversarial Training for the Predictive Deep Learning Model

A previous study [8] also showed that adversarial training can help producing
good predictions by ensuring that each prediction (i.e., predicted DEM) \looks™
similar to the real DEM. However, adversarial training was only used for a GAN-
based model (i.e., without any manual DEM). In this study, we propose adding
adversarial training/loss in the supervised approach where the GAN’s discrim-
inator tries to distinguish the \real" manual DEM from the\fake" predicted
DEM produced by the U-Net/Probabilistic U-Net. Adding adversarial loss in
the training phase is advantageous because it uses information from the entire
image space (i.e., global context information) rather than local (i.e., pixel-wise)
information usually given by the traditional segmentation loss. Fig. 2(C) shows
how the GAN’s discriminator is used in the training phase.

2.3 Volume Interval Estimation for Better Interpretation

One of the many challenges in predicting the progression of WMHs is to ascer-
tain the quality of the prediction, especially when estimating the future volume
of WMHSs. Despite the existence of several metrics for quality control of an im-
age estimation machine-learning algorithm [1], predictive deep learning models
normally use the mean square error (MSE) to evaluate how close the predicted
future volumes of WMHSs are to the true future volumes after the training phase.
However, how can we calculate the MSE in a real world scenario where the real
future volume of WMHs is unknown?
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Fig. 4. (Left) Visualization of Volume Interval Estimation (VIE) produced by using
subsets of predicted channels of non-WMHs, shrinking WMHs, growing WMHSs, and
stable WMHSs. Note that the normal volume point estimation (VPE) is done by using
all predicted channels. (Right) By using volume interval estimation, we can catego-
rize prediction results more accurately (i.e., not only correct and wrong predictions).
Detailed categorization scheme is shown in Table 1.

For better interpretation and con dence in our prediction model, we pro-
pose using the Volume Interval Estimation (VIE). Instead of evaluating how
close the predicted volume point estimation (VPE) is to the true volume of
future WMHs at time point \1" (True time-point 1 Volume, or Tt1V), we eval-
uate where TtlV lies within the VIE, i.e., the interval bounded by the max-
imum (MaxVE) and minimum (MinVE) volume estimations. VIE’s interval is
bounded by two extreme assumptions of WMHs progression: 1) there are no
shrinking WMHSs (which produces MaxVE) and 2) there are no growing WMHSs
(which produces MinVE). Note that the normal assumption for the WMHs pro-
gression (i.e., WMHSs can be stable, growing, or shrinking) is located between
these two extreme assumptions considering the stable WMHSs to be regions of
chronic damage (i.e., otherwise MinVE would be equal to zero). Thus, VPE is
located between the MinVE and MaxVE. As illustrated in Fig. 4 (left), MinVE is
produced by dropping the growing WMHSs channel in the predicted DEM while
MaxVE is produced by dropping the shrinking WMHSs channel.

We can further categorize VIE according to 1) the location of Tt1V within
VIE and 2) whether the volume estimation is correctly predicted or not (i.e.,
patient with growing WMHs is correctly predicted to have growing WMHSs, and
so on). Fig. 4 (right) and Table 1 illustrate and describe each VIE’s category.

3 Dataset and Experimental Setting

3.1 Dataset and Cross Validation

We use MRI data from all stroke patients (n = 152) enrolled in a study of stroke
mechanisms [12], imaged at three time points (i.e., rst time (baseline scan), at
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Table 1. Categorization of the proposed volume interval estimation (VIE) based on the
position of true future (follow-up) Total WMHSs volume (Tt1V) in the predicted volume
interval between maximum volume estimation (MaxVE), minimum volume estimation
(MinVE), and volume point estimation (VPE). Visualization of the proposed volume
interval estimation can be seen in Fig. 4. (For the dataset used in this study 1 ml is
approximately 284 voxels, as 1 voxel represents a volume of 0.00351 ml.)

Category| Description

A Correct prediction (VPE - 1 ml < = TtlV <= VPE + 1 ml)
B+ Correct prediction (VPE + 1 ml < = TtlV <= MaxVE)
B- Correct prediction (MinVE <= TtlV <= VPE - 1 ml)
C+ Correct prediction (TtlV > MaxVE)

C- Correct prediction (TtlV < MinVE)

Wrong prediction

D+ (VPE -1 ml < = TtlV <= VPE + 1 ml)
D- (VPE + 1 ml < = TtlV <= MaxVE OR
VPE + 1 ml < = TtlV <= MaxVE)
E+ Wrong prediction (TtlV > MaxVE)
E- Wrong prediction (TtlV < MinVE)

approximately 3 months, and a year after). This study uses the baseline (t0)
and 1-year follow-up (t1) MRI data (s = n 2 = 304), both acquired at a
GE 1.5T scanner following the same imaging protocol, explained in [11]. These
data are pre-processed (co-registered, brain-extracted, Itered, and normalised)
as explained in [9,8]. The spatial resolution of the images used in this study is
256 256 42 with slice thickness of 0:9375 0:9375 4 cubic mm. To make
sure data from all patients are used in the testing and evaluation, we perform
4-fold cross validation where each fold uses 114 and 38 patients for training and
testing respectively. Each model is trained for 64 epochs in one experiment.

3.2 Segmentation Loss (L seq)

In this study, we use the non-linear softmax function at the segmentation layer;
see Eq. 1. The parameter s is the output of the segmentation layer. The network
classi es each voxel either as non-WMHes, shrinking WMHSs, growing WMHs, or
stable WMHSs. Thus, the number of output classes is set to C = 4.

Si
pi= ()= PCe—s, fori=1;::C )

j=1
We tested two di erent segmentation losses (Lseg): 1) weighted cross entropy
(WCE) (Eq. 2), and 2) alpha weighted focal loss (FL) [6] (Eg. 3). In both equa-
tions, tar; is the true target class for each voxel and p; is the probability of
each voxel to be of the target class i. Whereas, w; is the weight loss of class
i in WCE and ; is the weight loss of class i in FL. A larger weight loss for
class i indicates that class i is predominant, contributing a larger loss value in
total. Finally, is FL’s hyperparameter, which is set to = 2 following the rec-
ommendation of the original paper [6]. Based on our preliminary experiments,
the best weights for both WCE (i.e., w = (Wj=1;Wj=2; Wj=3;Wj=4)) and FL
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(i,e., = ( i=1; i=2; i=3, i=4)) are 0.25, 0.75, 0.75, and 0.5 for non-WMHSs
(i = 1), shrinking WMHSs (i = 2), growing WMHs (i = 3), or stable WMHSs
(i = 4) respectively.

L)S’ZQCE =WCE = w; tar; log (pi) @)
LS =FL= itari (1 pi) log(pi) ©))

3.3 Kullback-Leibler  Divergence (Dk. ) for Probabilistic Loss

An additional Kullback-Leibler Divergence score (D) is used in the training
if Probabilistic U-Net setting is used [5]. In this setting, Prior Net and Posterior
Net are trained together with the generator (i.e., U-Net) for predicting the DEM.
Let Q be the posterior distribution from the Posterior Net and P be the prior
distribution from the Prior Net. The di erence between the posterior distribution
Q and the prior distribution P is penalized by Eq. 4 where Xos: is the T2-FLAIR
at tl, Ypost is the true DEM, and Xprior is the T2-FLAIR at t0. Following the
original paper [5], the dimension for both zpese and Zprior is 6.

DKL(Q k P) = Ezpost Q;Z prior P [IOg Q(Xpost; Ypost) IOQ P (Xprior)] (4)

In the training phase of the Probabilistic U-Net, each segmentation prediction
is conditioned t0 Zpost N ( post; post) = Q(Xpost; Ypost) sampled from the
Posterior Net. As per the original paper [5], the probabilistic segmentation loss
nggb is de ned by Eq. 5 with = 1. Note that the segmentation 10ss of Lseq
can be either WCE (Eg. 2) or FL (Eq. 3).

nggb = Lseg(Pi(PijXprior; Zpost)) + DkL(QkP) ®)

In the testing/inference phase, each segmentation prediction is conditioned
t0 Zprior N ( prior; prior) = P (Xprior) sampled from the Prior Net. To get
the nal segmentation, we sampled 30 di erent z,rjor from Prior Net to produce
30 di erent segmentation predictions for each patient and averaged all of them.

3.4 Adversarial Loss (L aqv )

In this study, we modi ed the original adversarial loss [3] by adding a segmen-
tation loss (Lseg) for optimizing the generator to segment the DEM. Similar
to the original paper [3], here the generator tries to minimize Eq. 6 while the
discriminator tries to maximize it.

Ey Yo [09(DOY]+Ex xeuw [l0g(1  D(G(X))) + Lseg(G(X))]  (6)

In the Eq. 6, G is the generator, D is the discriminator, X = Xgan iS the
set of input images, y  Ygan is the combination of true DEM and true images
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Table 2. Performance of U-Net and Probabilistic U-Net in Dice similarity coe cient
(DSC) and volume point estimation (VPE). Note that higher DSC value is better (*"),
lower MSE value is better (#), and closer to 0 is better for Error (¥ 0). The best result
for each column is shown in bold and the second best is underlined. WCE stands for
weighted cross entropy and while FL stands for focal loss.

Model Cost DsC ™ VPE

Function|Shrink]| Grow | Stable [Average|Error ¥ 0] MSE #

0.1794 | 0.1970 | 0.6413 | 0.3393 -2.7127 112.87

U-Net WCE 1 0.072) | (0.097) | (0.159) | (0.078) | (10.31) | (247.44)
EL 0.1757 | 0.2073 | 0.6483 | 0.3438 -2.7002 108.17

(0.077) |(0.104)| (0.156) | (0.076) | (10.08) | (256.61)

Prob. U-Net WCE 0.1491 | 0.1524 | 0.6220 | 0.3079 -2.5095 102.44
(t0 & DEM (0.061) | (0.090) | (0.171) | (0.086) | (9.84) | (234.61)
as inputs to EL 0.1673 | 0.1858 | 0.6147 | 0.3226 -2.0297 89.56
Posterior Net) (0.074) | (0.089) | (0.184) | (0.090) | (9.27) | (220.73)
Prob. U-Net WCE 0.1964 | 0.2040 | 0.6564 | 0.3522 -0.2953 69.05
(t1 & DEM (0.071) | (0.091) [(0.162)| (0.080) | (8.33) | (224.94)
as inputs to FL 0.2092 | 0.2056 | 0.6507 | 0.3552 -0.6650 64.33
Posterior Net) (0.082)| (0.092) | (0.160) | (0.080) | (8.02) |(220.39)

(i.e., T2-FLAIR for t0 and t1), G(x) is the predicted DEM, Ey YeaN IS
the expected value over Ygan, and Ex is the expected value over Xgan- If
G is U-Net then Xgan = Xprior- Whereas, if G is probabilistic U-Net then
xGAN = (xprior;xpost;Ypost)- As in the previous section, Xprior; xpost; Ypost
correspond to the T2-FLAIR for t0, t1, and true DEM respectively.

In this study, we also evaluate three di erent combinations of Ygan toO in-
vestigate which produces the best result. The tested combinations are 1) only
the true DEM (DEM GAN), 2) true DEM and T2-FLAIR normalised values at
t0 (t0O-DEM GAN), and 3) true DEM, T2-FLAIR normalised values at t0, and
T2-FLAIR normalised values at t1 (t0-t1-DEM GAN). In these experiments, we
used spectral normalization [7] for the discriminator network and trained it 5
times for each epoch.

4 Results

4.1 U-Net vs. Probabilistic U-Net

Table 2 shows the performances of U-Net and Probabilistic U-Net for predicting
the spatial progression of WMHs (shown in Dice Similarity Coe cient (DSC))
and in volume point estimation (VPE). Following the original paper that pro-
posed the Probabilistic U-Net [5], we rst used T2-FLAIR at t0 and true DEM as
inputs to Posterior Net. However, this approach was outperformed by the U-Net
model. By, consequently, changing the input of Posterior Net to be T2-FLAIR
at t1 and true DEM, the model using Probabilistic U-Net outperformed U-Net
in our experiments. These show that the input data for the Posterior Net in the
Probabilistic U-Net should di er from the input data for the other modules of
this probabilistic architecture (i.e., U-Net and Prior Net). Table 2 also shows
that the FL cost function produced better prediction results than the WCE in
both DSC and VPE for all experimental settings.
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Fig. 5. Comparison of the true DEM (left) and predicted DEMs produced by using
Probabilistic U-Net without adversarial training (middle) and Probabilistic U-Net with
adversarial training with T2-FLAIR at t0 and true DEM (right).

Table 3. Performance of deep learning models trained with adversarial training for
predicting the progression of WMHSs in Dice similarity coe cient (DSC) and volume
point estimation (VPE). Higher DSC value is better (*'), lower MSE value is better (#),
and closer to 0 is better for Error (¥ 0). The best result for each column is shown in
bold and the second best is underlined.

Model ] DsSC " VPE
Shrink| Grow | Stable [Average[Error ¥ 0] MSE #
Prob. U-Net 0.2092 | 0.2056 | 0.6507 | 0.3552 -0.6650 64.33
(t1 & DEM for Posterior Net) (0.082)| (0.092) | (0.160) | (0.080) | (8.02) |(220.39)
Prob. U-Net (t1 & DEM for 0.1739 | 0.2083 | 0.6374 | 0.3399 2.0216 90.34
Posterior Net) + DEM GAN (0.083) | (0.103) | (0.172) | (0.090) | (9.32) | (180.32)
Prob. U-Net (t1 & DEM for 0.1911 | 0.2184 | 0.6530| 0.3541 0.3155 78.83
Posterior Net) + t0-DEM GAN | (0.093) | (0.103) [(0.163)| (0.089) | (8.90) | (156.17)
Prob. U-Net (t1 & DEM for 0.1737 |0.2367 | 0.6427 | 0.3511 -3.4385 91.70
Posterior Net) + t1-DEM GAN | (0.083) |(0.100)| (0.169) | (0.086) | (8.97) | (205.29)
Prob. U-Net (t1 & DEM for 0.1701 | 0.2282 | 0.6425 | 0.3469 -3.3115 88.36
Posterior Net) + t0-t1-DEM GAN/ (0.083) | (0.102) | (0.167) | (0.083) | (8.83) | (220.39)
U-Net 0.1757 | 0.2073 | 0.6483 | 0.3438 -2.7002 108.17
(0.077) | (0.104) | (0.156) | (0.076) | (10.08) | (256.61)
U-Net 0.1849 | 0.2134 | 0.6468 | 0.3484 -1.1187 92.44
+ t0-DEM GAN (0.091) | (0.099) | (0.159) | (0.079) | (9.58) | (191.44)

4.2 Probabilistic U-Net with Adversarial Training

We investigated whether applying adversarial training with di erent input im-
ages can improve the performance of Probability U-Net. We evaluated these
experiments using DSC, VPE, and the newly proposed VIE evaluation.

Table 3 shows that adversarial training with T2-FLAIR at t0 and true DEM
slightly improved the prediction produced by Probabilistic U-Net in VPE (Error)
and DSC (Stable). Fig. 5 also shows that the predicted DEM produced by adver-
sarial training more closely followed the true DEM by removing the small false
positive clusters in the prediction results. These experiments show that, while
Probabilistic U-Net without adversarial training consistently produced some of
the best prediction results in terms of DSC, the Probabilistic U-Net with ad-
versarial training predicted more realistic DEM, closer to the true DEM, and
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Table 4. Performance of deep learning models for predicting the future volume of
WMHs evaluated in the newly proposed Volume Interval Estimation (VIE). The best
result for each column is shown in bold and the second best is shown in underline.
Symbol (") indicates that higher values are better while symbol (¥ 0) indicates that
values closer to 0 are better. Abbreviations: \CP" stands for \Correct Prediction",
\CPIinEVI" stands for \Correct Prediction in Estimated Volume Interval*, \(CP +
WP)IinEVI" stands for \Correct Prediction + Wrong Prediction but still in EVI",
\VPE" stands for Volume Point Estimation, \MaxVE" stands for Maximum Volume
Estimation, and \MinVE" stands for Minimum Volume Estimation.

or opinevt [ v £ e 14
E)trlog B_E':jtfor Posterior Net) 73.03%  44.74% 51.32% é0284612) _(2271?32
for Posterior Net) + DEM GAN |6318%| 3026% | same | oo | (e
e D g can | #7o%| e | soome | 2058 | As
for Posterior Nety + t-DEM Gan |084%| @7aw | staws | SORG | SO0
for Posterior Net) + t0-t1-DEM GAN| 0% 4868% | s189 | aoon | (SR
U-Net 61.84% | 36.84% 48.68% é:zz%) ('2'5173565)
mam] amw | seame | 4| se

with better VPE values. Additionally, U-Net with adversarial training produced
better prediction results than the original U-Net without adversarial training.

Table 4 shows the performances of the deep learning models evaluated us-
ing VIE. The percentage of patients with correctly predicted DEM (i.e., sub-
jects with shrinking and growing WMHs correctly predicted as having shrinking
and growing WMHs respectively) is given by the metric called \CP" (Correctly
Predicted). We also calculated the percentage of patients having their true fu-
ture volumes of WMHSs (Tt1V) correctly estimated and located between MinVE
and MaxVE, and expresses it under a metric named \CPinEVI" (Correctly
predicted in Estimated Volume Interval (EVI)). Based on the VIE categoriza-
tion (Fig. 4 and Table 1), \CPIinEVI" covers categories A, B+, and B-. Lastly,
\(CP+WP)IinEVI" shows the percentage of correctly and wrongly predicted pa-
tients with their Tt1V still located between MinVE and MaxVE. Based on Fig.
4 and Table 1, \(CP+WP)IinEVI" covers categories A, B+, B-, D+, and D-.

Both \CPIinEVI" and \(CP+WP)IinEVI" are important for better interpreta-
tion and higher con dence in our predictive model. Metric \CPIinEVI" is impor-
tant not only in evaluation but also in real-word testing/inference. A predictive
model with higher rate of \CPIinEVI" in testing means that there is a high prob-
ability that the Tt1V lies between the predicted/estimated MinVE and MaxVE
produced by the predictive model. On the other hand, \(CP+WP)IinEVI" cap-
tures di cult cases where the future volume of WMHSs is wrongly predicted
by the predictive model but the Tt1V still lies between the predicted/estimated
MinVE and MaxVE. These cases happen mostly when the WMHSs volume change
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from tO to t1 is very small. For example, a patient with WMHs volume of 5ml at
t0 and 5:5 ml at t1 (i.e., growing WMHS) is wrongly predicted by the model to
have future WMHSs volume of 4:5ml (i.e., shrinkage in the total WMHs volume
at t1) while having predicted MinVE and MaxVE of 4 ml and 6 ml respectively.

The results in Table 4, show that Probability U-Net with adversarial training
using T2-FLAIR for t0, t1, and true DEM produced the best results in all
metrics of VIE. While the rate of CP is the same with the Probabilistic U-
Net without adversarial training, Probabilistic U-Net with adversarial training
using T2-FLAIR for t0, t1, and true DEM produced better results than other
probabilistic models in \CPinEVI'"" and \(CP+WP)IinEVI" (48.68% and 57.89%
respectively). It is worth to mention that the best result for \(CP+WP)inEVI"
was produced by the U-Net with adversarial training using T2-FLAIR for t0 and
true DEM (i.e., 59.87% respectively). However, as shown in Table 3, it did not
outperform any Probabilistic U-Net settings in DSC and/or VPE.

Lastly, one can argue that higher rates of \CPinEVI" and \(CP+WP)inEVI"
can be produced by expanding the VIE itself (i.e., smaller value of MinVE and
larger value of MaxVE). However, as shown in Table 4, the predicted values
of MinVE and MaxVE from di erent predictive models are relatively close to
the predicted VPE in all settings (calculated by performing MinVE - VPE and
MaxVE - VPE for the whole dataset).

5 Conclusion and Discussion

In this study, we propose the use of a probabilistic deep learning model (i.e.,
Probability U-Net) for capturing/modelling spatial uncertainty in the estimation
of WMHs from brain MRI scans. The adversarial loss successfully improved the
prediction results, ensuring the predicted DEM closely follows the global context
of the true DEM by removing small clusters of false positives. Furthermore, we
also propose a procedure to evaluate the predictive model called Volume Interval
Estimation (VIE) for better evaluation, interpretation, and higher con dence
in our predictive model. While the probability model with adversarial training
produced some of the best results, VIE proved to be e ective for interpreting and
evaluating the predicted results. It is also worth to mention that there are still
many useful evaluation metrics that can be derived from the VIE. Future works
include incorporating VIE into the predictive model as a regularization term in
the cost function. Preliminary results show an improvement in the prediction of
WNMHs evolution. Furthermore, to reduce aleatoric uncertainty, information from
other MRI sequences (e.g. T1-weighted) and modalities (e.g. di usion-weighted
images) could be advantageous. Given the presence of WMHSs in scans of older
adults and dementia patients, re-training and testing the proposed schemes in a
wider sample would be also bene cial.
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Supplementary Materials

Fig. 6. Architecture of generator (i.e., U-Net) used in this study. Note that spectral
normalization [7] is used in this study.

Fig. 7. Architecture of Posterior/Prior Net used in this study. Note that the networks
produce mean ( ) and standard deviation ( ) that will be used to sample z.

Fig. 8. Architecture of Discriminator used in this study. Note that spectral normaliza-
tion [7] is used in this study.
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