

Edinburgh Research Explorer

One Down, 699 to Go: or, synthesising compositional
desugarings

Citation for published version:
Bartha, S, Cheney, J & Belle, V 2021, 'One Down, 699 to Go: or, synthesising compositional desugarings',
Proceedings of the ACM on Programming Languages, vol. 5, no. OOPSLA, 122.
https://doi.org/10.1145/3485499

Digital Object Identifier (DOI):
10.1145/3485499

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the ACM on Programming Languages

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 02. Dec. 2021

https://doi.org/10.1145/3485499
https://doi.org/10.1145/3485499
https://www.research.ed.ac.uk/en/publications/108941ce-8bf2-4a99-949e-dd535a2aad69

122

One Down, 699 to Go: or, Synthesising Compositional

Desugarings

SÁNDOR BARTHA, The University of Edinburgh, UK

JAMES CHENEY, The University of Edinburgh, UK and The Alan Turing Institute, UK

VAISHAK BELLE, The University of Edinburgh, UK and The Alan Turing Institute, UK

Programming or scripting languages used in real-world systems are seldom designed with a formal semantics

in mind from the outset. Therefore, developing well-founded analysis tools for these systems requires reverse-

engineering a formal semantics as a first step. This can take months or years of effort.

Can we (at least partially) automate this process? Though desirable, automatically reverse-engineering

semantics rules from an implementation is very challenging, as found by Krishnamurthi, Lerner and Elberty.

In this paper, we highlight that scaling methods with the size of the language is very difficult due to state

space explosion, so we propose to learn semantics incrementally. We give a formalisation of Krishnamurthi et

al.’s desugaring learning framework in order to clarify the assumptions necessary for an incremental learning

algorithm to be feasible.

We show that this reformulation allows us to extend the search space and express rules that Krishnamurthi

et al. described as challenging, while still retaining feasibility. We evaluate enumerative synthesis as a baseline

algorithm, and demonstrate that, with our reformulation of the problem, it is possible to learn correct

desugaring rules for the example source and core languages proposed by Krishnamurthi et al., in most cases

identical to the intended rules. In addition, with user guidance, our system was able to synthesize rules for

desugaring list comprehensions and try/catch/finally constructs.

CCS Concepts: • Software and its engineering→ Semantics.

Additional Key Words and Phrases: Programming language semantics, testing, enumerative synthesis

ACM Reference Format:

Sándor Bartha, James Cheney, and Vaishak Belle. 2021. One Down, 699 to Go: or, Synthesising Compositional

Desugarings. Proc. ACM Program. Lang. 5, OOPSLA, Article 122 (October 2021), 29 pages. https://doi.org/10.

1145/3485499

1 INTRODUCTION

Formal semantics is useful for the maintenance and analysis of programming languages, and
similarly for libraries and frameworks, whose semantics might best be defined via an abstract
language. But few languages are designed with formal semantics from the start, and writing formal
semantics based on an already existing implementation involves guessing possible semantics rules
and painstakingly writing and evaluating many different test cases.

There are many arguments in favour of reverse engineering a formal specification. Ambiguities
are inevitable if the specification is only written in natural language. Various implementations

Authors’ addresses: Sándor Bartha, The University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh, UK,

sandor.bartha@ed.ac.uk; James Cheney, The University of Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh,

UK and The Alan Turing Institute, 96 Euston Rd, London, UK, jcheney@inf.ed.ac.uk; Vaishak Belle, The University of

Edinburgh, Informatics Forum, 10 Crichton Street, Edinburgh, UK and The Alan Turing Institute, 96 Euston Rd, London, UK,

vaishak@ed.ac.uk.

© 2021 Copyright held by the owner/author(s).

2475-1421/2021/10-ART122

https://doi.org/10.1145/3485499

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3485499
https://doi.org/10.1145/3485499
https://doi.org/10.1145/3485499

122:2 Sándor Bartha, James Cheney, and Vaishak Belle

may interpret the requirements differently, making it difficult to port the programs between them.
Future enhancements may break properties that the creators are unaware of but that the users rely
on, thus making programs unnecessarily difficult to maintain. Security risks may go unnoticed,
impacting every system built with the language [Amin and Tate 2016]. A formal semantics is
prerequisite to applying formal methods or static analysis. Moreover, the ability to reconstruct
the semantics of an opaque system would make it possible to compare properties of the induced
semantics with the intended design, aiding the rationalisation or redesign of the language.

The usage of formal semantics is standard in the hardware industry [Kern and Greenstreet 1999],
and there is a lot of research effort to formalise aspects of mainstream languages [Jung et al. 2017;
Nienhuis et al. 2016]. But its impact on the wider software industry is modest: the vast majority of
systems in usage today do not have formal semantics. These systems rely on many idiosyncratic
solutions to represent computations, in the form of domain specific languages, configuration
languages, or query languages, and an even larger number of libraries and frameworks, that
frequently change their behaviour from version to version. To get a sense of the scale of the work
involved in writing the full formal semantics of one language, see some recent examples for popular
programming languages, such as JavaScript [Guha et al. 2010; Maffeis et al. 2008], R [Morandat
et al. 2012], Python [Politz et al. 2013], and PHP [Filaretti and Maffeis 2014]. Each of these formal
semantics are the result of months of work by research groups.
Let us step into the shoes of the semantics engineer, whose task is to reverse engineer an

interpretable semantics of an actual programming language, by observing the behaviour of its
opaque or non-intelligible interpreter. Languages are usually riddled with many varieties of similar
constructs, and the tedious parts of producing formal specifications involve writing a lot of small
example programs, then testing their behaviour with the opaque implementation. Krishnamurthi
et al., the authors of "The Next 700 Semantics: A Research Challenge" (2019) argue for the need of
semi-automation. A full solution to this challenge would facilitate defining the formal semantics
for 700 languages, alluding to how Peter Landin’s landmark paper "The Next 700 Programming
Languages" (1966), written more than 50 years ago, had facilitated their creation in the first place.
As a first step towards achieving partial automation, Krishnamurthi et al. (from now on, abbre-

viated kle) suggest that semantics be divided into a complex part provided by human semantic
engineers, and a tedious but shallow part hopefully synthesised automatically. They formulate this
division in the following way: first let human engineers specify a core version of the language,
capturing the essential features, reducing the potentially hundreds of language constructs to a
few. They also provide a definitional interpreter (e.g. a direct implementation of an operational
semantics) for this core language, which is much smaller. Our task then is reduced to finding
translation rules from the original (source) language to this core language, based on observation
of the behaviour of source programs. Note that we only work with term languages consisting of
abstract syntax trees: while reverse-engineering a formal grammar for a language from its examples
is also an interesting problem, we are focusing only on the semantics of the resulting term language.
Our task is to find a program that translates, or desugars, source terms into core terms.

For a familiar example, let the source language be a simple functional language with arithmetic.
We give its semantics by first providing the semantics of the 𝜆-calculus extended with the primitive
types (numbers) and operations (arithmetic) of the language, then translating additional language
constructs into this core language. Figure 1a shows some potential test cases run on the opaque
interpreter of the source language, and Figure 1b shows an example translation rule that we should
generate based on these test cases. The rule expresses a let expression (in the source language) in
terms of a 𝜆 expression and application (which is part of the reduced core language). This example
shows the semantics of one language construct for the sake of demonstration, but in the general

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:3

let x=1 in x+x{ 2

let x=2 in 1{ 1

(a) Partial input: test cases for let expression

Jlet 𝑖 = 𝑒1 in 𝑒2K =
(
𝜆𝑖 . J𝑒2K

)
J𝑒1K

(b) Partial output: translation rule for let expression

Fig. 1. Learning translation example

case the source language may contain hundreds of constructs that need to be reduced to the core
language: this reduction of the number of term constructors is the main point of the translation.
kle also suggest a natural search space: compositional desugaring translations. They aim to

synthesise a rule (or rules) for each source language term constructor. Their formulation is insightful
and practical. But the specified task is still hard. They presented four unsuccessful solution attempts,
describing their shortcomings and challenging the research community to overcome them.
From their astute analysis we identify two inherent properties that make this problem so chal-

lenging: the non-standard learning framework and the intractability of the program space. The
non-standard learning framework makes many search strategies hard to apply. Three out of the
four attempts changed the requirements in ways the usefulness of which is questionable for an
envisaged solution. Due to the astronomical search space all attempts failed to reproduce the
intended semantics of their example source and core languages (which are still far behind the size
of real world languages). kle studied a reduced search space, tree transducers. They demonstrated
however with their example source and core languages that many common intended translation
rules in this domain cannot be expressed by tree transducers at all.
We directly build on kle’s work, but we take a slightly different position. We work on the

principle that, before considering search strategies, the essential first step is to clearly formulate the
problem to understand when a solution is even possible in principle, and then divide the task into
feasible pieces. The main idea behind our paper is that the compositional translations can be learned
by structuring the learning process itself compositionally (or, more precisely, incrementally). We
hypothesise that we can learn the translation rules of a few term constructors at a time, in each
step relying on the semantics of already established term constructors Ð following human practice.
This reformulation follows our intuition based on experience with semantics engineering and has
the potential to help with both challenging aspects. First, it significantly reduces the search space
for each synthesis sub-task, since we only synthesise a small portion of the language’s translation
at a time. Second, by assuming that some part of the translation is already known, we ease testing
potential translations, since we can rely on the already established parts of the translation.
We argue that this partitioning into feasible sub-tasks is often possible. This paper makes the

following contributions, leading to the first practical solution to kle’s challenge:

• We recapitulate kle’s challenge, offer further analysis of the obstacles to it, and outline our
approach to overcoming them. (Section 2)
• We propose a formal framework for synthesizing compositional desugarings, define a sub-
task - the desugaring extension problem: learning the desugaring only on a portion of the
source language (a sublanguage), and highlight underlying assumptions. (Section 3)
• We propose a way to build search spaces for translation rules represented in a functional
language, aiming to find a sweet spot between the too-restrictive tree transducers and the
intractable search space provided by a general programming language. We show how to
express all example translation rules identified as challenging by kle, while retaining the
ability to (relatively) efficiently enumerate programs. (Section 4)
• We test our approach by analysing a simple enumerative synthesis algorithm as a baseline,
and evaluating it on case studies. In particular, we show that, using our modified specification

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:4 Sándor Bartha, James Cheney, and Vaishak Belle

𝑏 ∈ Bool ::= {true, false} 𝑖 ∈ Id 𝑛 ∈ Number 𝑠 ∈ String

𝑜 ∈ Op ::= {0−, not, +,−,∧,∨, <, >}

𝑡, 𝑡1, 𝑡2, 𝑡3 ∈ STerm ::= SFalse | SNum(n) | SVar(i) | SStr(s) | SBetween(𝑡1, 𝑡2, 𝑡3)

| SPrim(o, [𝑡, . . .]) | SIf(𝑡1, 𝑡2, 𝑡3) | SLam([i, . . .], 𝑡) | SApp(𝑡1, [𝑡2, . . .]) |

| SLet(i, 𝑡1, 𝑡2) | SLetRec(i, 𝑡1, 𝑡2) | SAssign(i, 𝑡) | SList([𝑡, . . .]) |

| SListCase(𝑡1, 𝑡2, 𝑡3) | SFor(𝑡1, [𝑓 , . . .], 𝑡2)

𝑓 ∈ SForBind ::= SFBind(𝑖, 𝑡)

𝑒, 𝑒1, 𝑒2, 𝑒3 ∈ CTerm ::= CBool(𝑏) | CNum(n) | CVar(i) | CStr(s) | CPrim1(o, 𝑒) | CPrim2(o, 𝑒1, 𝑒2)

| CIf(𝑒1, 𝑒2, 𝑒3) | CLam([i, . . .], 𝑒) | CApp(𝑒1, [𝑒2, . . .]) | CLet(i, 𝑒1, 𝑒2)

| CLetRec(i, 𝑒1, 𝑒2) | CAssign(i, 𝑒) | CList([𝑒, . . .]) | CListCase(𝑒1, 𝑒2, 𝑒3)

(a) Syntax of Pidgin source (red) and core (blue) languages

JSTrueK = CBool(𝑡𝑟𝑢𝑒)

JSFalseK = CBool(𝑓 𝑎𝑙𝑠𝑒)

JSNum(n)K = CNum(n)

JSVar(i)K = CVar(i)

JSStr(s)K = CStr(s)

JSBetween(𝑡1, 𝑡2, 𝑡3)K = CLet(%𝑖1, J𝑡1K, CLet(%𝑖2, J𝑡2K, CLet(%𝑖3, J𝑡3K,
CPrim2(∧, CPrim2(<,%𝑖1,%𝑖2), CPrim2(<,%𝑖2,%𝑖3)))))

JSPrim(o, [𝑡1])K = CPrim1(o, J𝑡K)
JSPrim(o, [𝑡1, 𝑡2])K = CPrim2(o, J𝑡1K, J𝑡2K)

JSIf(𝑡1, 𝑡2, 𝑡3)K = CIf(J𝑡1K, J𝑡2K, J𝑡3K)
JSLam([i, . . .], 𝑡)K = CLam([i, . . .], J𝑡K)

JSApp(𝑡1, [𝑡2, . . .])K = CApp(J𝑡1K, [J𝑡2K, . . .])
JSLet(i, 𝑡1, 𝑡2)K = CLet(i, J𝑡1K, J𝑡2K)

JSLetRec(i, 𝑡1, 𝑡2)K = CLetRec(i, J𝑡1K, J𝑡2K)
JSAssign(i, 𝑡)K = CAssign(i, J𝑡K)

JSList([𝑡, . . .])K = CList([J𝑡K, . . .])
JSListCase(𝑡1, 𝑡2, 𝑡3)K = CListCase(J𝑡1K, J𝑡2K, J𝑡3K)

JSFor(𝑡1, [SFBind(i, 𝑡3), . . .], 𝑡2)K = CApp(J𝑡1K, [CLam([i, . . .], J𝑡2K), CList([J𝑡3K, . . .])])

(b) Intended translation of the Pidgin source language into the core language

Fig. 2. Pidgin source language, core language, and desugaring

for the task, it is possible to obtain most intended desugaring rules proposed as a test by kle.
We also investigated synthesizing rules for further extensions such as list comprehensions
and try/catch/finally. (Sections 5 and 6)

At a conceptual level, we analyze the desugaring synthesis problem, highlighting the importance
of choices of hypothesis space; and at a technical level we provide a specific approach that can
synthesize the desugarings proposed by kle as well as some simple extensions.

2 OVERVIEW

2.1 The Challenge

kle presented a case study highlighting the challenge of learning desugarings from examples. For
convenience, we give a name to the language they proposed: Pidgin. Figure 2 recapitulates the
syntax of Pidgin’s source and core languages and quotes their intended translations of Pidgin (red)
to Core Pidgin (blue). We treat the syntax of the languages (as shown by Figure 2a) along with
their respective interpreters as the input of the learning process. The intended output is the set of

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:5

source program core program

source output core output

desugar

source interpreter core interpretercompare

Fig. 3. Desugaring learning framework (cf. Krishnamurthi et al. [2019])

translation rules that Figure 2b depicts. Except for minor notational differences, we repeat their
definitions verbatim; some features, such as list "cons", are omitted but easy to add.
kle did not give an explicit definition of the semantics of the core language or of the notation

used for the desugaring rules. We assume the core language to be a standard call-by-value lambda-
calculus with arguments evaluated left-to-right, in which all variables are assignable references.
The desugaring rules used intuitive, but not formally defined, notations for fresh names and list
parameters, which we paraphrase in Figure 2b. In the rule for SBetween, the notations %𝑖1,%𝑖2,%𝑖3
stand for freshly generated identifiers. In rules such as SLam, SApp, and SList, notations [𝑡, . . .] and
[J𝑡K, . . .] stand for the (possibly empty) lists of sub-terms 𝑡 and their translations. Finally, in the rule
for SFor, the notation [SFBind(𝑖, 𝑡3), . . .] stands for a (possibly empty) list of bindings of identifiers
𝑖 to expressions 𝑡3, and on the right-hand side the notations [𝑖, . . .] and [J𝑡3K, . . .] stand for the lists
of the first and (translated) second components of the bindings, respectively (that is, the results of
unzipping the list considering the bindings as pairs). We describe reference implementations of the
core language and the desugaring rules in a companion technical report [Bartha et al. 2021].

The Pidgin source and core languages illustrate several potential complications in the modelling
of translations: the presence of primitive types and operations, unrestricted number of children,
and the special role of names. Handling argument lists may require expressive translation rules
that can re-arrange them (SFor) or can pattern match on the list (SPrim). Fresh name generation
may be needed to control the order of evaluation of arguments (SBetween). We will use Pidgin
both for illustrating and evaluating our method. In more realistic examples the source language
could be much larger than the core language, since the point of the translation is to reduce the
language to a smaller one.

2.2 Problem Analysis

kle gave the initial analysis of the problem and of their four solution attempts. Their first two
attempts, based on tree matching and Gibbs sampling, were inspired by solutions of a similar
task in natural language translation. They highlight the differences between natural language
translation and this problem, then considered program synthesis techniques with their third and
fourth attempts, based on genetic programming and constraint based program synthesis respectively.
We pick up their thread and highlight two challenging aspects of the problem, the unusual learning
framework and the vast search space, from the point of view of program synthesis.

Figure 3, quoted from their paper, captures their learning framework at a high level. The setting
is similar to an active inductive synthesis problem [Gulwani et al. 2017; Jha et al. 2010]: we do
not have a logical specification, but we can produce input/output examples from evaluations of
programs by the interpreters. But there is a crucial difference: the function we are trying to learn
is not the one we can directly test. In our problem statement we assumed the existence of two
languages, the source and the core, and respective interpreters of the languages. We can evaluate
source programs with the source interpreter and core programs with the core interpreter Ð but we
can only relate them to each other through the very translation we want to learn. This rules out
many general program synthesis methods.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:6 Sándor Bartha, James Cheney, and Vaishak Belle

kle’s first two attempts assumed the availability of examples of the translation (i.e. pairs consisting
of a source program and its corresponding intended translation in the core language), that are
unlikely to be much easier to produce than the rules themselves. Their fourth analysed method used
a constraint based program synthesis framework named SyntRec [Inala et al. 2017], but simplified
the problem by assuming a shared output space for the two interpreters, allowing the comparison
of the outputs directly, without relying on the translation that we are about to synthesise. This
evades using this translation twice in the problem specification. Moreover, SyntRec also required
a deep embedding of the core interpreter into the framework. This highlights that there are two
slightly different problems at hand, depending on whether we treat the core interpreter as opaque
(similarly to the source) or instead require that it has an implementation accessible to the synthesis
algorithm. Since we assumed that the user produces formal semantics of the core language, using
it in the learning process sounds reasonable. But the formal semantics of even a relatively small
language is quite large for program synthesis methods to handle, and expanding this semantics in
the framework results in huge constraints. This could have played a role in the explosion of the
search space of the constraint based method when the languages have state. A further problem
with this approach is that producing such an embedding for a synthesis method is not trivial for
arbitrary formal semantics in the first place.
The second problem is shared with program synthesis in general: the astronomical size of the

search space. The first two methods kle analysed are based on a reduced notion of compositional
translations: tree transducers. They highlight with their example source and core languages that
many common intended translation rules in this domain can not be expressed with tree transducers,
like rules that require re-arranging lists of children (SFor), or fresh name generation in the Core
Pidgin expression (SBetween). Their third and fourth attempts, based on genetic programming
and constraint based program synthesis, evade this restriction. These general program synthesis
techniques, in principle, can express arbitrary computable translation rules. But applying gen-
eral program synthesis methods seems even harder: the search space for arbitrary computable
translations is much larger than tree transducers.
All methods failed to scale up to the full Pidgin language (which is still not the size of a real

world language). We argue that this task extends the already notoriously hard program synthesis
problem with a new dimension: the number of source term constructors, since, for a compositional
translation, we need to synthesise a separate łprogramž for each such constructor. This results in a
high number of program synthesis problems, some of which are interdependent while others can
be solved independently.

The partial progress reported by kle highlights that the problem is very difficult. The main point
of the translation is to reduce the number of term constructors, thus we need an approach that
scales well along this dimension. But this could still be very difficult: not only does the search space
grow exponentially by the number of term constructors, but the term constructors’ translation
rules may depend on each other, which makes testing translations hard. To make progress, we
therefore make additional assumptions and reformulate the problem.

2.3 Our Approach

When we teach students how to program, we typically do not tell them about all of the language
features at once: this would most likely overwhelm or confuse them. Instead, in the first lecture we
start with łhello worldž and gradually introduce related features in small groups. Indeed, Felleisen
et al. [2001] explicitly adopted this approach by providing language łlevelsž, or self-contained
sublanguages that intentionally exclude complex features for pedagogical purposes.
We follow kle in their rational reconstruction of the problem, but we investigate a simplifying

assumption. We hypothesise that the compositional translation can be learned incrementally, only

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:7

learning the translation rules of a few term constructors at a time. For this strategy to work, we
must assume that starting from the rules of a few term constructors given initially we can iteratively
find small groups of term constructors (i.e. language łlevelsž) whose translation rules can be found
by only testing them on the part of the language where the translation is already established. Our
approach currently requires the user to provide this sequential decomposition of the language
learning problem. This approach yields two immediate questions. First, whether the sub-task of
learning only a few term constructors is feasible. Second, whether decomposing languages into
small, more easily learnable sublanguages is feasible in the first place.

We seek an answer for the first by investigating a brute force enumerative synthesis algorithm.
The brute-force method of program synthesis, enumerative program synthesis, is straightforward
to apply to quite general sub-tasks, so the unusual learning framework does not pose a problem.
Enumerative synthesis is not necessarily slow compared to other synthesis methods: it has proven
to be a very efficient technique in domains where the hypothesis space is rich and complex, but the
size of programs is small (see Alur et al. [2013]). This description fits well our sub-tasks. While
our enumerative algorithm is a simple brute force search, there are many candidate heuristics and
pruning techniques. Enumerative synthesis combinedwith other methods faredwell in competitions
(see Alur et al. [2017] or Reynolds et al. [2019] for recent competition-winning synthesis algorithms),
and may be applied to speed up our search in the future. A further consideration is that the success
of enumerative synthesis directly depends on the search space. Our task is to define a search
space which is expressive enough that it can express a wide variety of translation rules, including
those kle considered challenging, but small enough for the resulting learning task to be feasible.
Enumerative synthesis can demonstrate this, and could be used as both a baseline for comparison
and the basis of future improvements.

To investigate the second point, we formalise our assumption, list some potential problems, and
carry out a full test case: we present a solution of the Pidgin challenge problem, and two simple
extensions to it, based on a (user-given) partitioning of the language. We also assume that the core
interpreter is opaque, as discussed above. Our approach can perhaps best be characterised as a
semi-automatic desugaring synthesis assistant and does involve some additional user guidance or
feedback, discussed in Section 6.5.

3 FORMAL FRAMEWORK

In this section we formalise the desugaring learning problem of kle and define the desugaring
extension problem. We show how in principle, full desugarings can be structured as a series of
extension learning problems, and investigate the conditions when such a partitioning strategy can
be successful in principle. While it is not clear how we could prove that partitioning into a sequence
of desugaring extension problems is always possible, in later sections we present empirical results
showing that it is possible for Pidgin.

3.1 Syntax

We employ multi-sorted term languages [Meinke and Tucker 1993] as a standard model of syntax.
The sorts correspond to the syntactic classes in Figure 2a, plus auxiliary sorts for lists and pairs.
This representation allows us to limit translations to sort-preserving ones, which automatically
excludes many ill-formed translation rules from the search. Our definition of the problem would
work with single-sorted languages as well, but our definition of the search space relies on the
sorts, and enumerative synthesis benefits greatly from restricting the search space. The usage of
multi-sorted terms also highlights that in practice we may not evaluate every term, just those that
belong to the sort of programs.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:8 Sándor Bartha, James Cheney, and Vaishak Belle

Definition 3.1 (Signature). A signature Σ consists of

• A non-empty finite set of sorts 𝑆Σ, with a designated sort 𝜎𝑝 ∈ Σ for programs.
• A finite set of term constructors (function symbols) FΣ.
• The signature function sig : F → 𝑆∗ × 𝑆 , where 𝑆∗ is a (possibly empty) finite sequence
of sorts. We will write 𝑓 : 𝜎1, . . . , 𝜎𝑛 → 𝜎 (where 𝑓 ∈ F and 𝜎1, . . . , 𝜎𝑛, 𝜎 ∈ 𝑆) when
sig(𝑓) = (𝜎1, . . . , 𝜎𝑛 ;𝜎). The number 𝑛 can be 0, in which case we will write 𝑓 : 𝜎 , and will
call 𝑓 a constant symbol.

Σ and Ω will stand for signatures (𝑆Σ, FΣ, sigΣ) and (𝑆Ω, FΩ, sigΩ), respectively.

Remark 1. Note that we do not have term constructors with lists of children, therefore we need to

model lists of children with an additional sort for the list and additional term constructors nil and

cons. We do not have sort polymorphism, so we need to add a separate sort for each type of list.

For simplicity in our model we did not include an infinite number of constants. Literals like numbers

and strings therefore have their own term constructors that we left out in the simplified grammar

presented in Figure 2a.

In our source language the sorts are Id, Number, String, Op, STerm, SForBind, ListId, ListSTerm
and ListSForBind. The sorts of the core language are Bool, Id, Number, String, Op, CTerm, ListId,
and ListCTerm. We also consider each list sort to be automatically equipped with suitable term
constructors nil𝑠 : List𝑠 and cons𝑠 : 𝑠 × List𝑠 → List𝑠 . We consider that sort SForBind is
essentially a pair of an identifier and STerm, which we may also write as Id × STerm.

Definition 3.2 (Abstract language). An abstract language (or language for short) over signature Σ
is the set of terms defined inductively with the term constructors in the signature. We write 𝑇Σ
for this set. The size of a term is the number of term constructors in it. We extend the signature
function sig to terms, we will use the same notation for the extended function, and we will use 𝑇𝜎

Σ

for terms that belong to the sort 𝜎 . We call 𝑇
𝜎𝑝
Σ

the set of program terms.

In functional programming, terms of a language can be represented with an algebraic datatype
(defining a separate type for each sort in the signature). In universal algebra terminology, an abstract
language is the free multi-sorted algebra over the signature Σ.

3.2 Semantics

As explained earlier, we model both the source and core language as black-box interpreters, which
might seem natural to model as mathematical functions from terms to result values. However, this
approach is too simplistic, since there are several complications that may arise:

• The interpreter may not be deterministic.
• The output space may not be part of the (input) language: it may contain opaque functions,
locations, or other non-observable values.
• The observable behaviour may not be reduced to an input-output pair: there could be other
side effects like I/O operations.
• Similarly, we may get errors because the source language is not defined on all terms. Some
terms may be allowed by the sort system, but still result in some kind of error. For example,
in our source language the grammar permits nonsensical expressions like SPrim(<, []).
• Some computations may not terminate. We may model the output of diverging computations
with ⊥, but for Turing-complete languages, the evaluation function is not computable.

A standard way in semantics and pure functional programming to model these complications is
using monads [Moggi 1991; Wadler 1992b]. To make sense of the composition of operations in the
learning setting (see Figure 3), we may assume that the source interpreter, the core interpreter, and

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:9

the translation we want to learn all live in the same monadM. We only consider deterministic
languages, and we assume that output values (of a successfully terminating program) are part of
the input language. In the model we assume that the evaluation function is computable, and terms
where evaluation exhausts resources (which includes time or CPU cycles and memory) evaluate
to a specific error (⊥). We assume for simplicity that for a given interpreter there is a fixed (and
sufficiently large) resource bound such that the interpreter can be modelled as a deterministic,
computable function. Moreover, we assume that side-effects on any state maintained byM (e.g.
variable assignments) are not directly observable; we only observe the final output value.

What we get through these simplifications is an interpreter that maps terms to either values (i.e.
fully-evaluated terms) or errors. We assume that the set of errors 𝐸 is shared between the source
and core languages to allow comparing the outputs. In other words, our computations take place in
the error monad over the category of total computable functions. We give a simplified definition
that suffices for our purposes:

Definition 3.3 (Error monad). Let 𝐸 be a fixed, finite set of errors that contains ⊥ and any errors
the interpreter may return (that are not part of the input language), like syntax_error. We assume
that 𝐸 is disjoint from any set of terms in any languages, and let ⊎ mean the disjoint union of
two disjoint sets. Our interpreters and translations (and translation rules) will be functions of the
form 𝑓 : 𝐴→ 𝐵 ⊎ 𝐸. We abuse notation by defining a notion of composition for such functions by
propagating the error as follows. Let 𝑓 : 𝐴→ 𝐵 ⊎ 𝐸 and 𝑔 : 𝐵 → 𝐶 ⊎ 𝐸. Then

∀𝑎 ∈ 𝐴,𝑔(𝑓 (𝑎)) =

{
𝑔(𝑏) if 𝑓 (𝑎) = 𝑏 ∈ 𝐵

𝑒 if 𝑓 (𝑎) = 𝑒 ∈ 𝐸

In the terminology of category theory this amounts to saying that these functions are morphisms
of the Kleisli category of the error monad and are composed as such.
We also silently propagate the error from the left when a function has multiple arguments. Let

𝑓1 : 𝐴1 → 𝐵1 ⊎ 𝐸, 𝑓2 : 𝐴2 → 𝐵2 ⊎ 𝐸 and 𝑔 : 𝐵1 × 𝐵2 → 𝐶 ⊎ 𝐸. Then

∀𝑎1 ∈ 𝐴1, 𝑎2 ∈ 𝐴2, 𝑔(𝑓1 (𝑎1), 𝑓2 (𝑎2)) =

𝑒1 if 𝑓1 (𝑎1) = 𝑒1 ∈ 𝐸

𝑒2 if 𝑓1 (𝑎1) = 𝑏1 ∈ 𝐵1 but 𝑓2 (𝑎2) = 𝑒2 ∈ 𝐸

𝑔(𝑏1, 𝑏2) if 𝑓1 (𝑎1) = 𝑏1 ∈ 𝐵1 and 𝑓2 (𝑎2) = 𝑏2 ∈ 𝐵2

We extend this shorthand to handle an arbitrary number of arguments.

Definition 3.4 (Semantics). An evaluation function (or interpreter) of a language 𝑇Σ is a function

𝜙 : 𝑇𝜎𝑝

Σ
→ 𝑇𝜎𝑝

Σ
⊎ 𝐸 over the terms such that:

• ∀𝑡 ∈ 𝑇
𝑝

Σ
, 𝜙 (𝜙 (𝑡)) = 𝜙 (𝑡), that is, 𝜙 is idempotent.

The members of the image of 𝜙 in 𝑇
𝑝

Σ
(that is, the image of 𝜙 apart from the errors 𝐸) are called

the values of the language, denoted by 𝑉 (𝑇Σ). A value evaluates to itself (cf. Remark 3).

3.3 Translations

In general, the sorts of the source and the core language are different, and indeed, in our example
the core language has Booleans but the source does not, while the source language has a sort for
SForBind and the added ListSForBind, and neither has a corresponding sort in the core language. Our
methods to build a search space require a partial mapping from the source sorts to the core sorts,
that preserves the sort of programs.

We assume for simplicity that the sorts of the source and core languages are subsets of a common
set 𝑆 , and that the sort of programs is common to the two languages. Another case that we may
consider is when the core language has an expressive type system, and all source language sorts

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:10 Sándor Bartha, James Cheney, and Vaishak Belle

are mapped to some type in the core language, in other words the source language is embedded
into a typed core language. We also leave this variant of the problem for future investigations.

Translations take place in the same error monad as interpreters: this lets us compose them with
the interpreters. Translations can naturally return errors. If evaluating a source term results in
a syntax error, then we may not want to map it into the core language, we may simply want to
translate it directly into the syntax error. For example, our intended translation in Figure 2a does not
give a mapping for a term with constructor SPrim and zero arguments. We may imagine the source
interpreter raising a syntax error in this case, and it is more natural for the translation to raise the
same syntax error directly, since in the core language there are no corresponding constructs that
result in a syntax error in the core interpreter.

Definition 3.5 (Translation). Let us have a source language 𝑇Σ and a core language 𝑇Ω , where the
signatures share the set of sorts 𝑆 . We will refer to sort-preserving functions 𝛿 : 𝑇Σ → 𝑇Ω ⊎ 𝐸 as
translations.

Definition 3.6 (Interpretation). Let 𝑇Σ be the source and 𝑇Ω the core language, again with a
common set of sorts. Let 𝑓 ∈ FΣ be a term constructor with signature 𝑓 : 𝜎1 × · · · × 𝜎𝑛 → 𝜎 . Then
we will call members of the function space 𝑇𝜎1

Ω
× · · · ×𝑇𝜎𝑛

Ω
→ 𝑇𝜎

Ω
⊎ 𝐸 interpretations of 𝑓 over the

signature Ω. When 𝑓 : 𝜎 (𝑓 is constant), then an interpretation is simply an element of 𝑇𝜎
Ω
⊎ 𝐸.

Definition 3.7 (Compositional translation). Let 𝑇Σ be the source language and 𝑇Ω be the core
language. An interpretation of the source signature Σ into the target language 𝑇Ω is a function 𝜋

that assigns an interpretation to every term constructor 𝑓 ∈ FΣ over the signature Ω. We refer to
𝜋 (𝑓) as a translation rule for 𝑓 in 𝜋 .
An interpretation of the source signature defines a sort-preserving function 𝛿 : 𝑇Σ → 𝑇Ω ⊎ 𝐸

from source to core terms using structural recursion. We will call such translations compositional.
In functional programming terms these are łfoldsž (or more precisely, traversals), over the datatype
defined by Σ.

Remark 2. Note that in our intended translation of the example languages SPrim has two rules. This

poses no problem in kle’s original model: tree transducers, if the tree transducer is not deterministic.

But in our model we always assume one translation rule per term constructor, and the rule for SPrim

can only be expressed by case analysis on lists.

3.4 Correctness

Definition 3.8 (Soundness). Let 𝑇Σ and 𝑇Ω be two languages, with two evaluation functions ΦΣ

and ΦΩ , respectively. A translation 𝛿 : 𝑇Σ → 𝑇Ω ⊎ 𝐸 is sound iff (cf. Figure 3)

∀𝑡 ∈ 𝑇
𝑝

Σ
,ΦΩ (𝛿 (𝑡)) = 𝛿 (ΦΣ (𝑡))

Remark 3. A sound translation maps values to values or errors: if 𝑣 ∈ 𝑉 (𝑇Σ), then ΦΣ (𝑣) = 𝑣 , and

since 𝛿 is sound, ΦΩ (𝛿 (𝑣)) = 𝛿 (ΦΣ (𝑣)) = 𝛿 (𝑣), which means that 𝛿 (𝑣) is either a value or an error.

Definition 3.9 (Adequacy). Let 𝑇Σ and 𝑇Ω be two languages, with two evaluation functions ΦΣ

and ΦΩ , respectively. A translation 𝛿 : 𝑇Σ → 𝑇Ω ⊎ 𝐸 is adequate iff

∀𝑣 ∈ 𝑉 (𝑇Σ), 𝛿 (𝑣) ∈ 𝑉 (𝑇Ω) and ∀𝑣1, 𝑣2 ∈ 𝑉 (𝑇Σ), 𝑣1 ≠ 𝑣2 =⇒ 𝛿 (𝑣1) ≠ 𝛿 (𝑣2)

that is, 𝛿 maps values to values and it is injective when restricted to values.

Definition 3.10 (Correctness). We will call a sound and adequate translation correct.

In practice we cannot test these conditions, provided the source language is Turing-complete, by
Rice’s theorem since correctness is a nontrivial program property. We define notions approximating

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:11

correctness with a set of source programs: a test set. In a more general setting, we may assume
that Ð putting non-termination aside Ð we can choose to evaluate arbitrary source language terms
during the algorithm. Our approach abstracts away from the choice of the test set.

Definition 3.11 (Correctness with respect to a test set). Let 𝑇Σ and 𝑇Ω be two languages with
evaluation functions ΦΣ and ΦΩ , respectively. Let I ⊂ 𝑇

𝑝

Σ
be a subset of programs of the source

language. A translation 𝛿 : 𝑇Σ → 𝑇Ω is sound with respect to the test set I iff

∀𝑡 ∈ I,ΦΩ (𝛿 (𝑡)) = 𝛿 (ΦΣ (𝑡))

A translation is adequate with respect to the test set I iff

∀𝑡 ∈ I,ΦΣ (𝑡) ∉ 𝐸 =⇒ 𝛿 (ΦΣ (𝑡)) ∉ 𝐸 and

∀𝑡1, 𝑡2 ∈ I,ΦΣ (𝑡1) ≠ ΦΣ (𝑡2) =⇒ ΦΩ (𝛿 (𝑡1)) ≠ ΦΩ (𝛿 (𝑡2))

A translation is correct with respect to the test set I iff it is sound and adequate with respect to I.

Remark 4. Although we assumed above that all values are representable, languages with non-

representable values could be handled by requiring that the example programs do return a representable

value. A more difficult question is how to deal with nondeterminism or observable side-effects (e.g. due

to concurrency or I/O); as far as we know all approaches to tested semantics rely on repeatable (i.e.

deterministic) tests.

3.5 Sublanguages

Our main idea is that compositional translations can naturally be partitioned along with the
language. First we define the notion of sublanguage and language extensions, and then the extension
of compositional translations.

Definition 3.12. (Sublanguage) A signature Σ
′
= (𝑆, FΣ′, sigΣ′) is a subsignature of signature

Σ = (𝑆, FΣ, sigΣ), denoted as Σ′ ⊆ Σ, if

FΣ′ ⊆ FΣ and ∀𝑓 ∈ FΣ′, sigΣ′ (𝑓) = sig
Σ
(𝑓) .

Let ΦΣ be the evaluation function of the language 𝑇Σ. We will call 𝑇Σ′ the sublanguage of 𝑇Σ, if it
is closed with respect to the evaluation function, that is:

Σ
′ ⊆ Σ and ∀𝑡 ∈ 𝑇Σ′,ΦΣ (𝑡) ∈ 𝑇Σ′ ⊎ 𝐸 .

We will also call Σ an extension of Σ′ and similarly 𝑇Σ an extension of 𝑇Σ′ .

Definition 3.13 (Extension of a compositional translation). Let 𝑇Σ′ be a sublanguage of 𝑇Σ, and let
𝑇Ω be our target language. Let 𝜋 ′ be an interpretation of Σ′ into 𝑇Ω . We will call an interpretation
𝜋 of Σ into 𝑇Ω an extension of 𝜋 ′ if it assigns the same interpretation to every term constructor in
the sub-signature:

∀𝑓 ∈ FΣ′, 𝜋
′(𝑓) = 𝜋 (𝑓)

We will also call the compositional translation 𝛿 defined by 𝜋 an extension of 𝛿 ′ defined by 𝜋 ′.

We intend to consider different hypothesis spaces (i.e. sets of possible desugaring rules to consider).
We also might want to consider different hypothesis spaces for different language extensions.

Definition 3.14 (Hypothesis space). Let us fix 𝑇Σ as our source language and 𝑇Ω as our target
language. Let 𝑇Σ′ be a sublanguage of 𝑇Σ. The hypothesis space corresponding to the signatures Σ,
Σ
′ and Ω is an enumerable set of interpretations (into 𝑇Ω) for each term constructor 𝑓 ∈ FΣ \ F

′
Σ
.

We will useH to stand for our chosen hypothesis space, andH 𝑓 for the set of interpretations
the hypothesis space assigns to the term constructor 𝑓 .

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:12 Sándor Bartha, James Cheney, and Vaishak Belle

When the source language, its sublanguage, the target language, the interpretation of the sublan-
guage into the target language and a hypothesis space is understood, we will call a compositional
translation that is an extension of the interpretation of the sublanguage and generated by interpre-
tations belonging to the hypothesis space a desugaring.

3.6 The Desugaring Extension Problem

We can finally define the sub-task: extending a desugaring from a sublanguage to a larger portion
of the language.

Definition 3.15 (Desugaring extension problem). The learning task is defined as follows:

Inputs:

• A signature Σ of the source language, and a signature Ω of the target language.

• A finite test set of example input terms of the source language: I ⊂ 𝑇
𝜎𝑝
Σ

, and their corre-
sponding outputs according to an evaluation function ΦΣ.
• A black-box evaluation function ΦΩ for the language 𝑇Ω .
• A subset signature Σ′ ⊂ Σ, that defines a sublanguage 𝑇Σ′

• A hypothesis spaceH for the sublanguage 𝑇 ′
Σ
.

• A correct translation defined on the sublanguage: 𝛿 ′ : 𝑇Σ′ → 𝑇Ω .

Output: A desugaring 𝛿 : 𝑇Σ → 𝑇Ω , such that:

• 𝛿 is an extension of 𝛿 ′

• ∀𝑓 ∈ FΣ \ FΣ′ , the translation rule of 𝑓 in 𝛿 belongs to the hypothesis spaceH 𝑓

• 𝛿 is correct with respect to the test set I.

In the desugaring extension problem we have the interpretation of the sublanguage’s term
constructors as input, and we are searching for the rest of the term constructors’ interpretations.
The main differences between our task and the task described (in an informal manner) by kle are:

• We assume that the desugaring rules may be partially known.
• We explicitly use multi-sorted terms and sort-preserving translations.
• We assume that the test set of source programs I is given as input, and the source language
interpreter may not be called on inputs outside of I.

The first two points restrict the search space so that we can define feasible tasks, and the last
one simplifies the setting of our search problem.
Our example task as depicted in Figure 2 can also be seen as an instance of the desugaring

extension problem. The sublanguage 𝑇Σ′ is the language only containing literals (numbers, strings),
identifiers and operation symbols, as their translation is fixed in advance (not included in the
intended translation); the extended language is the full Pidgin source language. However, to the
best of our knowledge it is not known how to solve this problem as the search space is too large.
Therefore we divide it into a series of desugaring extension problems.

3.7 Sequential Learning

Let us assume that we are looking for the full desugaring of a source language 𝑇Σ into a target
language 𝑇Ω . The user should divide the language into an increasing series of sublanguages:

Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σ𝑛 = Σ

where, for every 𝑛 ∈ [1 . . . 𝑛] , 𝑇Σ𝑛−1 is a sublanguage of 𝑇Σ𝑛 . Assume that we know the translation
for Σ0 (which typically contains literals and operations for primitive types). The user also needs to
provide a hypothesis spaceH𝑖 and a test set I𝑖 for each sub-task.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:13

Right now we do not investigate how we can obtain suitable partitioning of the language, or
suitable test sets; we assume they are part of the user input.

Definition 3.16 (Sequential desugaring learning problem). The definition of the full learning task:

Inputs:

• A signature Σ of the source language, and a signature Ω of the target language.
• A series of sub-signatures: Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σ𝑛 = Σ where, for every 𝑘 ∈ [1 . . . 𝑛] , 𝑇Σ𝑘−1 is a
sublanguage of 𝑇Σ𝑘 .
• A series of finite test sets I𝑘 ⊂ 𝑇Σ𝑘 for every 𝑘 ∈ [1 . . . 𝑛], and their corresponding outputs
according to an evaluation function ΦΣ.
• A black-box evaluation function ΦΩ for the core language 𝑇Ω .
• Hypothesis spacesH1, . . . ,H𝑛 .
• A desugaring defined on the minimal sublanguage: 𝛿0 : 𝑇Σ0 → 𝑇Ω that is correct on 𝑇Σ0 .

Output: A desugaring 𝛿 : 𝑇Σ → 𝑇Ω , such that

• 𝛿 is an extension of 𝛿0
• ∀𝑘 ∈ [1 . . . 𝑛],∀𝑓 ∈ FΣ𝑘 \ FΣ𝑘−1 , the translation rule of 𝑓 in 𝛿 belongs to the hypothesis

spaceH
𝑓

𝑘
• 𝛿 is correct with respect to the full test set

⋃
𝑘∈[1...𝑛] I𝑘 .

Note that the sequential desugaring learning problem is almost the same as the desugaring
extension problem, we merely added some additional inputs that divide the search space, so we
partition one desugaring extension problem into a series.

3.8 Conditions of a Solution

We conclude this section with a short discussion of research questions entailed by our approach.

Do solutions exist? Can we solve sequential problems by composing solutions one extension at a

time? Some desugaring extension problems may not have a solution, since the chosen hypothesis
space may not contain the intended desugaring. But even if a correct desugaring exists, it is
possible that the given partial desugaring (while being correct on the sublanguage) can not be
extended to a correct full desugaring. The reason is that some state or value may not be accessible
in the sublanguage, which makes some globally bad translations correct when only tested on the
sublanguage. For example, desugaring a conditional if X then Y else Z expression into Y could
be correct in the sublanguage, if in the sublanguage all Boolean expressions evaluate to true. Further
examples are desugaring a try-catch expression simply to the main body in a sublanguage without
exceptions, or desugaring a fst selector of a pair to an error value in a sublanguage without pairs.
This means that a naive, greedy strategy for solving a sequential problem might not work: we might
commit to the wrong semantics for a sublanguage too early, making later extensions impossible.
These silly examples seem pathological, but in practice, it seems likely that a work-in-progress
semantics will be in such a łstuckž state most of the time, so understanding and finding ways of
mitigating this situation is a major challenge.

Are solutions unique? In program synthesis, especially in inductive (example-based) synthesis, it
is a common problem that there are multiple programs that satisfy the specification (see [Gulwani
et al. 2017], chapter 7.4). Our task is similar: not only could semantically different translations be
correct with respect to the finite test set, but even correct translation rules often can be expressed
multiple, semantically equivalent ways. These equivalent programs can often be transformed
into each other by semantics-preserving transformations, like swapping the two branches of a

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:14 Sándor Bartha, James Cheney, and Vaishak Belle

conditional expression and negating the condition, etc. Our task has a special ambiguity of this kind,
that not only concerns the individual translation rules but the whole translation. The reason is that
languages often have (many) symmetries: that is, correct, invertible translations into themselves. A
composition of two correct translations is still correct, so such symmetries induce many equivalent
but syntactically different desugarings. Swapping two branches of the conditional is just the special
case of the well-known symmetry of the Boolean language that exchanges true and false. It is
possible to map Boolean constants to the opposite values, switch the and and or logical operations,
and switch the order of the branches of the if conditional, extending the transformation form an
individual translation rule to the whole translation.

Can we devise test sets that ensure correctness? It is also possible that there are multiple, semanti-
cally inequivalent solutions that are correct with respect to the given test set, but not all of them
are correct with respect to the whole source language. A question that arises is whether there a
finite test set I such that if a translation is correct with respect to I then it is correct with respect
to the whole source language? Assuming opaque evaluation functions such a test set may not exist.
What reasonable assumptions can we make about the languages to ensure that such test sets exist?
Moreover, when do small test sets exist (where the size of a test set is the sum of the size of its
elements), so that we can find a correct desugaring not just in theory, but in practice with extensive
testing? In particular, since our approach currently places the burden of designing a good test set
on the user, it is an interesting question whether (and how) we could also automate the process
of synthesising such test sets, perhaps in a counterexample-guided inductive synthesis (CEGIS)
loop [Jha et al. 2010; Solar-Lezama et al. 2005].

Can desugaring learning problems be decomposed into feasible sequential extension problems?

A final, and perhaps most important, question is: what is the exact semantic condition for the
existence of a partitioning of the source language into a series of sublanguages such that each
desugaring extension problem is feasible and collectively they lead to a solution of the full problem?
For example, such that each extension is small (contains less than𝑛 term constructors for some small
𝑛), extensions of partially correct translations exist in each step, and the extension can be found
with a small test set. This seems like an inherently empirical and language-dependent question
and in the rest of this paper we present experimental results investigating this question for the
challenge problem.

4 SEARCHING FOR DESUGARINGS

4.1 The Algorithm

We use a simple enumerative synthesis algorithm to solve our sub-tasks (the desugaring extension
problems). A sequential problem is solved greedily, using the solution in each step as the input
desugaring to the next step.
The algorithm sequentially tests each desugaring of the enumeration 𝐸H until a correct one is

found or we reach a timeout. The test condition directly corresponds to our definition of correctness
with respect to the test set I: we test soundness for every test program, and test adequacy by
testing whether the number of distinct outputs (values or errors) we get by either the source or the
target interpreter is equal. If they are, this, together with the already tested soundness, ensures the
injectivity of the translation on the values obtained from the test set.

The main complexity of this simple algorithm lies in the definition (and efficient implementation)
of the enumeration of desugarings 𝐸H . Indeed, the main point of the algorithm is to reduce the
problem to an enumerative search: to the definition of a hypothesis space and an enumeration

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:15

of that hypothesis space. We might choose different hypothesis spaces for different desugaring
extension sub-problems, based on domain knowledge.

In the rest of the section we define various hypothesis spaces of increasing expressiveness. The
hypothesis spaces (sets of interpretations) are defined inductively, parametrised by a given source
signature 𝜎1 × · · · × 𝜎𝑛 → 𝜎 . The full translation is generated by a tuple of such interpretations
for each term constructor in Σ \ Σ′. We will not investigate different enumeration strategies: our
enumerations are the same that we would get by breadth-first search (but we use a more efficient
implementation, to be discussed in Section 5).

4.2 Relabelling

The simplest hypothesis space we will consider, Hrelabel, is formed by the term constructors of
the target language. WithHrelabel we can express desugarings which map each constructor of the
source language to a term constructor of the target language of the same signature: a relabelling.
Note that any arguments of the source term constructor are translated recursively and the order of
arguments cannot be changed. We will call the desugaring extension problem specialised toHrelabel

the relabelling problem.
In our intended translation many rules can be expressed as relabellings: in fact all of them except

but STrue, SFalse, SPrim, SBetween, and SFor can:

JSNum(𝑛)K = CNum(J𝑛K)
JSVar(𝑛)K = CVar(J𝑛K)

...
...

...

JSListCase(𝑡1, 𝑡2, 𝑡3)K = CListCase(J𝑡1K, J𝑡2K, J𝑡3K)

Of course there are also translation rules inHrelabel that are not correct (and therefore not our
intended translation):

JSLetRec(𝑖, 𝑡1, 𝑡2)K = CLet(𝑖, J𝑡1K, J𝑡2K)

This example shows that even if we assume that the intended translation is a relabelling we
still may need appropriate test cases that rule out incorrect translations, and they are not always
completely trivial to find. To distinguish between the recursive and non-recursive let construct
we need an example which actually behaves recursively when interpreted as letrec.

4.3 Substitution

The next hypothesis space,Hsubst, is defined by terms with variables and substitution.

Definition 4.1 (Terms with variables). Let 𝑇Ω be an abstract language over signature Ω(𝑆, F , sig),
where 𝑆 = {𝜎1, . . . , 𝜎𝑛}. Let a function 𝜌 : 𝑆 → N assign a natural number to every sort in the
signature. Let 𝑋 𝜌 be a finite set of variables, containing 𝜌 (𝜎) variables for every sort 𝜎 :

𝑋 𝜌
= {𝑥𝜎11 , . . . , 𝑥𝜎1

𝜌 (𝜎1)
, · · · , 𝑥𝜎𝑛1 , . . . , 𝑥𝜎𝑛

𝜌 (𝜎𝑛)
}

and disjoint from F . Extend the signature function to the new variables as

∀𝜎 ∈ 𝑆,∀𝑖 ∈ [1 . . . 𝜌 (𝜎)], sig(𝑥𝜎𝑖) = 𝜎

We denote the the set of terms with variables from 𝑋 𝜌 as𝑇Ω (𝑋
𝜌). The terms of𝑇Ω (𝑋

𝜌) are called
terms with variables over the language 𝑇Ω . A term 𝑡X𝜌 ∈ 𝑇Ω (X

𝜌) defines a function by substituting
the arguments into the variables. We will refer to translations (and interpretations) that can be
expressed by terms with variables as substitutions.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:16 Sándor Bartha, James Cheney, and Vaishak Belle

Let 𝑓 ∈ FΣ, and let 𝜌 𝑓 (𝜎) be the number of times 𝜎 occurs in the domain of the signature of 𝑓 .

The hypothesis space is defined asH 𝑓
= 𝑇Ω (X

𝜌𝑓).
Every relabelling is a substitution. The resulting task is close to the formulation of kle, who

suggested modelling desugarings as tree transducers [Comon et al. 2007]. The translations defined
by translation rules inHsubst are also definable by a deterministic top-down tree transducer:Hsubst

guarantees that the output of a translation is well-typed according to the core language’s signature
(corresponds to the grammar), and that the translation preserves the sorts.

A further difference is that in our hypothesis space a term constructor determines the translation
rule. The two translation rules for SPrim can not be expressed in this hypothesis space. Expressing
the two rules for SPrim is possible with a bottom-up tree transducer or a non-deterministic top-down
tree transducer (both of which are more expressive than deterministic top-down tree transducers),
but requires additional states that do not correspond to the sorts defined by the grammar.

While this hypothesis space is much more expressive than relabellings, only two additional rules
of the example intended translation can be covered:

JSTrueK = CBool(true) JSFalseK = CBool(false)

The main reason is that the Pidgin source and core languages were specifically chosen by kle to
show potential problems with modelling the translation with a tree transducer. In the following
section, we introduce one of our main contributions, a simple model which can express all of
Pidgin’s translation rules, as well as the multiple rules for SPrim.

4.4 Meta-program Templates

In general, the translations could be written in an appropriate meta-language, which could easily
express all intended translation rules. But synthesising translation rules in a general purpose
language is a very challenging task: we are looking for the most restricted hypothesis space that
can still express the translations. As a middle ground, we consider extending the former hypothesis
spaceHsubst with a fixed finite set of templates, written in a general-purpose meta-language that
allows expressing the remaining cases.
In our current approach, it is up to the user to determine the set of templates used at an

individual learning step. Our contribution is a general framework (implemented as a library) that
can incorporate various templates and provide an enumeration of all well-typed translations formed
by them. We demonstrate the technique with a set of templates we wrote for the Pidgin languages.

To formally describe the new systemHmeta, we start with the re-formulation ofHsubst as deductive
rules, in a sequent calculus style, shown in Figure 4. Our judgements describe meta-language
programs. They are of the form Γ ⊢ 𝑡 : 𝜎 , where Γ is the context (variable declarations, the
argument names and their sorts), 𝑡 is a term of the meta-language describing a translation rule, and
𝜎 is a sort of the output. The context is a set of pairs of variables with their corresponding sort in the
form of 𝑥 : 𝜎 , where 𝑥 is a meta-variable name (not an identifier in the source or core languages),
and 𝜎 is a sort. Γ will range over such contexts, and we extend a context Γ with additional variable
declarations 𝑥 : 𝜎1 and 𝑦 : 𝜎2 as Γ;𝑥 : 𝜎1, 𝑦 : 𝜎2. We identify 𝛼-equivalent meta-terms. In the
implementation the meta-variable names in the context Γ are determined by the signature (the
set of sorts), but in the presentation we avoid this complication. Note that this only concerns the
meta-variables, and not any identifiers (if present) in the core language: we did not assume to know
the 𝛼-equivalence relation of the core language (if any).

Enumerating all translation rules corresponding to a source signature 𝜎1 × · · · × 𝜎𝑛 → 𝜎 is thus
implemented as enumerating all proofs of the judgement 𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛 ⊢ 𝑡 : 𝜎 . This way we
reduce the desugaring extension problem to enumerative synthesis, that allows us to compare
various hypothesis spaces and enumeration strategies.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:17

𝜎1, . . . , 𝜎𝑛, 𝜎 ∈ 𝑆

𝑓 ∈ F

𝑡 ::= 𝑥 | 𝑐 | 𝑓 (𝑡1, . . . , 𝑡𝑛)

Axiom
Γ;𝑥 : 𝜎 ⊢ 𝑥 : 𝜎

𝑐 : 𝜎
C-rule

Γ ⊢ 𝑐 : 𝜎

Γ ⊢ 𝑡1 : 𝜎1 · · · Γ ⊢ 𝑡𝑛 : 𝜎𝑛 𝑓 : 𝜎1 × · · · × 𝜎𝑛 → 𝜎
F-rule

Γ ⊢ 𝑓 (𝑡1, . . . , 𝑡𝑛) : 𝜎

Fig. 4. Terms with variables as proofs

𝑡 ::= · · · | let 𝑖 = gensym() in CLet(i, 𝑡1, 𝑡2)

𝑀, 𝑁 ::= 𝑡 | let (𝑥1, 𝑥2) = unzip(𝑥) in𝑀 | syntax_error | case𝑦 of [] → 𝑀 ; (𝑥 : 𝑦) → 𝑁 : 𝜎 ′

˜

Γ;𝑥1 : [𝜎1], 𝑥2 : [𝜎2] ⊢ 𝑀 : 𝜎
Unzip

Γ;𝑥 : [𝜎1 × 𝜎2] ⊢ let (𝑥1, 𝑥2) = unzip(𝑥) in𝑀 : 𝜎
Throw

Γ ⊢ syntax_error : 𝜎

Γ ⊢ 𝑀 : 𝜎 ′ Γ;𝑥 : 𝜎,𝑦 : [𝜎] ⊢ 𝑁 : 𝜎 ′
Case

Γ;𝑦 : [𝜎] ⊢ case𝑦 of [] → 𝑀 ; (𝑥 : 𝑦) → 𝑁 : 𝜎 ′

Γ ⊢ 𝑡1 : CTerm Γ;𝑥 : CTerm ⊢ 𝑡2 : CTerm
Fresh

Γ ⊢ let 𝑖 = gensym() in CLet(i, t1, t2 [CVar(𝑖)/𝑥]) : CTerm

Fig. 5. Rules for meta-program templates

We could have chosen different styles of sequent calculus to describe the same system. Our style
has the big advantage that proofs and terms (with variables) directly correspond to each other:
there are no permutations of the proof rules that yield effectively the same terms, thus enumerating
the terms is much easier.

Now that we have expressed our translations as proof terms, we can extend them with arbitrary
templates from a functional meta-language. Figure 5 shows some possible meta-program templates
added as derivation rules. We use two kind of templates.

The first group are meta-programs that act on the source terms: we call them left-rules since they
operate on the left side of the judgement. We may note that some sorts are structurally equivalent
to lists or tuples of other sorts, and use them as such in the meta-programming language. For
example, we introduced ListSForBind for a list of terms belonging to the sort SForBind, while the sort
SForBind itself is structurally equivalent to a tuple of an identifier and a source term. This allows
us to use functions like unzip. In the presentation we used the notation [𝜎] to mean a sort that
is structurally equivalent to a list, and 𝜎1 × 𝜎2 to mean a sort that is structurally equivalent to a
tuple. The first rule, Unzip, turns a list of tuples into two lists. With this primitive operation we
can express the rule for SFor. The Case rule allows us to destruct a list, and allows us to express
the two rules for SPrim (distinguished by the number of children) as one. But the Case rule alone
is not sufficient, as we need to do something when the list of children is empty, which is allowed
by our source grammar, but results in an error in the source language interpreter. To represent
compile-time errors not caught by the grammar we introduce a meta-program for syntax errors.
Note that this assumes that translation rules are performed in the error monad: compile time errors
are observable side-effects, and we need a way to express them.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:18 Sándor Bartha, James Cheney, and Vaishak Belle

The second group are meta-programs that encode typical core program templates. This technique
is currently demonstrated by a single rule: the Fresh rule demonstrates fresh name generation,
which allows us to express the translation rule for SBetween. The meta-function gensym() generates
unique identifiers for the core language, which are bound to a meta-language variable 𝑖 . We use this
fresh variable as the local variable introduced by CLet, and in the scope of the variable we replace
the meta-argument with dereferencing it. This rule relies on additional domain knowledge: the
binding and scoping information of the core language (but can be auto-generated if this information
is available in addition to the grammar). Note that in the scope we only allow dereferencing the
identifier as a variable (CVar(i)), not to use it in arbitrary positions identifiers may occur, for
example as a local variable introduced by a CLam.
UsingHmeta, we can express the remaining desugaring rules.

JSBetween(𝑡1, 𝑡2, 𝑡3)K = let 𝑖1 = gensym() in CLet(𝑖1, J𝑡1K,
let 𝑖2 = gensym() in CLet(𝑖2, J𝑡2K,
let 𝑖3 = gensym() in CLet(𝑖3, J𝑡3K,
CPrim2(∧, CPrim2(<, CVar(𝑖1), CVar(𝑖2)), CPrim2(<, CVar(𝑖2), CVar(𝑖3))))))

JSPrim(o, 𝑡𝑠)K = case J𝑡𝑠K of [] → syntax_error;

(𝑡1 : 𝑡𝑠1) → case 𝑡𝑠1 of [] → CPrim1(o, 𝑡1);

(𝑡2 : 𝑡𝑠2) → case 𝑡𝑠2 of [] → CPrim2(o, 𝑡1, 𝑡2);

(_ : _) → syntax_error

JSFor(𝑡1, 𝑏𝑠, 𝑡2)K = let (𝑖𝑑𝑠, 𝑡𝑠) = unzip(J𝑏𝑠K) in
CApp(J𝑡1K, [CLam(ids, J𝑡2K), CList(ts)])

Note that we could have included a more general rule instead of Fresh:

Γ;𝑦 : Id ⊢ 𝑀 : CTerm
Fresh

′

Γ ⊢ let𝑦 = gensym() in𝑀 : CTerm

This version only relies on gensym being a meta-function generating identifiers. It is possible to
express the intended translation with the more general Fresh′ rule. This version, however, blows
up the search space as fresh names could be generated anywhere. In our scope-aware version we
relied on the domain knowledge that fresh names only need to be introduced in language constructs
that bind new names, and only allowed to be used as variable references in the scope of the binding.
This can be extended to other name-binding constructs, and Fresh can be seen as an example of a
general pattern: we will show two other examples of it in Section 6.

But introducing the meta-rules breaks the nice property of the correspondence between proofs
and translations: there aremultiple proofs corresponding to essentially the same translation, because
the left rules such as Unzip or Case can be permuted with the right rules and the core constructors.
This prevents us to efficiently enumerate such programs with our simple enumeration algorithm,
and results in the explosion of the search space.

We remedy the problem by restricting the order of the templates by layering. Note that the left
rules can always be pulled to the top of the term: in the meta language the left rules are functions
while the rest are data. (To be precise the Fresh rule contains both, but it does not affect the
uniqueness of the translation.) We divide the rules to right rules (the Axiom, the C-rule, the F-rule
and the Fresh rule) and left rules (Unzip, Case, and Throw rules), and require that left rules are
never used in the sub-terms (premises) of a right rule. This layering does not completely solve the
problem: there still could be permutations amongst the left rules that lead to identical translations,
but it is hard to exclude them without analysing the rules.
As a summary, we may speculate how much user assistance is needed to set up the necessary

meta-rules. We can identify three general patterns: to deconstruct source terms (Case), to allow
compile time errors (Throw) and to generate fresh names in binding positions (Fresh). We can

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:19

imagine these meta-rules to be auto-generated. But our last meta-rule, Unzip, does not completely
fall into these patterns, and shows that in some cases more user assistance is needed.

4.5 Restricting and Combining Hypothesis Spaces

The last hypothesis space, Hmeta, contains every intended translation rule. But this hypothesis
space is too large for our simple enumerative algorithm, and in some test cases we failed to learn
the intended desugaring rule within our timeout of 1 hour on the test machine. We introduce two
techniques, layering and restriction, to define subsets ofHmeta.
We have already used layering to prune some equivalent translations from the enumeration.

We allow the user to specify additional layers. One natural additional layer is to only allow the
Fresh rule (and similar fresh identifier introducing rules) at the top (below left rules, but above core
term constructors). The reasoning is similar: it is likely that these rules would be at the top if we
could convert core language terms to 𝛽-normal form. However, unlike the meta-language, the core
language is a parameter of the problem, and in general we do not know its equivalence relation.
Therefore we handle the layer for the left rules as fixed, while leaving introducing a layer for the
Fresh rule in the hands of the user, who can leverage domain knowledge of the core language.
Layering alone is still not enough, and another straightforward technique to define a subset

ofHmeta is to only allow a subset of rules. We allowed the user to restrict meta-rules to a subset,
relying on domain knowledge. This is not surprising: a typical core language, even our simplified
Pidgin core, is much larger than the DSLs targeted by successful program synthesis methods.

In the desugaring extension problem we may need to search for the translation rules of multiple
term constructors at the same time. We currently always use fair interleaving: without domain
specific knowledge about the languages we can not assume a bias which will generalise well.

5 IMPLEMENTATION

WeusedHaskell to carry out our investigations.Writing test cases requires implementing source and
core languages, translations between them, enumerations of such translations, and implementing
the search algorithm.
The implementation of the small source and core languages involved in the tests as embedded

languages is standard (simplified versions of these implementations are shown in the companion
technical report [Bartha et al. 2021]). To deal with non-terminating programs we implemented
bounded evaluation (limiting the number of steps allowed in the interpreter).
The implementation of the simple linear search over the enumerations based on the testing

framework shown in Figure 3 is also straightforward. The crucial part of the implementation,
which we discuss in some detail, is the implementation of the enumeration of the translations, in
particular, how to enumerate efficiently the proofs ofHmeta.
We have implemented a library that can efficiently enumerate the proof terms generated by

arbitrary rules corresponding to our sequent calculus-like formalism. The user of the library can
write arbitrary Haskell functions that either operate on the source language terms or serve as
templates for core language terms, corresponding to our two types of meta-rules. The sequent
calculus rules ensure that the library only enumerates well-typed terms.

We tested depth-first search and iterative deepening, but they proved to be too memory intensive
and slow. Our current solution builds on the FEAT Haskell library [Duregård et al. 2012], that
provides efficient functional enumerations of algebraic data types (ADTs) out of the box.
Proofs of judgements of the form 𝑥1 : 𝜎1, . . . , 𝑥𝑚 : 𝜎𝑛 ⊢ 𝑇 : 𝜎 can not be represented naturally

by an ADT. We want to restrict meta-variables to those that are available in the environment
𝑥1 : 𝜎1, . . . , 𝑥𝑚 : 𝜎𝑛 , and we would need a separate ADT for each environment in order to enforce
this. But meta-rules can introduce new environments. We implemented environment-dependent

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:20 Sándor Bartha, James Cheney, and Vaishak Belle

enumerations relying on the library primitives, and we used memoisation and cached the generated
enumerations for the given environment. The enumerations are recursive in a non-trivial way and
our implementation quickly exhausted available memory without this optimisation.

The enumerative search is embarrassingly parallel, and we expect a fully parallel implementation
to help a lot. So far we only did a preliminary investigation of parallelism relying on Haskell’s
deterministic parallelism capabilities [Marlow et al. 2009], and while it clearly speeds up the search,
most likely better performance could be achieved with a more fine tuned parallel implementation.
Our experiments report timings with deterministic parallelism employed. In recent versions of
GHC the garbage collector can exploit multiple cores: we also enabled this optimisation for the
compiler. The code to reproduce our case studies is available at http://10.5281/zenodo.5475211.

6 EVALUATION

We evaluate our approach and the enumeration synthesis library on three case studies. The first
is the Pidgin languages that we used to demonstrate our approach throughout the paper. As a
preliminary exploration of how well the method generalises, as well as to demonstrate some
limitations of our approach, we extend the Pidgin languages with two sets of language constructs:
list comprehensions and exception handling. We extend both the core language and the source
language, and investigate whether we can extend our sequential learning algorithm to the new
cases seamlessly. Our experiments were run on a Intel E3-1245v5 @ 3.50GHz with 8 cores and 32
GB RAM, running Debian Linux 10 and GHC 8.8.4.

6.1 Hypothesis

Our hypothesis is that for the challenge problemwe can set up a sequential learning task where each
individual desugaring extension problem can be solved with our enumerative synthesis algorithm
and combined to solve the overall problem. Moreover we also hypothesise that when we extend the
core and source languages with new constructs we can extend the sequential learning task with
new steps as well, and solve these new desugaring extension problems with the same algorithm.

As the hypothesis space is a parameter of the algorithm (and the desugaring extension problems)
and ultimately in the hand of the user, it is hard to measure how well the method generalises:
on one hand, we can set up a hypothesis space that only contains the intended translation as a
meta-rule, and on the other hand we could fill the hypothesis space with so many meta-rules that
enumerative search is hopeless. Our method was to start with a (to us) natural hypothesis space,
and in the cases where we were not able to get results within a 1 hour timeout, we repeated the test
with additional user assistance. While we do report various metrics from our tests, we think the
amount of user assistance needed for each step to successfully complete is the most useful metric
for an envisioned semi-automated assistant.

6.2 Pidgin Languages

Setup. The Pidgin source and core languages was shown in Figure 2a. We assumed that part of the
translation is known in advance. The sublanguage Σ0 contains numbers, strings, identifiers and the
constructors for lists, and we assumed that their translation is known (which means that numbers,
strings and identifiers and list of identifiers are preserved, and lists of source terms are translated
to lists of core terms by individually translating the elements).

Hypothesis space.The starting hypothesis spaceH 1 contained all core term constructors, including
list constructors for term and identifier lists. It did not contain number, string or identifier constants.
In general, we do not want to allow such constants in the hypothesis space: they rarely occur in
desugaring rules and they blow up the search space. However, we need the Boolean constants
true and false, which is clear, since the Boolean sort is not part of the source language. We also

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

http://10.5281/zenodo.5475211

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:21

included all operators, which requires some domain knowledge about their role: while operators are
constants, they correspond to various functions. The hypothesis space also contained all meta-rules
listed in Figure 5: Case, Throw, Unzip and Fresh.

We also use a second, specialised hypothesis spaceH 2. This hypothesis space only allowed the
core term constructors CVar and CPrim2, the meta-rule Fresh, and all constants fromH 1, reducing
the size of the hypothesis space significantly.
Results. We run the first test with H 1, and we found all intended translation rules within the

time limit but one: this test did not find the intended desugaring for SBetween.
We run a second test where we replaced the desugaring extension problem for SBetween (step

Σ7) based on H 1 with a new one based on H 2. The new sequential learning task gives us a full
solution of the challenge problem. It is summarised in Table 1.

Table 1. Case study – Pidgin languages

Task New constructors Hyp. space AST size Index #test set Time

Σ1 SNum H1 2 1 2 0s

Σ2 SStr H1 2 1 2 0s

Σ3 SPrim H1 12 16567100 5 3min9s

Σ4 SVar, SLet H1 6 1298 2 0s

Σ5 STrue, SFalse H1 4 10 4 0s

Σ6 SAssign H1 3 18 1 0.0s

Σ7 SBetween H2 14 157160392 9 28min2s

Σ8 SIf H1 4 171 2 0s

Σ9 SLam, SApp H1 6 1813 2 0s

Σ10 SLetRec H1 4 132 1 0s

Σ11 SList H1 2 3 2 0s

Σ12 SListCase H1 4 207 2 0s

Σ13 SFor H1 11 57334664 3 9min29s

Σ total 35 40min40s

The rows of the table correspond to desugaring extension problems. In each problem Σ𝑛 the
translation of the sublanguages Σ0, . . . , Σ𝑛−1 are assumed to be known. We work our way down-
wards: the test sets can not use term constructors from below. To get some rough measurement of
the complexity of each task we noted the size of the intended desugaring (AST size), and also the
index of the translation found in the enumeration for each desugaring extension problem, that is,
the number of attempts tried before a solution was found. We also show the number of handwritten
tests we used to find the solution. The solution found was exactly the intended translation in Figure
2a in all but one case: SBetween.

In the case of SBetween the algorithm finds an expression equivalent to our intended translation
but smaller:

JSBetween(𝑡1, 𝑡2, 𝑡3)K = CLet(%𝑖1, J𝑡1K, CLet(%𝑖2, J𝑡2K,
CPrim2(∧, CPrim2(<,%𝑖2, J𝑡3K), CPrim2(<,%𝑖1,%𝑖2)))))

Decomposition. The desugaring extension problems’ test sets can not contain source term con-
structors from later extensions, but the test set still needs to exclude all non-intended translations.
This means that we can not learn SLam and SApp separately, as they only show their behaviour
together: we can see that they are grouped together in the task Σ4.
kle did not specify the exact semantics of the source and core languages Ð this give us a little

bit of freedom implementing them. Our implementation does not allow executing open programs

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:22 Sándor Bartha, James Cheney, and Vaishak Belle

containing non-declared variables, that is, all variables must be declared in a SLam, SLet or SLetRec
expression before use, otherwise an exception is raised. This means that we can not use SVar on its
own without one of these: we grouped it together with SLet in task Σ9.
The last case where we needed to group multiple term constructors together was the STrue,

SFalse group. The symmetry of the Boolean constants means that we need to learn them together
and rely on the already fixed translations of the and and or operations to rule out translations that
map to the opposite Boolean value in the core language.
Since all other groups only contain one term constructor, this decomposition shows that quite

often we do not need to learn more than one rule at a time. This supports our hypothesis that the
language can be partitioned into small groups of term constructors.

Test cases. The majority of test programs are very small and simple: in most cases we do not need
large test programs, and it is plausible that they could be generated by automatic testing. There
are three exceptions. To learn the full semantics of SBetween we needed test programs where the
evaluation order of arguments matters. To distinguish SLetRec from SLet we needed recursive
examples. The source term constructor SFor assumes a combinator function as its first argument,
which leads to an example that dwarfs the rest. This last case is somewhat artificial, though.

In many cases our algorithm found a desugaring that is equivalent to the intended semantics on
pure terms, but differs in the evaluation order of the arguments. Pidgin source has side effects: the
SAssign operator. We utilised it to add test cases that depend on the evaluation order.

Sometimes the order of the examples is important. The majority of the time is spent evaluating
various core programs that we get by the tested translations, especially when ś like in the case
of SFor ś we need recursive examples. Recursive examples easily lead to non-terminating core
programs, thus the time spent checking prospective translations on them greatly depends on
the maximum number of steps allowed in the interpreter. If this bound is too low, we may get
an incorrect desugaring, if too high, the search may take a long time. We can learn the intended
semantics of SForwith only one test program, but since it needs to be recursive and large, the search
time suffers, and depends on the value of the parameter making the learning process impractical.
As currently we can only tune this parameter manually (automatic tuning is left to future research),
it is important for performance to use simple, non-recursive source programs as the first test cases
in a test suite. With our test setup (in which we added such a test program before the full example)
we found that a reasonably high bound parameter does not have a large effect on the time of the
search, so no manual tuning was needed, while the search time was reduced by around 90%.

6.3 Basic List Comprehensions

Setup. For our first extension of the Pidgin languages we consider basic list comprehensions a la
Wadler [1992a] with the following syntax:

𝑡 ::= · · · | [𝑡 | 𝑞] 𝑞 ::= 𝜖 | 𝑥 ← 𝑡, 𝑞 | 𝑡, 𝑞 | let 𝑥 = 𝑡, 𝑞

This is a simplification over standard Haskell list comprehensions, which support patterns in
bindings and more general definitions in let. The following table shows the extensions of the
syntax of the Pidgin languages required for this case study:

𝑡 ∈ STerm ::= . . . | SListComp(𝑡, 𝑞)

𝑞 ∈ SQual ::= QEmpty | QBind(i, 𝑡, 𝑞) | QGuard(𝑡, 𝑞) | QLet(i, 𝑡, 𝑞)

𝑒, 𝑒1, 𝑒2 ∈ CTerm ::= . . . | MVar(i) | MLam(i, e) | MApp(e1, e2) | Return(𝑒) | Bind(𝑒1, 𝑒2)

The Return and Bind primitives correspond to the following standard Haskell functions:

return :: a -> [a] (>>=) :: [a] -> (a -> [b]) -> [b]

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:23

The desugaring of comprehensions is described as a two-argument function 𝐷 [𝑡 |𝑞] in the GHC
documentation1. This does not quite fit our framework, but can be expressed by desugaring qualifiers
to functions J𝑞K mapping core terms to core terms, and desugaring a comprehension by applying
the function to J𝑡K. While it is natural to express the desugarings of qualifiers with meta-level
lambdas, our current framework does not allow meta-level abstractions. Instead, we extended the
core language with macros: MVar, MLam and MApp, that provide textual substitution. Core language
macros allow us to approximate a higher-order meta-language.

The generic comprehension desugaring rules used in GHC actually allow for arbitrary monads,
not just lists. Guards are desugared to sequential compositions (>>) and a guard operation for the
monad. We omitted these constructs since for lists they are directly definable.

The following table lists the intended desugaring rules, where %𝑢 is a freshly chosen name that
is guaranteed to be unique and not used elsewhere in the term,.

JSListComp(𝑡, 𝑞)K = MApp(J𝑞K, J𝑡K)
JQEmptyK = MLam(%𝑢, Return(MVar(%𝑢)))

JQBind(x, 𝑡, 𝑞)K = MLam(%𝑢, Bind(J𝑡K, CLam([x], MApp(J𝑞K, MVar(%𝑢)))))
JQGuard(𝑡, 𝑞)K = MLam(%𝑢, CIf(J𝑡K, MApp(J𝑞K, MVar(%𝑢)), CList([])))
JQLet(x, 𝑡, 𝑞)K = MLam(%𝑢, Let(x, J𝑡K, MApp(J𝑞K, MVar(%𝑢))))

As we extended the sequential learning process of the previous case study, we assumed that the
translation rules of the whole Pidgin language are fixed in advance.

Hypothesis space. Our hypothesis spaceH 𝑙𝑐 is mostly identical withH 1, but it does not contain
any of the meta-rules Case, Throw, Unzip or Fresh. Instead, to express the desugaring rules in
this table, a macro version of the fresh rule was necessary:

Γ; 𝑖 : Id ⊢ 𝑀 : CTerm
Meta-lambda

Γ ⊢ let 𝑖 = gensym() in MLam(i,M) : CTerm

Decomposition. This case study demonstrates that sometimes "large" (>2) constructor groups are
necessary, and our enumerative method does not scale up to large groups.
The smallest constructor group required for any example is SListComp and QEmpty, so they

need to be included in the first step. But any list comprehension example that does not use the
other qualifiers simply reduces to Return, therefore we can not learn the intended semantics of this
group without the others. Adding the simplest qualifier, QGuard, is still not enough: without any
bound variable we can not write examples that exclude similarly erroneous desugarings. Setting up
the first step of the sequential learning task with just SListComp and QEmpty or perhaps adding
QGuard demonstrates a case where we would commit to a wrong translation rule early, and can
not continue the learning process.
The first step needs to contain at least three source constructors, one of them should be QBind

or QLet. But this group is too large, with combined AST size of 14 our search runs to a timeout.
As a second test, we used a hint from the user: we provided the semantics (desugaring rule) of

SListComp. This allowed us to learn the semantics of each qualifier one-by-one.
Results. The results we obtained after the user hint are presented in Table 2.
In one case, QGuard, the found semantics is equivalent with the intended one but shorter:

JQGuard(𝑡, 𝑞)K = CIf(J𝑡K, J𝑞K, MLam(%_, CList([])))

Test cases. We only needed one test case for every individual learning task: one test case suffices
per source constructor. These test cases are not trivial: to demonstrate the non-trivial scoping
behaviour of qualifiers we needed to embed them. To hypothetically auto-generate such test cases
the binding and scoping rules of the source language must be taken into account.

1https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/monad_comprehensions.html)

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/monad_comprehensions.html

122:24 Sándor Bartha, James Cheney, and Vaishak Belle

Table 2. Case study – List comprehensions

Constructor group AST size Index #tests time

QEmpty 3 6 1 0.0s

QBind 10 97632734 1 25min27s

QLet 7 116747 1 2s

QGuard 6 31307 1 1s

total 4 25min30s

6.4 Try/Catch/Finally

Setup. Finally we extended the Pidgin languages with exceptions. The source Pidgin is extended
with try/catch/finally, which desugars to the core language extended with just try/catch.

𝑡, 𝑡1, 𝑡2, 𝑡3 ∈ STerm ::= . . . | STryCatchFinally(𝑡1, i, 𝑡2, 𝑡3) | SThrow(𝑡)

𝑒, 𝑒1, 𝑒2, 𝑒3 ∈ CTerm ::= . . . | CTryCatch(𝑒1, i, 𝑒2) | CThrow(𝑒)

In a CTryCatchFinally(𝑡1, i, 𝑡2, 𝑡3) expression, first is 𝑡1 is executed. If it terminates normally
with value 𝑣 then 𝑡3 is executed with default outcome 𝑣 . If it raises an exception 𝑒𝑥 , then 𝑡2 is
executed with i bound to 𝑒𝑥 . If executing 𝑡2 terminates normally with value 𝑣 then 𝑡3 is executed
with default outcome 𝑣 . Otherwise if 𝑡2 also raises an exception 𝑒𝑥 ′ then 𝑡3 is executed with default
outcome 𝑒𝑥 ′. (In particular, the absence of an exception handler can be emulated by having the
handler be Throw(i).) When the finally expression 𝑡3 is executed, if it terminates normally with
some result value, that value is ignored and the default outcome is performed instead. If 𝑡3 also
raises an exception then this exception is the result and the default outcome is ignored.
Our intended desugaring is the following:

JSTryCatchFinally(𝑡1, i, 𝑡2, 𝑡3)K = CLet(%v, CTryCatch(CTryCatch(J𝑡1K, i, J𝑡2K)),
%j, CLet(%_, J𝑡3K, CThrow(CVar(%j)))),

CLet(%_, J𝑡3K, CVar(%v)))
JCThrow(𝑡)K = CThrow(J𝑡K)

Note that this desugaring rule duplicates the translated finally block J𝑡3K. To avoid code bloat,
one would normally create a thunk for the finally block. But our method can not distinguish the
thunked version from inserting the finally block twice, and the latter is smaller. We use CLet with
an unused variable for sequencing operations.
Hypothesis space. To express the intended desugaring, we need a version of the Fresh rule for

the new try-catch construct:

Γ ⊢ 𝑀 : CTerm Γ;𝑥 : CTerm ⊢ 𝑁 : CTerm
Fresh-trycatch

Γ ⊢ let 𝑖 = gensym() in CTryCatch(M, i,N [Var(𝑖)/𝑥]) : CTerm

Our first hypothesis space was based on H 1, but we removed Case, Throw, and Unzip, and
added Fresh-trycatch. But we found that the size of the intended desugaring is too large for such
a general hypothesis space.

We created a second, severely restricted hypothesis spaceH 𝑡𝑐 𝑓 . It only contained Fresh, Fresh-
trycatch, and the core term constructors CThrow and CTryCatch. We also used an additional
user layer: Fresh and Fresh-trycatch was in the first layer, so they were not allowed inside the
core term constructors.

Decomposition. The relabelling of SThrow can easily be learned on its own, because throw has a
unique behaviour. This allows us to learn in two steps.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:25

Table 3. Case study – Try-catch-finally

Constructor group AST size Index #tests time

SThrow 2 18 1 0.0s

STryCatchFinally 13 396643849 7 1hours 16min 54s

total 8 1hours 16min 54s

Results. The desugaring rule for STryCatchFinally (even without thunking) is very large, and
we reached the timeout even with the very restricted hypothesis spaceH 𝑡𝑐 𝑓 . To see how much we
missed the mark we ran the search to completion. The results are shown in Table 3.
Test cases. Learning the desugaring rule of STryCatchFinally needs many complex examples.

First, try-catch-finally can branch: the main block may or may not throw and the catch block also
may or may not throw. Covering all cases already needs 3 examples. We also need to ensure the
evaluation order. In general, branching constructs needs at least as many examples as potential paths
of execution. Also, to fix evaluation order we need examples that exclude any other permutation,
and with constructs with many parameters (STryCatchFinally has the most parameters amongst
our constructs: 4) the number of potential permutations are higher.

6.5 Threats to Validity

Perhaps the most important, but at the same time the hardest thing to evaluate is how well our
approach generalises. We can not yet evaluate our methods on real life programming languages,
because real desugarings are too large. Pre-defined examples always carry the danger of inadvertent
cherry-picking of the results. A further danger is that since we know the intended desugarings in
advance, we do not need to experiment with user guidance such as restrictions on the hypothesis
space, and we risk inadvertently underestimating the amount of user guidance needed.
We try to highlight each form of user guidance that we used in our case studies: each shows a

limitation of our approach. We do not include writing the correct test cases or decomposing the
language, since they were assumed to be the user’s task from the beginning.

(1) Our selection of meta-rules was somewhat tailored to the requirements. For example, we did
not include a Fresh-like rule for CLam because we did not need it.

(2) We needed a hand-written meta-rule Unzip to express the desugaring rule of SFor. Other
meta-rules used can be imagined to be auto-generated, but the Unzip rule is hand-crafted.

(3) In two cases, SBetween and STryCatchFinally, we used a severely restricted hypothesis
space, and in the second case we even used a user-defined layer. This shows the scalability
problem: the desugaring rules have AST size 14 and 13 respectively, which is too large for
our method to find with an unrestricted hypothesis space.

(4) Similarly, we needed user guidance to provide the rule of SListComp. This was again a
scalability problem, although a different one: we would have to learn the rules for too many
term constructors at once.

We do not regard these limitations as fatal flaws. Instead, they may illustrate that our approach
should be thought of as a łdesugaring synthesis assistantž, rather than a fully automatic synthesis
tool. Knowledgeable semantics engineers may be able to make use of our approach’s brute-force
search even if detailed guidance is sometimes needed, analogously to interactive proof assistants
in theorem proving. In this light our work may be regarded as identifying an approach that may
work, but further research (e.g. usability studies) would need to be done to determine whether our
approach offers significant benefits in real semantics engineering efforts.

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:26 Sándor Bartha, James Cheney, and Vaishak Belle

7 RELATED WORK

Program synthesis is a vast research field, for a review see Gulwani et al. [2017]. To solve the
desugaring extension problem, we experimented with enumerative program synthesis, which
may serve as a baseline algorithm, but we did not use extensive pruning or heuristics which may
allow us to scale up learning to larger examples. In general, it is not clear how more sophisticated
program synthesis methods could be applied to the desugaring extension problem. For example, in
the desugaring extension problem there can be multiple unknown language constructs and they
may appear in argument position in the examples. The implications of these differences need to be
investigated. Most algorithms in program synthesis are specialised to a fixed language Ð it is an
open question how to abstract away the target language and what additional information on the
target language is needed. Many algorithms are not specialised to inductive synthesis, and thus it
is an open question whether any such method leads to a significant speed-up in our use-case.

The most closely related work, by Krishnamurthi et al. [2019], has been discussed and compared
with our approach throughout the paper. There is existing work to automatically synthesise
translations between languages, such as verified lifting [Ahmad et al. 2019; Kamil et al. 2016],
but they search for translations of source programs (of a fixed source language) to a fixed target
language, as opposed to searching for translation rules for the source language, which is a rather
different problem. Nevertheless there may be interesting connections between verified lifting and
desugaring synthesis, which should be explored.
We are aware of a number of works that could serve as the basis of further investigation.

FlashMeta [Polozov and Gulwani 2015] is an industrial framework by Microsoft to build synthesis
algorithms for user-defined target languages. The framework is based on inductive enumerative
synthesis, thus it is possible that it could be used for our problem. The framework allows the user
to define witness functions for the target language, that capture part of the inverse behaviour of the
functions in the language and can speed up the search. A possible future direction is investigating
whether providing suitable witness functions for a given core language is feasible, and whether it
speeds up the search in our examples.

Bartha and Cheney [2020] usedmeta-interpretive learning [Muggleton et al. 2014], a framework for
inductive logic programming, to learn the small-step semantic rules of a very simple programming
language. The task they solved is close to ours; they attempted to learn inductively the structural
operational semantics rules of a language rather than desugaring. However, their approach relied
on identifying problem-specific meta-rules (needed by meta-interpretive learning), so it is hard to
see how their method can be generalised to various language features or larger languages.

In our code we represented the search space by sorted terms, a.k.a. algebraic data types (ADTs)
in typed functional languages such as ML or Haskell. We are aware of two bodies of work that
consider synthesising functions on ADTs: type-directed synthesis as in Myth [Osera and Zdancewic
2015] and Myth2 [Frankle et al. 2016], and an extension of the Sketch framework [Solar-Lezama
2013] called SyntRec [Inala et al. 2017]. Type-directed synthesis as implemented in Myth and Myth2
is not easy to apply to our problem because it requires the example set to be closed under recursive
calls (for example, to learn a recursive function on a list we need examples showing the results
of that function on all sub-lists). On the other hand, SyntRec is more directly applicable to our
problem, indeed it was the system used in the fourth attempt analysed by kle, but SyntRec was only
successfully applied to languages without state. SyntRec, when applied to desugaring synthesis
problems, also requires the core language interpreter to be implemented in the synthesis language,
whereas our approach assumes only an opaque implementation of the core language is available.
Nevertheless, further evaluation is needed to see whether these systems can be modified to provide

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:27

full solutions to the Pidgin challenge problem, or whether insights from their approaches can be
incorporated into our approach.

Tested semantics such as 𝜆𝐽 𝑆 for JavaScript [Guha et al. 2010], S5 [Li et al. 2015], and 𝜆𝑃𝑦 [Politz
et al. 2013] provide case studies showing how to handle large, real languages by desugaring to a core
language. Compared to Pidgin, these desugarings are considerably larger, and from inspecting their
code or formalization artifacts, it is clear that some of the desugaring rules are much too large for our
enumerative approach to handle (e.g. desugaring JavaScript function declarations to 𝜆𝐽 𝑆 requires
around 50 lines of Haskell code). The Scheme report [Sperber et al. 2010] also specifies certain
constructs by desugaring to a core, and may be a more plausible intermediate goal. Interestingly, Li
et al. [2015] identify the issue of semantic bloat, resulting from desugarings that defensively cover
all cases, but yield large amounts of boilerplate that is not needed in common cases. This suggests
an alternative strategy for learning complex desugarings, mirroring the gradual inductive approach
apparently followed in practice, in which we might first seek simple explanations for common
constructs in common cases (e.g. a łNewtonian modelž), and then look for counterexamples to
the simple model and try to repair it to accommodate them (e.g. a łrelativistic modelž). Another
interesting possibility is to analyze (non)interdefinability of core language features (see e.g. [Pierce
et al. 2010]) to guide the design of the core language or structure the decomposition into incremental
learning problems. We leave these intriguing possibilities for future work.

8 CONCLUSION AND FUTURE WORK

Developing correct semantics rules for real-world languages is a necessary, but arduous, prerequisite
to formal analysis. The problem of learning desugarings from examples has been introduced by
Krishnamurthi et al. [2019], but the four approaches they tried each had inherent limitations. In this
paper we have carefully analysed the problem and highlighted two key aspects: decomposability
of language feature learning into a sequence of easier desugaring extension problems, and careful
attention to the hypothesis space and meta-language in which the desugaring rules are expressed.
Moreover, we show that, with some additional guidance, a simple enumerative search technique can
successfully solve the desugaring synthesis challenge problem introduced by Krishnamurthi et al.
[2019], and we evaluated our approach on additional extensions such as simple list comprehensions
and exception handling with ‘finally’. While this is just one step toward the vision of learning
the next 700 language semantics, our experimental results provide grounds for optimism. We
plan to explore whether our approach can be incorporated into a CEGIS loop to automatically
learn both semantics rules and suitable examples; whether the choice of suitable hypothesis
spaces or meta-template rules can be automated; and whether our approach can be scaled up to
synthesise desugarings for larger, more realistic languages that have been developed by hand, such
as JavaScript [Guha et al. 2010] and Python [Politz et al. 2013].

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers and our shepherd Shriram Krishnamurthi for
helpful feedback and suggestions for improvement. We also thank the artifact evaluators and AEC
chairs for allowing us to update our artifact submission to reflect the final version of the paper.
This work was supported by ERC Consolidator Grant Skye (grant number 682315) and by an ISCF
Metrology Fellowship grant provided by the UK government’s Department for Business, Energy
and Industrial Strategy (BEIS). Vaishak Belle was supported by a Royal Society University Research
Fellowship.

DATA AVAILABILITY STATEMENT

The source code to replicate our case studies is openly available [Bartha 2021].

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

122:28 Sándor Bartha, James Cheney, and Vaishak Belle

REFERENCES

Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib Kamil. 2019. Automatically Translating Image

Processing Libraries to Halide. ACM Trans. Graph. 38, 6, Article 204 (Nov. 2019), 13 pages. https://doi.org/10.1145/

3355089.3356549

R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-Lezama, E. Torlak,

and A. Udupa. 2013. Syntax-guided synthesis. In 2013 Formal Methods in Computer-Aided Design. IEEE, 1ś8. https:

//doi.org/10.1109/FMCAD.2013.6679385

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and

Conquer. In Tools and Algorithms for the Construction and Analysis of Systems, Axel Legay and Tiziana Margaria (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 319ś336.

Nada Amin and Ross Tate. 2016. Java and Scala’s Type Systems Are Unsound: The Existential Crisis of Null Pointers. In

Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (Amsterdam, Netherlands) (OOPSLA 2016). Association for Computing Machinery, New York, NY, USA,

838ś848. https://doi.org/10.1145/2983990.2984004

Sandor Bartha. 2021. Source code: Case studies of synthesising compositional desugarings. https://doi.org/10.5281/zenodo.

5475211

Sándor Bartha and James Cheney. 2020. Towards Meta-interpretive Learning of Programming Language Semantics.

In Proceedings of the 29th International Conference on Inductive Logic Programming (ILP 2019) (LNCS, 11770). 16ś25.

https://doi.org/10.1007/978-3-030-49210-6_2

Sándor Bartha, James Cheney, and Vaishak Belle. 2021. One Down, 699 to Go: or, synthesising compositional desugarings

(extended version). arXiv:2109.06114 [cs.PL]

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. 2007. Tree Automata

Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata. release October, 12th 2007.

Jonas Duregård, Patrik Jansson, and Meng Wang. 2012. Feat: Functional Enumeration of Algebraic Types. SIGPLAN Not. 47,

12 (Sept. 2012), 61ś72. https://doi.org/10.1145/2430532.2364515

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Krishnamurthi. 2001. How to Design Programs. MIT

Press.

Daniele Filaretti and Sergio Maffeis. 2014. An Executable Formal Semantics of PHP. In ECOOP, Richard Jones (Ed.). Springer,

Berlin, Heidelberg, 567ś592.

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. 2016. Example-directed Synthesis: A Type-

theoretic Interpretation. SIGPLAN Not. 51, 1 (Jan. 2016), 802ś815. https://doi.org/10.1145/2914770.2837629

Arjun Guha, Claudiu Saftoiu, and Shriram Krishnamurthi. 2010. The Essence of JavaScript. In Proceedings of the 24th European

Conference on Object Oriented Programming (ECOOP 2010). 126ś150. https://doi.org/10.1007/978-3-642-14107-2_7

Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis. Foundations and Trends® in Programming

Languages 4, 1-2 (2017), 1ś119. https://doi.org/10.1561/2500000010

Jeevana Priya Inala, Nadia Polikarpova, Xiaokang Qiu, Benjamin S. Lerner, and Armando Solar-Lezama. 2017. Synthesis of

Recursive ADT Transformations from Reusable Templates. In Tools and Algorithms for the Construction and Analysis of

Systems, Axel Legay and Tiziana Margaria (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 247ś263.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-guided component-based program synthesis.

In Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,

South Africa, 1-8 May 2010. 215ś224. https://doi.org/10.1145/1806799.1806833

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the Foundations of the

Rust Programming Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (Dec. 2017), 34 pages. https://doi.org/10.

1145/3158154

Shoaib Kamil, Alvin Cheung, Shachar Itzhaky, and Armando Solar-Lezama. 2016. Verified Lifting of Stencil Computations. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara,

CA, USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA, 711ś726. https://doi.org/10.1145/

2908080.2908117

Christoph Kern and Mark R. Greenstreet. 1999. Formal Verification in Hardware Design: A Survey. ACM Trans. Des. Autom.

Electron. Syst. 4, 2 (April 1999), 123ś193. https://doi.org/10.1145/307988.307989

Shriram Krishnamurthi, Benjamin S. Lerner, and Liam Elberty. 2019. The Next 700 Semantics: A Research Challenge. In

SNAPL.

P. J. Landin. 1966. The next 700 Programming Languages. Commun. ACM 9, 3 (March 1966), 157ś166. https://doi.org/10.

1145/365230.365257

Junsong Li, Justin Pombrio, Joe Gibbs Politz, and Shriram Krishnamurthi. 2015. Slimming Languages by Reducing Sugar: A

Case for Semantics-Altering Transformations. In 2015 ACM International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software (Onward!) (Pittsburgh, PA, USA) (Onward! 2015). Association for Computing

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1145/3355089.3356549
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1109/FMCAD.2013.6679385
https://doi.org/10.1145/2983990.2984004
https://doi.org/10.5281/zenodo.5475211
https://doi.org/10.5281/zenodo.5475211
https://doi.org/10.1007/978-3-030-49210-6_2
https://arxiv.org/abs/2109.06114
http://www.grappa.univ-lille3.fr/tata
https://doi.org/10.1145/2430532.2364515
https://doi.org/10.1145/2914770.2837629
https://doi.org/10.1007/978-3-642-14107-2_7
https://doi.org/10.1561/2500000010
https://doi.org/10.1145/1806799.1806833
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/2908080.2908117
https://doi.org/10.1145/307988.307989
https://doi.org/10.1145/365230.365257
https://doi.org/10.1145/365230.365257

One Down, 699 to Go: or, Synthesising Compositional Desugarings 122:29

Machinery, New York, NY, USA, 90ś106. https://doi.org/10.1145/2814228.2814240

Sergio Maffeis, John C. Mitchell, and Ankur Taly. 2008. An Operational Semantics for JavaScript. In ESOP, G. Ramalingam

(Ed.). Springer, Berlin, Heidelberg, 307ś325.

Simon Marlow, Simon Peyton Jones, and Satnam Singh. 2009. Runtime Support for Multicore Haskell. In Proceedings of the

14th ACM SIGPLAN International Conference on Functional Programming (Edinburgh, Scotland) (ICFP ’09). Association for

Computing Machinery, New York, NY, USA, 65ś78. https://doi.org/10.1145/1596550.1596563

K. Meinke and J. V. Tucker. 1993. Universal Algebra. In Handbook of Logic in Computer Science (Vol. 1): Background:

Mathematical Structures. Oxford University Press, Inc., USA, 189ś368.

Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comput. 93, 1 (1991), 55ś92. https://doi.org/10.1016/0890-

5401(91)90052-4

Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. 2012. Evaluating the Design of the R Language: Objects and

Functions for Data Analysis. In ECOOP (Beijing, China). Springer-Verlag, Berlin, Heidelberg, 104ś131.

Stephen H. Muggleton, Dianhuan Lin, Niels Pahlavi, and Alireza Tamaddoni-Nezhad. 2014. Meta-interpretive Learning:

Application to Grammatical Inference. Mach. Learn. 94, 1 (Jan. 2014), 25ś49.

Kyndylan Nienhuis, Kayvan Memarian, and Peter Sewell. 2016. An Operational Semantics for C/C++11 Concurrency. In

Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages, and

Applications (Amsterdam, Netherlands) (OOPSLA 2016). Association for Computing Machinery, New York, NY, USA,

111ś128. https://doi.org/10.1145/2983990.2983997

Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-example-directed program synthesis. In Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015.

619ś630. https://doi.org/10.1145/2737924.2738007

Benjamin C. Pierce, Alessandro Romanel, and Daniel Wagner. 2010. The Spider Calculus: Computing in Active Graphs.

Manuscript, available from http://www.cis.upenn.edu/~bcpierce/papers/spider_calculus.pdf.

Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson, Junsong Li, Anand Chitipothu,

and Shriram Krishnamurthi. 2013. Python: The Full Monty. In OOPSLA (Indianapolis, Indiana, USA). ACM, New York,

NY, USA, 217ś232.

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis, In OOPSLA. ACM

SIGPLAN Notices 50. https://doi.org/10.1145/2858965.2814310

Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark Barrett, and Cesare Tinelli. 2019. cvc4sy: Smart and Fast Term

Enumeration for Syntax-Guided Synthesis. In Computer Aided Verification, Isil Dillig and Serdar Tasiran (Eds.). Springer

International Publishing, Cham, 74ś83.

Armando Solar-Lezama. 2013. Program sketching. Int. J. Softw. Tools Technol. Transf. 15, 5-6 (2013), 475ś495. https:

//doi.org/10.1007/s10009-012-0249-7

Armando Solar-Lezama, Rodric M. Rabbah, Rastislav Bodík, and Kemal Ebcioglu. 2005. Programming by sketching for

bit-streaming programs. In Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and

Implementation, Chicago, IL, USA, June 12-15, 2005. 281ś294. https://doi.org/10.1145/1065010.1065045

Michael Sperber, R. Kent Dybvig, Matthew Flatt, Anton van Straaten, Robby Findler, and Jacob Matthews. 2010. Revised [6]

Report on the Algorithmic Language Scheme (1st ed.). Cambridge University Press, USA.

Philip Wadler. 1992a. Comprehending monads. Mathematical Structures in Computer Science 2, 4 (1992), 461ś493. https:

//doi.org/10.1017/S0960129500001560

Philip Wadler. 1992b. The Essence of Functional Programming. In Conference Record of the Nineteenth Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, Albuquerque, New Mexico, USA, January 19-22, 1992. 1ś14.

https://doi.org/10.1145/143165.143169

Proc. ACM Program. Lang., Vol. 5, No. OOPSLA, Article 122. Publication date: October 2021.

https://doi.org/10.1145/2814228.2814240
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2983990.2983997
https://doi.org/10.1145/2737924.2738007
http://www.cis.upenn.edu/~bcpierce/papers/spider_calculus.pdf
https://doi.org/10.1145/2858965.2814310
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1145/1065010.1065045
https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1017/S0960129500001560
https://doi.org/10.1145/143165.143169

	Abstract
	1 Introduction
	2 Overview
	2.1 The Challenge
	2.2 Problem Analysis
	2.3 Our Approach

	3 Formal Framework
	3.1 Syntax
	3.2 Semantics
	3.3 Translations
	3.4 Correctness
	3.5 Sublanguages
	3.6 The Desugaring Extension Problem
	3.7 Sequential Learning
	3.8 Conditions of a Solution

	4 Searching for Desugarings
	4.1 The Algorithm
	4.2 Relabelling
	4.3 Substitution
	4.4 Meta-program Templates
	4.5 Restricting and Combining Hypothesis Spaces

	5 Implementation
	6 Evaluation
	6.1 Hypothesis
	6.2 Pidgin Languages
	6.3 Basic List Comprehensions
	6.4 Try/Catch/Finally
	6.5 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work
	References

