The approach to urethral obstruction in the cat Part 1: Presentation and stabilisation

Craig Breheny*
BVM&S DipECVIM-CA MRCVS

Kelly Bowlt Blacklock
BVM&S DipECVCS PGCert PhD SFHEA MRCVS. RCVS Specialist in Small Animal Surgery

Daniëlle Gunn-Moore
BSc(Hon), BVM&S, PhD, MANZCVS, FHEA, FRSB, FRCVS, RCVS Specialist in Feline Medicine

The Royal (Dick) School of Veterinary Studies and The Roslin Institute, the University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG

*Corresponding author

Background:
Urethral obstruction is one of the most commonly encountered emergencies in feline medicine, with a wide range of clinical signs from dysuria to peri-arrest. Such patients are some of the most challenging cases in feline medicine with several factors to consider; however, they can be equally rewarding.

Aim:
This is the first of three articles in this series. The aim of this first article is to summarise a step wise approach from presentation through to diagnosis of urethral obstruction. The second article will focus on urethral catheterisation, and immediate post-catheterisation management. The third is to discuss the management behavioural and long-term management needed once the cat has gone home.

Introduction
Despite being a common emergency in general practice, feline urethral obstruction remains a complex condition to manage, with several controversies to consider. With their longer
and narrower urethra, this is predominantly a condition of male cats; however, it can occasionally be seen in female cats too.

Feline urethral obstruction usually occurs as part of Feline Lower Urinary Tract Disease (FLUTD); this is the umbrella term for all causes of cystitis and its associated presentations in cats (Gerber et al. 2005). The most common causes of obstruction are urethral plugs (composed of proteinaceous debris in which crystals can become trapped) and urethral spasm, both of which are common consequences of feline idiopathic cystitis (FIC aka ‘Stress cystitis’) and cause 65-90% of cases of urethral obstruction. Other causes include urolithiasis (10-35% of cases), of which calcium oxalate and struvite are the most common types of stones. Strictures and urethral trauma were reported in 15% of cases in a separate study (Slater et al. 2020). Blood clots occur occasionally, as can neoplasia of the urethra, prostate or bladder. Very rare cases of feline urethral obstruction are associated with significant perineal or intra-pelvic pathology or trauma.

Triage

When the cat arrives with a history of unproductive straining, one of the first questions to be answered is: **how stable is the patient?** This is because there is a spectrum of presentations, ranging from mild cystitis-like signs to peri-arrest. A **focussed evaluation** is needed to answer this question.

The key components of the triage examination in dysuric cats are:

- Mentation and whether this is appropriate for the environment
- Mucous membrane colour
- Capillary refill time
- Heart rate and rhythm
- Pulse quality and whether it is synchronous with heart rate
- Respiratory rate and lung sounds
- Abdominal palpation for bladder size
- Rectal temperature could be considered at this point if it won’t cause excessive stress; axillary temperatures are less likely to be reliable in a hypovolaemic cat
These parameters provide rapid information on the stability of the major body systems that are likely to result in acute decompensation: the cardiovascular, respiratory and central nervous systems. If these vitals do not provide cause for concern, then the full clinical examination can be completed.

It should be noted that whilst bradycardia can be associated with hyperkalaemia, it is also a common presentation in cats with any form of shock.

Additional information to be ascertained from a secondary survey once the patient has been identified as stable includes:

- Hydration status
- Abdominal discomfort
- Weight, taking into account the bladder volume
- Rectal examination, if collapsed, if not then perform this once the cat is sedated/anaesthetised

Emergency diagnostics

As a matter of urgency an intravenous catheter should be placed and secured, from which blood can be withdrawn. As these patients typically have circulatory collapse once they have been obstructed for a length of time, it may be necessary to use several one millilitre syringes with only slight negative pressure applied. Depending on the in-house analysers available, having a store of pre-coated lithium heparin syringes (such as those used for arterial samples) can be helpful when there is sluggish blood flow from the catheter.

Emergency bloodwork is the diagnostic equivalent of physical triage, where the key parameters likely to change your management in the acute period are rapidly assessed.

At our institution, emergency bloodwork would encompass the following:

- Packed cell volume
- Total solids
- Glucose
- Lactate
If residual blood is available, priority should be given to evaluating renal parameters and, ideally, ionised calcium concentration.

Blood pressure should be obtained, with Doppler measurement being the most reflective of true systolic blood pressure in cats (Waddell et al. 2004). Whilst the measured pressure might not always be an accurate reflection of body wide perfusion, it can be useful to provide an objective baseline to help with decision making. Blood pressure should, ideally, be determined during the initial diagnostic evaluation, prior to blood sampling as this may worsen situational hypertension (‘white coat effect’). However, this phenomenon is unlikely to cause interference in collapsed cats as sympathetic drive should already be maximal. A systolic blood pressure below 90 mmHg is consistent with a mean arterial pressure below 65 mmHg, at which point renal perfusion is inconsistent and fluid resuscitation is urgently required. Hypotensive cats carry a more guarded prognosis.

A point of care ultrasound (POCUS) examination is very useful in these patients. It can be performed without the need for extensive clipping of the coat and does not require advanced equipment or skill. Cover the probe with a glove or cling film containing ultrasound gel, then spray spirit into the parted hair to achieve a decent acoustic window whilst also protecting the probe.

The aim of the POCUS is not to evaluate the urogenital system in great detail, but instead to evaluate whether there is free fluid within the abdomen, and whether or not the urinary bladder appears intact. In feline urethral obstruction, there is often a small amount of free abdominal fluid, although not typically detected, larger volumes are expected with rupture along the urinary tract and subsequent uroabdomen (Figure 1)

To aid identification of small volumes of free abdominal fluid, POCUS involves focusing on four main areas in the abdomen:

- Between the liver lobes and diaphragm
- Between the spleen and left kidney
- Between the liver and right kidney
- Around the bladder

Whilst most patients presenting with urethral obstruction are typically young male cats that are otherwise healthy and capable of tolerating fluid administration, in older patients or those with pre-existing heart disease, it is sensible to evaluate the heart via ultrasound before giving intravenous (IV) fluids. Scanning the cat from the right side of the chest, over the apex beat, allows the **left atrial to aorta (LA:Ao) ratio** to be measured (Figure 2). Cats with urethral obstruction are usually hypovolaemic, so the ratio will be low, whereas cats with ongoing heart disease are likely to have left atrial enlargement, so the ratio may be increased. A ratio greater than 1.6 is consistent with enlargement of the left atrium, and caution should be exercised with any fluid therapy.

With the triage examination performed and these diagnostic results obtained, a wealth of information is rapidly available to aid in clinical decision making.

ECG can be used in these patients if available. This has the benefit of allowing a continued recording of the heart rate. It can also be useful in evaluating the effect of hyperkalaemia (see below). Whilst consistent ECG findings and bradycardia can be a specific finding for hyperkalaemia, their absence does not exclude it and this should not be solely relied upon.

Stabilisation

Analgesia

One of the first aspects to be addressed is the provision of analgesia. Cats with urethral obstruction are incredibly painful secondary to severe bladder distension, and some may also have pain from preceding inflammation of the bladder wall. Interpreting clinical parameters and making fluid therapy decisions is difficult when pain is stimulating the sympathetic drive, manifesting as raised blood pressure, heart and respiratory rates.

Cats with urethral obstruction are often unstable when first presented, making it difficult to know whether or not surgical intervention needs to be considered. A full opioid, which
should maximally stimulate and bind to the receptors, is therefore advised, if possible. Methadone (0.2 mg/kg IV) is a reasonable option, which leaves potential for increasing the dose, if necessary. Whilst buprenorphine is very effective in cats, the concern is that if the analgesia proves inadequate and a more potent opioid becomes necessary, the agonist/antagonist effect may impede the full opioid effect for six to eight hours. Maropitant may have some visceral analgesic properties and could be considered in conjunction with the proven analgesics above, particularly as these patients are likely to experience nausea associated with the shock state.

Non-steroidal anti-inflammatory medications (NSAIDs), whilst often a mainstay in these patients when stable, should be avoided at presentation. Renal and gastrointestinal perfusion is likely to be inconsistent due to hypovolaemia and if anaesthesia were to become necessary then vasodilation and worsening hypotension is a possibility, which could add further insult to already injured kidneys.

Fluid therapy
This is an area in which several controversies exist. The first is whether to give fluids or not? Whilst it would seem counter-intuitive to provide more fluid when there is obstruction of urine output, this is a necessity in order to stabilise the patient. The fluid will help to restore renal perfusion and dilute the plasma potassium.

The next question is which fluid type should be used? An isotonic crystalloid is most often selected, and the decision is then whether to use 0.9% sodium chloride or Hartmann’s (lactated Ringer’s). The theoretical advantage of saline is that it includes no additional potassium, so it should address the hyperkalaemia more effectively. The disadvantage is that it has an acidifying effect, whereas Hartmann’s is alkalinising, which is relevant in these patients because they are likely to be acidaemic. However, the evidence indicates that the type of isotonic crystalloid utilised has no significant difference in prognosis or the ability to correct the hyperkalaemia. The only difference was that those patients receiving Hartmann’s normalised their acid-base disturbances more quickly (Cunha et al. 2010). This is because improved renal perfusion allows for greater excretion of potassium into the urine,
in excess of the potassium accumulated from the fluid therapy. As such, Hartmann’s is typically the first line fluid choice in our hospital.

The next question to be addressed is **What volume of fluid should be administered?** This can be answered by deciding what we are trying to address. These patients are likely to be dehydrated, at least to some degree, with a loss of fluid in the interstitial space; however, this is not a major concern in the acute setting. Dehydration is not life threatening in itself, however, it does become so when it leads to loss of fluid from the intravascular space causing hypovolaemia with resultant kidney hypoperfusion. This gives rise to azotaemia and an inability to excrete potassium. This is the problem that must be targeted first.

Administering rapid intravenous shock doses of fluids, which is the cat’s blood volume (50 ml/kg), was historically recommended in patients with hypovolaemia and shock. However, this can result in fluid overload with associated complications, especially in cats. Fluid overload can manifest as chemosis, serous nasal discharge and pulmonary oedema or pleural effusions secondary to cardiac overload. The approach has now shifted to dividing the shock dose of fluids and giving aliquots of it over a short space of time to restore intravascular volume. Boluses for hypovolaemic cats usually consist of 5-10 ml/kg being administered over 10-15 minutes, depending on how haemodynamically stable the patient is. In those with severe hypovolaemia, larger volumes can be administered.

After each bolus, the patient is then re-evaluated for improvement in perfusion parameters:
- Mentation
- Heart rate
- Pulse quality
- Mucous membrane colour
- Capillary refill time
- Blood pressure

Lactate can also be measured periodically as an objective marker of increased perfusion, if available. Approximately a quarter of the bolus will stay in the intravascular space, with the remainder redistributing to the interstitial space. The amount which is drawn to the
extravascular space may increase with dehydration. This can manifest as an initial response to the fluid bolus, then recurrence of clinical signs of hypoperfusion after 30 - 60 minutes as the fluid leaves the intravascular space. Once the perfusion parameters have normalised, the fluid rate can be set to replace the degree of dehydration, to address ongoing losses, and provide maintenance fluids. If there are no signs of dehydration, such as dry mucous membranes, prolonged skin tent or sunken eyes, then subclinical dehydration of 5% can be assumed.

Hyperkalaemia
Pathophysiology
Hyperkalaemia, and its resultant cardiotoxic effect, is the immediate concern in these patients. Understanding the mechanism by which elevated potassium causes these deleterious effects can be helpful in appreciating the treatment options.

Potassium is essential for myocardial cells to generate and transmit an action potential. The action potential is generated, and the myocardial cell is depolarized by the influx of positive Na⁺ ions from the extracellular space to the negative inside of the cell membrane. Once the cell is depolarized, it is refractory to the generation of further action potentials. To restore negativity to the inside of the cell, and allow future action potentials to occur, the sodium-potassium-ATPase pump pushes potassium ions (K⁺) out of the cell and the positive charge with it.

In states of hyperkalaemia, the potassium concentration across the cell membrane is no longer present to the same degree as normal. This reduces the amount of potassium that is ejected from the cell, and consequently the inner cell membrane stays too positive and remains refractory. In effect, the resting potential (or baseline cell polarity) is elevated and more positive. With the cells unable to repolarize, the clinical manifestation of this is bradycardia or atrial standstill if severe.

This process is summarised in Figure 3.
Diagnosis

Definitively diagnosing hyperkalaemia is reliant upon measuring serum electrolyte concentrations. The degree of increase can be summarised as:

- **Mild** > 5.5 mmol/l
- **Moderate** > 6.5 mmol/l
- **Severe** > 7.5 mmol/l

Myocardial toxicity is possible once the serum potassium concentration is above 6.0 mmol/l; however, the likelihood will vary depending on other factors, particularly the serum ionised calcium concentration.

Hypocalcaemia exacerbates the effect of the hyperkalaemia by decreasing the threshold potential, meaning the initial action potential is generated easily, but repolarising the cell in the face of hyperkalaemia becomes more difficult if not impossible. It is therefore important to assess blood calcium concentration in these cases. Ionised hypocalcaemia is present in 75% of cats with urethral obstruction; its severity correlates with more serious cardiovascular compromise and a poorer prognosis (Drobatz et al. 1997). This is summarised in Figure 3I.

Surrogate markers of hyperkalaemia include bradycardia identified on clinical examination and electrocardiogram (ECG) alterations. ECG findings suggestive of hyperkalaemia include sinus bradycardia, which can progress to an atrioventricular block or atrial standstill if severe. Other features of the ECG include an absence of P waves, widening of the QRS complex and the classically reported tenting of the T waves. As the hyperkalaemia becomes severe, it can present as a sine wave. An example of this is shown in Figure 4, in which P waves are absent and T waves spiked.

Treatment

Treatments, dosages and important notes are summarised in Table 1.
<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage</th>
<th>Notes</th>
</tr>
</thead>
</table>
| Calcium gluconate 10% | 0.5 – 1.5 ml/kg | • Ideally give over 20 – 30 minutes, but can be given over 5 minutes if necessary
• Monitor with ECG or auscultation
• Lasts for 20 minutes |
| Glucose | 0.5 g/kg if used alone for mild hyperkalaemia
2 g per unit of insulin given as a bolus followed by a glucose infusion | • Dilute 1:4 with 0.9% sodium chloride to minimise risk of phlebitis |
| Neutral insulin | 0.25 – 0.5 IU/kg | • Blood glucose should be monitored for up to 24 hours after
• Glucose CRI will likely necessary |
| Terbutaline | 0.01 mg/kg | • Give IV slowly
• Tachycardia may occur
• Variable efficacy
• This is of theoretical benefit, with no published studies on its clinical use; its use would be off licence |
| Sodium bicarbonate | 1 – 2 mEq/kg | • Rarely necessary, and other measures attempted first to address pH. |
Calcium gluconate

This is the first line medication to treat life-threatening bradycardia associated with hyperkalaemia. Calcium gluconate will alter the electrical charges of the cell membrane, which increases the threshold potential, and thus redresses the balance of the resting and threshold potentials needed to restore normal electrical activity. Calcium gluconate will not alter the serum potassium concentration, but will act as a cardioprotectant providing time to institute other methods to address the hyperkalaemia.

Calcium gluconate 10% is dosed at 0.5 – 1.5 ml/kg (equating to 50 – 150 mg/kg of calcium gluconate). It should be given by slow IV, over 20 minutes. Ideally an ECG should be in place whilst the calcium is being infused, or if unavailable then monitoring the heart rate with auscultation is an alternative. Potential side effects include bradycardia and ECG changes including sinus bradycardia, shortening of the QT interval and S-T elevation.

The beneficial effects of calcium are relatively short lived, lasting from 20 to 30 minutes, providing time to address the hyperkalaemia directly by removing the urethral obstruction.

Fluid bolus

As discussed above, a fluid bolus will have several beneficial effects. By restoring renal perfusion and glomerular filtration, the surplus potassium can be filtered and excreted into the urine. Additionally, acidosis promotes the movement of potassium from the intracellular to extracellular space. Fluid therapy, particularly with Hartmann’s solution, will address the acidaemia and cause a shift of potassium back into the intracellular space.

Glucose and insulin

If the hyperkalaemia is severe, if it is causing a significant bradycardia, or the potassium levels have not improved with fluid therapy, then glucose and insulin is indicated. The
insulin causes the glucose to be taken up into the cell, and this takes potassium ions with it, driving an intracellular shift. Glucose alone may help stimulate endogenous insulin release; however, exogenous insulin will facilitate this more rapidly. Whilst this will not reduce the body wide potassium levels, it will decrease serum levels, sparing the myocardium of the deleterious effects.

Regular (soluble) insulin is dosed at 0.25 – 0.5 units/kg IV as a slow bolus.

Dextrose is then administered at 4ml of 50% dextrose per unit of insulin given. However, it should be noted that 50% dextrose has high osmolarity and will cause phlebitis if given into a peripheral vein at this concentration. It should therefore be diluted with 0.9% saline to a concentration of 1:4.

There is the risk of hypoglycaemia following the insulin administration, even when a glucose bolus is also given. Frequent monitoring of the blood glucose concentration is essential, and a dextrose infusion is likely to be needed. If necessary, a 2.5% dextrose infusion can be made by adding 50ml of 50% dextrose (25 g dextrose) to 1 litre of fluid; this is then given as part of the fluid plan in the hours that follow.

Terbutaline

This is a β₂ agonist, which is often used as a bronchodilator in emergency situations. It also has the additional benefit of stimulating the Na-K-ATPase on cell membranes, with the resultant effect that potassium is driven intracellularly, thus decreasing the circulating hyperkalaemia. Side effects can include tachycardia by stimulating the adrenergic receptors on the myocardial cells.

Sodium bicarbonate

If the cat is severely acidotic and hyperkalaemic, then bicarbonate can be used to correct the acidosis and drive the potassium intracellularly. However, this is rarely necessary, as fluid therapy alone is usually sufficient to correct this. In addition, there are side effects associated with sodium bicarbonate administration which could pose serious risks, such as ionised hypocalcaemia, hypernatraemia and central acidosis.
Cystocentesis

Another controversy in the management of cats with urethral obstruction is **Whether to perform cystocentesis or not?** Whilst the azotaemia that occurs in these cats is multi-factorial, the major contribution is post-renal in origin. With the urethra obstructed the bladder becomes excessively distended, causing back pressure via the ureters to the renal pelves. At a microscopic level the pressure in the nephrons is markedly elevated, which opposes glomerular filtration, resulting in the potassium and uraemic toxins remaining in the circulation rather than getting into the filtrate.

The plan should be to stabilise and anesthetise the patient as quickly as possible, so that a urinary catheter can be placed. However, in some patients, significant pressure within the bladder may confound efforts to pass a urinary catheter, and the ongoing bladder distension and metabolic disturbances become the life-threatening issue. Cystocentesis may then be needed to relieve bladder pressure and facilitate urinary catheter placement.

Unless the cat is so severely collapsed that wriggling is unlikely, it is best to perform cystocentesis once the cat is sedated or anesthetised. This reduces the risks of performing this procedure on a severely distended bladder. The main risks are bladder rupture, or laceration of a vessel resulting in a haemoabdomen. **Some degree of uroabdomen is always likely;** however, it is unlikely to cause a problem unless the cat has a concurrent urinary tract infection (UTI). Cats with FIC are at particular risk of uroabdomen as their bladder urothelium and detrusor muscle are badly compromised by their underlying disease. Vagovagal collapse has been reported to occur in cats and can be fatal (Odunayo et al. 2015). Whilst these risks are rare they must be communicated to the owner.

If cystocentesis is to be performed, some strategies can minimise the risk of iatrogenic damage. Ideally, this is performed with two people, using the same equipment as would be required for a thoracocentesis. One person inserts the needle or butterfly catheter into the bladder, with ultrasound guidance if necessary. This person holds the needle stable and the second person holds the butterfly catheter line, or additional tubing, connected to a three-way tap and syringe. With the initial person focussing on keeping the needle steady, this
stops it moving unnecessarily within the bladder, preventing microtrauma or laceration of
the bladder wall. The second person then drains the bladder until it is empty. This removes
the pressure component and minimises the risk of urine leakage from the bladder. The urine
can be collected and stored for analysis and culture if indicated.

If uroabdomen does develop, while less than ideal, it is still preferable to ongoing
obstruction and secondary hyperkalaemia in a cat that is unable to be catheterised. Once a
urinary catheter is placed, this will keep the bladder decompressed, in the hope that any
bladder defect will close and heal, and even sizeable tears can heal when managed correctly
in this way. The abdominal effusion can be removed, if significant, by abdominocentesis to
decrease the potassium load. Severe cases of uroabdomen will need to be referred for more
extensive management.

One published study assessed intermittent cystocentesis instead of urethral catheter
placement where there were severe financial limitations (Cooper et al. 2010). Cats had
cystocentesis performed up to 10 times; four out of 15 cats developed abdominal effusion,
of which three had uroabdomen and one had haemoabdomen. Complications can therefore
be severe, but this risky and sub-optimal approach could be discussed with owners where
funds are severely constrained.

CPD quiz

What are the most common causes of urethral obstruction?

A. Uroliths and neoplasia
B. Urethral spasm and proteinaceous plugs
C. Uroliths and urethral spasm
D. Proteinaceous plugs and uroliths

What is the left atrium to aorta ratio (LA:Ao), above which you would need to consider
how aggressively you would administer fluid therapy?

A. < 1
B. < 1.3
C. < 1.6
D. < 2

Which of the drugs commonly used in the emergency management of hyperkalaemia will not alter the serum potassium concentration?

A. Calcium Gluconate
B. Glucose
C. Insulin
D. Sodium bicarbonate

References

Cunha MGMCM, Freitas GC, Carregaro AB et al. Renal and cardiorespiratory effects of treatment with lactated Ringer’s solution or physiologic saline (0.9% NaCl) solution in cats with experimentally induced urethral obstruction. Am J Vet Res. 2010 Jul; 71(7): 840 - 6

Odunayo A, Ng ZY, Holford AL. Probable vasovagal reaction following cystocentesis in two cats. JFMS Open Rep. 2015 Jan – Jun; 1(1)
