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Folding uncertainty in theoretical models into Bayesian parameter estimation is necessary in or-
der to make reliable inferences. A general means of achieving this is by marginalising over model
uncertainty using a prior distribution constructed using Gaussian process regression (GPR). Here,
we apply this technique to (simulated) gravitational-wave signals from binary black holes that could
be observed using advanced-era gravitational-wave detectors. Unless properly accounted for, un-
certainty in the gravitational-wave templates could be the dominant source of error in studies of
these systems. We explain our approach in detail and provide proofs of various features of the
method, including the limiting behaviour for high signal-to-noise, where systematic model uncer-
tainties dominate over noise errors. We find that the marginalised likelihood constructed via GPR
offers a significant improvement in parameter estimation over the standard, uncorrected likelihood.
We also examine the dependence of the method on the size of training set used in the GPR; on
the form of covariance function adopted for the GPR, and on changes to the detector noise power
spectral density.

PACS numbers: 04.30.–w, 04.30.Tv, 04.70.–s, 04.80.Nn

I. INTRODUCTION

The era of advanced ground-based interferometric
gravitational-wave (GW) detectors is nearly here. The
Advanced LIGO detectors [1, 2] in the USA are undergo-
ing their final stages of commissioning and are expected
to commence their first operating run later this year,
whilst the Advanced Virgo detector [3, 4] in Europe is
expected to come online shortly afterwards [5]. The prin-
cipal target sources of GWs for these detectors are the
coalescences of pairs of compact objects, either neutron
stars or black holes. For all sources there is great un-
certainty in the quoted event rate estimates, at least an
order of magnitude in either direction [6], but regardless
of the astrophysical uncertainty, the prospect of a first
detection is imminent.

The detection and subsequent inference of the astro-
physical properties of these systems will rely on detailed
signal models. The GW amplitude at any instant is
smaller than the amplitude of the noise in the detector,
and can only be detected by matching a finite portion of
the data with a model signal. This procedure requires
that the model signal remains accurate over the entire
duration of the signal; typically of the order of hundreds
of seconds for neutron-star binaries and tens of seconds
for black-hole binaries in the advanced-detector era (with
frequency sensitivity down to 10 Hz). Although higher
mass sources have shorter waveforms (in the detector
band), these present more of a challenge for modelling as
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they have detectable merger and ringdown components.
In contrast, binary neutron stars only have the (easier
to model) inspiral part of the waveform in band. In this
paper, we are concerned with problems that arise from
inaccurate models; therefore, we focus our attention on
black-hole binaries where the issue of waveform uncer-
tainty is most acute. However, the techniques we de-
velop could equally be applied to neutron-star binaries or
any other uncertain signal. Inaccurate waveform models
are known to cause significant systematic errors when re-
covering source parameters from observations with both
ground-based [7] and space-based GW detectors [8].

There are two problems that arise when using in-
accurate signal models: the detection problem, and
the parameter-estimation (PE) problem. The detection
problem is that the inaccurate model does not perfectly
match to the physical waveform, leading to a loss of
signal-to-noise (SNR) ratio and, hence, a lower chance
of detection (for the same false alarm probability). The
PE problem, which is the focus of this paper, is that
the model waveform which has the best overlap with the
physical signal in the data generally has parameter val-
ues offset from the true source parameters, leading to a
systematic error in any parameter estimates.

Recently, some of the authors proposed a novel method
of improving the detection and PE prospects of compli-
cated physical phenomena in noisy data [9]. The method
applies generally to any situation where accurate models
of the signal are available, but computational constraints
mean that routine detection and PE tasks must be car-
ried out with cheaper, less accurate, models. This is the
situation we find ourselves in for compact binary coales-
cences in the advanced-detector era.

Full inspiral–merger–ringdown models for black-
hole binary coalescences are available following recent
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progress in numerical relativity (NR) [10–12]. NR sim-
ulations are extremely expensive, only a few hundred
have been performed to date (see [13, 14] and refer-
ences therein), and these typically consist of only the
final few tens of orbits (cf. [15]). However, the existence
of NR waveforms has permitted the calibration of an-
alytic approximants such as the effective-one-body–NR
(EOBNR) [16–19] or IMRPhenom [20] families, with re-
cent efforts concentrating on including the effects of pre-
cession in these [21–23].1 For some recent PE work with
inspiral merger and ringdown waveform models see [25–
27]. Historically, PE has used models based on the post-
Newtonian formalism, such as the TaylorF2 and Tay-
lorT2 waveforms [28]. Despite these lacking all of the
relevant features, they are sufficiently quick to calculate
that they can be used in PE algorithms.

To include uncertainty in waveform templates whilst
minimising computational expense, we use Gaussian pro-
cess regression (GPR) to estimate the effects of waveform
errors. The method involves constructing a training set of
the waveform differences between an expensive, accurate
waveform and a cheaper, less accurate waveform. This
difference is evaluated at a relatively small number of
points in parameter space and stored for later use. GPR
is then used to interpolate the difference across param-
eter space to give a best estimate and a corresponding
uncertainty at a general point in parameter space. This
interpolation provides a prior probability distribution on
the waveform difference which is then used in marginalis-
ing the likelihood over waveform uncertainty. The result
is an expression for the likelihood in terms of the cheaper
waveform model, but with corrections coming from the
training set. This marginalised likelihood is negligibly
more complicated or computationally expensive to eval-
uate than the standard expression, but provides a better
estimate of the true likelihood surface (and hence the
posterior), factoring in our imperfect knowledge of the
waveform.

If the standard likelihood with an approximate wave-
form is used for PE then, in general, biased parameter
estimates are obtained.2 It has recently been shown by
some of the authors [31] that, under certain conditions,
this bias is completely removed by the marginalised likeli-
hood, and, more generally, that the bias is always reduced
by the marginalised likelihood.

The technique of GPR assumes that the data in the
training set have been drawn from a Gaussian process

1 See [24] for a study of systematic error (or lack thereof) from
using EOBNR waveforms with NR injections.

2 This is commonly assessed in the GW literature using
probability–probability (P–P) plots [29, 30]; for a catalogue of
events, these plot the cumulative fraction of events where the
true parameter is found within the credible interval correspond-
ing to a given probability. If the posteriors are well calibrated,
then a proportion P should fall in the P credible interval, and
the plot is a diagonal line. Introducing bias means that the line
sags below the optimal diagonal.

(GP) on the parameter space with a mean and a covari-
ance function either specified a priori or estimated from
the training set itself. The interpolation is then achieved
by calculating the conditional probability for the GP at
some new parameter point given the known training set
values, the mean and the covariance. GPR provides a
convenient non-parametric way to interpolate the wave-
form differences, and has the additional advantage that,
by construction, it provides a Gaussian probability dis-
tribution for the unknown waveform difference which can
be analytically marginalised over. This is important be-
cause it means no extra nuisance parameters are added to
the PE task which would slow down an already expensive
process.

The outline of this paper is as follows. In Sec. II the
concept of the marginalised likelihood is introduced and
the use of GPR in its construction is described in de-
tail. The main choice made in implementing GPR is the
specification of the covariance function; Sec. III discusses
how the properties of the covariance function affect the
properties of the corresponding GP, and the effects of
different choices of covariance function are examined in
a toy one-dimensional GPR problem. The marginalised
likelihood possesses several properties which make it ap-
pealing for GW astronomy; Sec. IV presents proofs of
these and discussions of their significance. In Sec. V
the implementation of the marginalised likelihood is de-
scribed; here, properties of the interpolated waveforms
are examined and PE results for the marginalised likeli-
hood are also presented. Additional material on the effect
of changing the detector noise properties on the interpo-
lated waveforms are considered in App. B. Finally, con-
cluding remarks and a discussion of future directions for
implementing the marginalised likelihood are presented
in Sec. VI.

II. THE METHOD

In this section we detail how we incorporate waveform
uncertainties into GW data analysis. The material pre-
sented is an expansion of that in [9]. In Sec. II A we
introduce the standard likelihood function and show how
model uncertainties can be treated like nuisance parame-
ters that can be integrated out (marginalised over). Per-
forming this integration requires that a prior probability
distribution is specified for the model uncertainties, this
is constructed using GPR. This is introduced in Sec. II B,
where we briefly summarise some key results pertaining
to GPR; further details can be found in standard text-
books (e.g., [32–34]). The result of the integration is
the marginalised likelihood presented in Eq. (28) which
accurately encodes our state of knowledge of the signal
parameters, given our imperfect waveform models and
the noisy data.
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A. The marginalised likelihood

We consider the scenario where we can construct two
different waveform models, one accurate but computa-
tionally expensive, the other less accurate but quick to

calculate. We use the parameters vector ~λ to fully char-
acterise the GW signal; Latin indices from the beginning
of the alphabet (a, b, . . .) will be used to label the dif-
ferent components of this vector, and repeated indices
should be summed over. The accurate waveforms will
be referred to as the exact waveform h(~λ), although the
method does not require that the accurate waveforms are
perfect (see Sec. III C). The cheaper approximate wave-

form H(~λ) is related to h(~λ) by the waveform difference

H(~λ) = h(~λ) + δh(~λ) . (1)

The waveform templates may be calculated in either the

time domain h(t;~λ) or the frequency domain h̃(f ;~λ); the
dependence of the waveform on time or frequency is sup-
pressed in our notation for brevity.

In the context of modelling binary black-hole coales-
cences there are several highly accurate waveform ap-
proximants available, for example, NR waveforms [14] or
spin EOBNR (SEOBNR) models [18, 19, 35]. There are
also multiple possibilities for the approximate waveform
family, for example, the Taylor family of approximants
[28]. For the proof-of-principal numerical calculations in
this paper, we need to be able to perform mock PE runs
with both waveform families so that we can assess our
marginalisation technique does indeed offer a significant
improvement. Therefore, we will pick both approximants
to be quick to compute, rather than selecting on accu-
racy: our choice of waveform family is discussed in more
detail in Sec. V A.

In a PE study, we wish to construct the posterior prob-
ability distribution for the signal parameters given the
observed data (and any prior information we have about

the source) p(~λ|s). From Bayes’ theorem, the posterior
is given by

p(~λ|s) =
L′(s|~λ)π(~λ)

Z ′(s)
, (2)

where (keeping the notation of [9]) L′(s|~λ) is the likeli-

hood, π(~λ) is the prior distribution on the parameters
and Z ′(s) is the normalising evidence

Z ′(s) =

∫
L′(s|~λ)π(~λ)d~λ . (3)

In a Bayesian analysis the evidence Z ′(s) can be used as
the detection statistic (by comparing it with the evidence
for the null hypothesis to form the Bayes’ factor) [36], and

the positions and widths of peaks in the posterior p(~λ|s)
are used to give the parameter estimates and associated
uncertainties [37]. For simplicity (although it is not nec-

essary to do so), we assume throughout that π(~λ) is flat
within the relevant region of parameter space. The single

remaining challenge is to calculate the likelihood L′(s|~λ).
For a detector with stationary, Gaussian noise with

power spectral density Sn(f) [38], the likelihood is given
by [39]

L′(s|~λ) ∝ exp

(
−1

2

〈
s− h(~λ)

∣∣∣s− h(~λ)
〉)

. (4)

Here the noise-weighted inner product has been defined
as [40]

〈x|y〉 = 4<
{∫ ∞

0

df
x̃(f)ỹ(f)∗

Sn(f)

}
= 4<

{
M∑
κ=1

δf
x̃(fκ)ỹ(fκ)∗

Sn(fκ)

}
, (5)

where κ labels the M frequency bins with resolution δf .
We define the norm of a waveform as

‖x‖ =
√
〈x|x〉 , (6)

for a signal, this is equivalent to its SNR.
In practice it can be infeasible to sample from the like-

lihood distribution in Eq. (4) because it is prohibitively

expensive to calculate the exact waveforms h(~λ); instead,
we must reply on the approximate waveforms to calculate
an approximate likelihood,

L(s|~λ) ∝ exp

(
−1

2

∥∥∥s−H(~λ)
∥∥∥2) . (7)

For a good approximant

L(s|~λ) ≈ L′(s|~λ) ; (8)

the natural way to improve this agreement is to con-
struct (inevitably more expensive) approximants that

have smaller waveform differences δh(~λ). Instead, the

proposal of this paper is to replace L(s|~λ) with a new
likelihood which accounts for the uncertainty in the wave-
forms. The alternative likelihood is

L(s|~λ) ∝
∫

d
[
δh(~λ)

]
P [δh(~λ)] exp

(
−1

2

∥∥∥s−H(~λ) + δh(~λ)
∥∥∥2) . (9)

This new likelihood has marginalised over the uncertainty in the waveform difference using the (as yet unspecified)
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prior on the waveform difference P [δh(~λ)].
The prior on the waveform difference should include

the information available from the limited number of
available accurate waveforms and could also encode our
prior expectations about the signal, for example, that
the approximate waveforms are most accurate at early
times (or equivalently at low frequencies) when the or-
biting bodies are well separated [41], but gradually be-
come inaccurate as the bodies inspiral. At most points
in parameter space, an accurate waveform is not avail-
able, and so it is necessary to interpolate the waveform
difference across parameter space while simultaneously
accounting for the error this introduces. It would seem
that the problem rapidly becomes complicated, and even
if a suitable prior could be constructed the computational

time needed to evaluate L(s|~λ) would make it impractical
in most contexts.

Fortunately, the technique of GPR provides a natu-
ral way to interpolate the waveform differences across
parameter space, incorporating all necessary prior infor-
mation. GPR also has the additional property that it

naturally returns an expression for P [δh(~λ)] which is a

Gaussian in δh(~λ). Since the exponential factor in Eq. (9)

is also Gaussian in δh(~λ), the functional integral can be
evaluated analytically. This gives an analytic expression

for L(s|~λ) which can be evaluated in approximately the

same computational time as L(s|~λ).
Henceforth, for brevity, the s dependence will be sup-

pressed in all likelihoods, i.e. L′(~λ) ≡ L′(s|~λ), L(~λ) ≡
L(s|~λ), and L(~λ) ≡ L(s|~λ).

B. Gaussian process regression

Assume that we have access to accurate waveforms at
a few values of the parameters {h(~λi) | i = 1, 2, . . . , N}
and can cheaply compute approximate waveforms at the
same parameter values. Our training set is the set of
waveform differences

D =
{(
~λi, δh(~λi)

) ∣∣∣ i = 1, 2, . . . , N
}
. (10)

Where necessary the Latin indices i, j, . . . will be used
to label the different components of the training set (re-
peated indices are not summed over unless specified). It
is now necessary to interpolate the training set to ob-
tain the prior on the waveform difference first defined in
Eq. (9),

P [δh] ≡ P (δh(~λ)|D, I) , (11)

where I is any other prior information we possess about
the waveforms. The simplest and most natural choice for
such a prior is to assume that the waveform difference is
a realisation of a GP (a Gaussian is the the maximum-
entropy distribution given that we know a characteristic
range of variation [42]).

δh(~λ) ∼ GP(m(~λ), k(~λ,~λ′)) (12)
A GP can loosely be thought of as the generalisation of
a Gaussian distribution to an infinite number of degrees

of freedom. It is completely specified by the mean m(~λ)

and covariance k(~λ,~λ′) functions in the same way as a
Gaussian distribution is fully specified by a mean and
variance. More formally, a GP is an infinite collection
of variables, any finite subset of which are distributed as
a multivariate Gaussian. For a set of parameter points

{~λi}, including, but not limited to, the training set D,

[
δh(~λi)

]
∼ N (m, K) , (13)

where the mean vector and covariance matrix of this
Gaussian distribution are fixed by the corresponding
functions of the GP,

[m]i = m(~λi) , [K]ij = k(~λi, ~λj) , (14)

with probability density function

P
({
δh(~λi)

})
=

1√
(2π)N |K|

exp

−1

2

∑
i, j

[
K−1

]
ij

(
δh(~λi)

∣∣∣δh(~λj)
) . (15)

The round brackets denote a new inner product with re-
spect to some noise weighting, S′n(f), which we leave

unspecified for the moment;

(x|y) = 4<
{∫ ∞

0

df
x̃(f)ỹ(f)∗

S′n(f)

}
= 4<

{
M∑
κ=1

δf
x̃(fκ)ỹ(fκ)∗

S′n(fκ)

}
. (16)
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In writing down Eq. (15) and stipulating that the covari-

ance function k(~λ,~λ′) has no dependence on frequency,
we are effectively assuming that a) waveform model er-
rors are uncorrelated in frequency; b) the parameter
space structure of the model errors is frequency inde-
pendent; and c) the typical size of errors has a frequency

dependence proportional to
√
S′n(f). These are natu-

ral assumptions to make for a first analysis, but we will
discuss how these can be generalised later a subsequent
paper.

Specifying how we compute the mean and variance for
the GP determines how the waveforms are interpolated
and fixes our prior for waveform uncertainty across pa-
rameter space.

Our GP has a zero mean as we have chosen to inter-
polate the waveform difference rather than the waveform
directly. By first subtracting off an approximate model
we leave a quantity which is uncertain, but has no known
bias. If we had some additional prior knowledge that the
approximate waveform was systematically wrong across
parameter space, then this should be added into the ap-
proximate model so that the zero-mean assumption be-
comes valid. Identical results for the marginalised like-
lihood could also be obtained by directly interpolating
the accurate waveforms using a GP with a mean equal to
the approximate waveforms; however, we choose to inter-
polate waveform differences because zero-mean GPs are
simpler to handle numerically.

Specifying the covariance function is central to GPR
as it encodes our prior expectations about the properties
of the function being interpolated. Possibly the simplest
and most widely used choice for the covariance function
is the squared exponential (SE) [33]

k(~λi, ~λj) = σ2
f exp

[
−1

2
gab(~λi − ~λj)a(~λi − ~λj)b

]
, (17)

which defines a stationary, smooth GP. In Eq. (17),
a scale σf and a (constant) metric gab for defining a
modulus in parameter space have been defined. These

are called hyperparameters and we denote them as ~θ =
{σf , gab}, with Greek indices µ, ν, . . . to label the com-
ponents of this vector. If the available accurate wave-
forms contain some uncertainty then this can also be in-
cluded by adding a diagonal matrix C to Eq. (17), where
the element Cii (no summation) is the uncertainty in

the accurate simulation at ~λi; this is discussed further in
Sec. III C.

The probability in Eq. (15) is referred to as the hy-
perlikelihood, or alternatively the evidence (as in [9]) for
the training set; it is the probability that that particular
realisation of waveform differences was obtained from a
GP with a zero mean and specified covariance function.
The hyperlikelihood depends only on the hyperparame-
ters and the quantities in the training set, so we denote
it as Z(~θ|D). The log hyperlikelihood is

lnZ(~θ|D) = −N
2

ln(2π)

−1

2

∑
i, j

inv
[
k(~λi, ~λj)

] (
δh(~λi)

∣∣∣δh(~λj)
)

−1

2
ln
∣∣∣det

[
k(~λi, ~λj)

]∣∣∣ . (18)

For all subsequent calculations the values of the hyper-

parameters are fixed to their optimum values ~θop, defined
as those which maximise the hyperlikelihood:

∂Z(~θ|D)

∂θµ

∣∣∣∣∣
~θ= ~θop

= 0 . (19)

Maximising the hyperlikelihood with respect to ~θ is one
of many approaches which could be taken. For example,
a better motivated approach would be to consider the
hyperparameters as nuisance parameters in addition to

the source parameters ~λ, and marginalise over them while
sampling an expanded likelihood,

Λexpanded(~λ, ~θ|D) ∝ L(~λ|~θ,D)Z(~θ|D). (20)

The disadvantage of this approach is that the hyperlike-
lihood is much more expense to compute than the stan-
dard approximate likelihood and the inclusion of extra
nuisance parameters also slows down any PE. In con-
trast, our proposed method of maximising the likelihood
is a convenient heuristic which is widely used in other
contexts and allows all the additional computation to be
done offline. It would be useful, in future work, to check
explicitly that the different ways of dealing with the hy-
perparameters give consistent results in the context of
GW source modelling.

Having fixed the properties of the covariance function
by examining the training set, we can now move on to
using the GP as a predictive tool. The defining property
of the GP is that any finite collection of variables drawn
from it is distributed as a multivariate Gaussian in the
manner of Eq. (15). Therefore, the set of variables formed
by the training set plus the waveform difference at one

extra parameter point δh(~λ) is distributed as

[
δh(~λi)

δh(~λ)

]
∼ N (0,Σ) , Σ =

(
K K∗
KT
∗ K∗∗

)
, (21)

where K is defined in Eq. (14) and the vector K∗ and
scalar K∗∗ are defined as

[K∗]i = k(~λi, ~λ) , K∗∗ = k(~λ,~λ) . (22)

On the right-hand side of Eq. (21) all the quantities are
known because the hyperparameters have been fixed to
their optimum values, and on the left hand side all the
quantities are known (from the training set) except for

δh(~λ). Therefore, the conditional probability of the un-
known waveform difference given the known differences
in D can be found. This conditional probability is given
by (e.g., [32, 33])
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P [δh(~λ)] =
1√

2πσ2(~λ)
∏M
κ=1 S

′
n(fκ)

exp

−
(
δh(~λ)− µ(λ)

∣∣∣δh(~λ)− µ(λ)
)

2σ2(~λ)

 , (23)

where the GPR mean and its associated error have been
defined as

µ(~λ) =
∑
i, j

[K∗]i
[
K−1

]
ij
δh(~λj) , (24)

σ2(~λ) = K∗∗ −
∑
i, j

[K∗]i
[
K−1

]
ij

[K∗]j . (25)

Furnished with the expression for P [δh(~λ)], the
marginalised likelihood in Eq. (9) can now be evaluated.
The integrand in Eq. (9) is the product of two Gaussians
and can be calculated analytically,

L(~λ) ∝ 1√
1 + σ2(~λ)

∏M
κ=1 (S′n(fκ)/Sn(fκ))

exp

(
−1

2

[
s−H(~λ) + µ(~λ)

∣∣∣s−H(~λ) + µ(~λ)
])

. (26)

The square brackets denote a third inner product with re-

spect to the new noise weighting S′′n(f), where S′′n(f,~λ) ≡
Sn(f) + σ2(~λ)S′n(f),

[x|y] = 4<
{∫ ∞

0

df
x̃(f)ỹ(f)∗

S′′n(f)

}
= 4<

{
M∑
κ=1

δf
x̃(fκ)ỹ(fκ)∗

S′′n(fκ)

}
. (27)

For the remainder of this paper, for simplicity, we take
S′n(f) = Sn(f) so the three signal inner products we have

defined become 〈·|·〉 = (·|·) = [·|·]/(1 + σ2(~λ)) [9]. With
this simplifying assumption, the marginalised likelihood
becomes

L(~λ) ∝ 1√
1 + σ2(~λ)

× exp

−1

2

∥∥∥s−H(~λ) + µ(~λ)
∥∥∥2

1 + σ2(~λ)

 . (28)

As mentioned earlier Eq. (15) issues that the waveform
model errors are uncorrelated in frequency. The assump-
tion that S′n(f) = Sn(f) additionally assumes that the
typical size of the waveform error at a frequency f is given
by
√
Sn(f). This choice can be motivated to a certain ex-

tent by examining the hyperlikelihood in Eq. (18) which
is used to train the GP. This hyperlikelihood contains the

overlap matrix (δh(~λi)|δh(~λj)). Choosing S′n(f) = Sn(f)
acts to downweight the correlations at frequencies we are
insensitive to (ignoring errors we cannot measure) and
hence the resulting hyperparameters give an interpolant

which is tuned to better represent the waveform correla-
tions at the frequencies to which we are most sensitive:
we weight waveform errors based upon their impact on
the likelihood. The assumption of frequency-independent
models errors gives a value for the GPR uncertainty σ2

in Eq. (28) that is also frequency independent. This can
be shown to be a conservative choice in the sense that it
gives broader and less informative posteriors. In a follow-
on study we will provide a proof of the conservative na-
ture of this assumption and examine a number of different
choices for the weighting function S′n(f), but we use the
simplifying assumption S′n(f) = Sn(f) throughout the
current paper. Despite these simplifying assumptions,
we find that the resulting likelihood in Eq. (28) performs
well. In App. B we examine the sensitivity of the method
to small changes in the noise curve Sn(f) which will occur
in real experiments.

In Eq. (28) the best fit waveform has shifted by an

amount µ(~λ); this is the best estimate of the waveform

difference returned by the GPR. The quantity H(~λ) +

µ(~λ) can be regarded as a new waveform approximant
built from the accurate and approximate waveforms with
the aid of GPR. However, a bonus of this way of including
the training set directly into the likelihood is that the
extra uncertainty associated with using the GPR as an
interpolant is automatically included via the broadening

of the posterior caused by σ2(~λ) ≥ 0.

In this section we have explained how uncertainty in
waveform models can be included in PE through use of a
marginalised likelihood. We defined such a likelihood in
Eq. (9), but the marginalisation requires a prior prob-
ability on the waveform uncertainty across parameter
space. We construct this from a training set using GPR;
the resulting prior is given in Eq. (23). Since this is of
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Gaussian form, we can marginalise analytically to pro-
duce the new likelihood Eq. (28). The properties of this
marginalised likelihood are explored extensively through-
out the remainder of this paper.

In Secs. III and IV we discuss theoretical properties
of the GPR and marginalised likelihood respectively. A
reader who is primarily interested in the PE results ob-
tained with the likelihood in Eq. (28) may skip to Sec. V.

III. THE COVARIANCE FUNCTION

In the previous section we described how waveform un-
certainties could be marginalised out using a prior con-
structed by using GPR on a training set. The only aspect
of this that is not prescribed by the training data is the
choice of the covariance function. This plays an impor-
tant role in determining the properties of a GP. In this
section, we discuss the properties of different choices of
the covariance function in GPR. The properties of the
covariance functions discussed in this section are known
in the GPR literature, but are included here as they are
not a widely appreciated in the GW community. The
material presented in this section on the covariance func-
tion will be used in the interpretation of our results in
Sec. IV and Sec. V.

The only necessary requirements we have of a covari-
ance function are that it is a positive definite; i.e. for

any choice of points {~λi} the covariance matrix Kij =

k(~λi, ~λj) is positive definite.

Throughout this paper, GPs are assumed to have zero
mean, and therefore be fully specified by the covariance

function k(~λ1, ~λ2). However, the proofs regarding conti-
nuity and differentiability of GPs discussed in this sec-
tion, and proved in App. A, are done without recourse to
the zero-mean assumption. The covariance encodes all
information available about the properties of the func-
tion being interpolated by the GPR. It is central to the
GPR and hence also to the marginalised likelihood.

The covariance function (and the corresponding GP) is
said to be stationary if the covariance is a function only

of ~τ = ~λ1 − ~λ2, furthermore it is said to be isotropic if

it is a function only of τ ≡ |~τ | = |~λ1 − ~λ2|.3 Isotropy
of a GP implies stationarity. All of the GPs used for
numerical calculations in this paper are isotropic (and

hence stationary) k(~λ1, ~λ2) ≡ k(~τ) ≡ k(τ), although the
generalisation to non-stationary GPs is briefly discussed
in Sec. III B.

An example of how the properties of the covariance
function relate to the properties of the GP, and hence
the properties of the resulting interpolant, is given by

3 We have yet to define a metric on parameter space with which
to take the norm of this vector (see Sec. III A), but all that is
required here is that a suitably smooth metric exists.

considering the mean-square (MS) continuity and differ-
entiability of GPs. It can be shown that the first nd MS
derivatives of a GP are MS continuous (the GP is said
to be nd-times MS differentiable) if and only if the first
2nd derivatives of the covariance function are continu-
ous at the diagonal point ~λ1 = ~λ2 = ~λ∗. For a stationary
GP this condition reduces to checking the 2nd derivatives
of k(~τ) at ~τ = ~0, and for an isotropic GP checking the
2nd derivatives of k(τ) at τ = 0. A proof of this result,
following [34], is given in App. A. It is the smoothness
properties of the covariance function at the origin that
determine the differentiability of the GP. This result is
used in Sec. III B when discussing different functional
forms of covariance for use in GPR.

In this section, the effect of the choice of covariance
function on the GPR are explored. We consider three as-
pects that enter the definition of the covariance function:

(A) specifying the distance metric in parameter space
gab;

(B) specifying the functional form of the covariance
with distance k(τ),

(C) and whether or not to include errors σn on the
training set points.

Stages A and B cannot be completely separated; there
exists an arbitrary scaling, α of the distance τ → ατ
which can be absorbed into the definition of the covari-
ance, k(τ) → k(τ/α). However, provided the steps are
tackled in order, there is no ambiguity.

A. The metric gab

The first stage involves defining a distance τ between
two points in parameter space. One simple way of doing
this, and the way used in the SE covariance function

in Eq. (17), is to define τ2 = gab(~λ1 − ~λ2)a(~λ1 − ~λ2)b,
where gab are constant hyperparameters. This distance
is obviously invariant under a simultaneous translation

of ~λ1 → ~λ1 + ~∆ and ~λ2 → ~λ2 + ~∆; therefore, this defines
a stationary GP. For a D-dimensional parameter space,
this involves specifying D(D+1)/2 hyperparameters gab.

More complicated distance metrics (with a larger num-
ber of hyperparameters) are possible if the condition of

stationarity is relaxed, i.e. gab → gab(~λ). It was demon-
strated by [43] how, given a family of stationary covari-
ance functions, a non-stationary generalisation can be
constructed. A stationary covariance function can be

considered as a kernel function centred at ~λ1; k(~λ1, ~λ2) ≡
k~λ1

(~λ2). Allowing a different kernel function to be de-

fined at each point ~λ1, a new, non-stationary covariance

function is k(~λ1, ~λ2) =
∫

d~u k~u( ~λ1)k~u(~λ2). To see that
k is a valid covariance function consider an arbitrary se-

ries of points {~λi}, and the sum over training set points

I =
∑
i,j aiajk(~λi, ~λj); for k to be a valid covariance it
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is both necessary and sufficient that I ≥ 0. Using the

definition of k gives I =
∫

d~u
∑
i,j aiajk~u(~λi)k~u(~λj) =∫

d~u (
∑
i aik~u(~λi))

2 ≥ 0. Applying this procedure to a
D-dimensional SE function generates a non-stationary
analogue [43]

k(~λi, ~λj) = σf
∣∣Gi∣∣1/4 ∣∣Gj∣∣1/4 ∣∣∣∣Gi + Gj

2

∣∣∣∣−1/2
× exp

(
−1

2
Qij

)
, (29)

where

Qij = (~λi − ~λj)a(~λi − ~λj)b
(
Giab + Gjab

2

)−1
, (30)

and Giab = inv[gab(~λi)] is the inverse of the parameter-

space metric at position ~λi. Provided that the metric

gab(~λ) is smoothly parameterised this non-stationary SE
function retains the smoothness properties discussed ear-
lier.

For the interpolation of waveform differences, it is easy
to imagine the potential benefits of using non-stationary
GPs. For example, in the case of the spin parameter, it
could be imagined that the waveform difference consid-
ered as a function of the effective spin of the compact
objects δh(χ) would vary on long length scales in χ for
small values of the spin, but on much shorter scales for
larger values of the spin.

The generalisation in Eq. (29) involves the inclusion of
a large set of additional hyperparameters to characterise
how the metric changes over parameter space; for exam-
ple one possible parameterisation would be the Taylor
series

gab(~λ) = gab(~λ0) +
(
~λc − ~λc0

) ∂gab(~λ)

∂λc

∣∣∣∣∣
~λ=~λ0

+ . . . (31)

with the hyperparameters gab(~λ0), ∂gab(~λ)/∂λc, and so
on. As we see below, the inclusion of even a single extra
hyperparameter can incur a significant Occam penalty
[32] which pushes the training set to favour a simpler
choice of covariance function. For this reason we only
consider stationary GPs. However, the generalisation to
a non-stationary GP (perhaps in only a limited number
of parameters, e.g., spin) should be investigated further
in the future. In making this generalisation, one would
have to be guided significantly by the prior expectations
of which parameters to include and how to parameterise
the varying metric.

An alternative to considering non-stationary metrics is

instead to try and find new coordinates λ̃ ≡ λ̃(~λ) such
that the metric in these coordinates becomes (approx-
imately) stationary. There could be hope for this ap-
proach, as a similar problem has been tackled in the con-
text of template placement for GW searches [44]. Here

the problem is to find coordinates such that waveform
templates placed on a regular grid in these coordinates
have a constant overlap with each other. The waveform
match can be viewed as defining a metric in parameter
space, and hence the desired coordinates make this metric
stationary. For a post-Newtonian inspiral signal, a set of
chirp-time coordinates were proposed by [45] which make
the metric nearly stationary. Metrics have also been cal-
culated for inspiral–merger–ringdown models, for exam-
ple IMRPhenomB [46]. While it could be possible to
adapt the parameter-space metrics already calculated for
different approximants for use in template placement al-
gorithms to help in constructing our GPR training sets,
we do not consider this approach further here.

Throughout the remainder of this paper the metric
components gab are treated as constant hyperparameters
fixed to their optimum values, as discussed in Sec. II.

B. The functional form of k(τ)

The second stage of specifying the covariance function
involves choosing the function of distance k(τ). In gen-
eral whether a particular function k(τ) is positive definite
(and hence is a valid covariance function) depends on the

dimensionality D of the underlying space (i.e. ~λ ∈ RD);
however, all the functions considered in this section are
positive definite for all D. Several choices for k(τ) are
particularly common in the literature. These include the
SE covariance function (which has already been intro-
duced), given by

kSE(τ) = σ2
f exp

(
−1

2
τ2
)
. (32)

The power-law exponential (PLE) covariance function is
given by

kPLE(τ) = σ2
f exp

(
−1

2
τη
)
, (33)

where 0 < η ≤ 2. The PLE reduces to the SE in the case
η = 2. The Cauchy function is given by

kCauchy(τ) =
σ2
f

(1 + τ2/2η)
η , (34)

where η > 0. This recovers the SE function in the limit
η → ∞. And finally, the Matérn covariance function is
given by [47]

kMat(τ) =
σ2
f21−η

Γ(η)

(√
2η τ

)η
Kη

(√
2η τ

)
, (35)

where η > 1/2, and Kη is the modified Bessel function
of the second kind [48]. In the limit η →∞, the Matérn
covariance function also tends to the SE.

Fig. 1 shows the functional forms of the covariance
functions. They have similar shapes — they all return a
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FIG. 1: Plots of the different generalisations of the SE covariance function discussed in Sec. III B. The left-hand panel shows
the PLE function, the centre panel shows the Cauchy function, and the right-hand panel shows the Matérn function; in all
cases the value of σf was fixed to unity. In each panel the effect of varying the additional hyperparameter is shown by the
three curves. For the PLE covariance the case η = 2 recovers the SE covariance, while for the Cauchy and Matérn covariances
the case η →∞ recovers the SE covariance.

finite covariance at zero distance which decreases mono-
tonically with distance and tends to zero as the distance
becomes large. In the case of interpolating waveform dif-
ferences this indicates that the errors in the approximate
waveform at two nearby points in parameter space are
closely related, whereas the errors at two well separated
points are nearly independent. The PLE, Cauchy and
Matérn function can all be viewed as attempts to gen-
eralise the SE with the inclusion of one extra hyperpa-
rameter η, to allow for more flexible GP modelling. All
three alternative functions are able to recover the SE in
some limiting case, but the Matérn is the most flexible
of the three. This can be seen from the discussion of the
MS differentiability of GPs given at the beginning of this
section.

The SE covariance function is infinitely differentiable
at τ = 0, and so the corresponding GP is infinitely MS
differentiable. The PLE function is infinitely differen-
tiable at τ = 0 for the SE case when η = 2, but for
all other cases it is not at all MS differentiable. In con-
trast, the Cauchy function is infinitely differentiable at
τ = 0 for all choices of the hyperparameter η. The
Matérn function, by contrast, has a variable level of dif-
ferentiability at τ = 0, controlled via the hyperparameter
η [47]. The GP corresponding to the Matérn covariance
function in Eq. (35) is nd-times MS differentiable if and
only if η > nd. This ability to adjust the differentiabil-
ity allows the same covariance function to successfully
model a wide variety of data. In the process of maximis-
ing the hyperlikelihood for the training set over hyperpa-
rameter η, the GP learns the (non)smoothness properties
favoured by the data, and the GPR returns a correspond-
ingly (non)smooth function.

C. The inclusion of noise σn

Even the most accurate waveform models h(~λ) still
contain some error with respect to the unknown true

physical signal h′(~λ). We can account for the error in
our training set points by adding a noise variance term

σ2
fσ

2
n, i in the covariance function:

k(~λi, ~λj)→ k(~λi, ~λj) + σ2
fσ

2
n, iδij , (36)

which alters the covariance matrix in Eq. (14) corre-
spondingly (but not the expressions in Eq. (22)). Here
σn, i is the fractional error ‖h−h′‖/‖δh‖ (where the norm
is taken with respect to the inner product in Eq. (5), and
δh = H−h) in each training set point. This ensures that
σ2
f is still an overall scale for the covariance function.

We do not maximise the hyperlikelihood over σ2
n, i; this

is because σn, i is related to ‖h − h′‖, which cannot be
learnt from a training set containing the differences δh.
The noise error is instead fixed at some overall error esti-
mate for the accurate model, which is a conservative ap-
proach. We consider the simple case σn, i = σn in this pa-
per; however, it is not necessary for all training set points
to have the same error, as a training set might comprise
different families of waveform models (e.g., a mix of dif-
ferent variants of (S)EOBNR or IMRPhenom waveforms,
or NR waveforms with different numerical resolutions).

If the overall noise error is σfσn, then the GPR uncer-

tainty at a training set point σ(~λi) satisfies,

σ(~λi) ≤ σfσn, ∀i ∈ {1, 2, . . . , N}. (37)

This is because the different points in the training set are
assumed to come from a correlated GP, and so nearby
measurements also act to decrease the error.

There is also a more practical motivation for the in-
clusion of noise. Inversion of the covariance matrix in
Eq. (14) can pose issues of numerical stability for large
training sets. In general, as the number of points in the
training set increases, the determinant of the covariance
matrix decreases rapidly towards zero, such that the ma-
trix is nearly singular (and hence the matrix is difficult to
invert). The solution to this is to add a small fixed noise
σ2
n = J � 1, or jitter, to each training set point as per

Eq. (36). The eigenvalues of the new covariance matrix
are then (approximately) the eigenvalues of the original
matrix plus J . This prevents the determinant, the prod-
uct of the eigenvalues, from becoming vanishingly small
and dramatically improves the stability of the inversion.
In effect, we are no longer requiring our interpolant to
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FIG. 2: Plots of the first few Wendland polynomial covariance
functions. All these functions have compact support, k(τ) = 0
for τ > 1. As the value of q increases the functions become
smoother near the origin.

pass through every training set point; instead, we only
ask it to pass close to each point (with the proximity
determined by the value of J).

D. Compact support and sparseness

All of the covariance functions considered up until this
point have been strictly positive;

k(τ) > 0 ∀ τ ∈ [0,∞) . (38)

When evaluating the covariance matrix for the training
set Kij this leads to a matrix where all entries are posi-
tive; i.e. a dense matrix. When performing the GPR it is
necessary to maximise the hyperlikelihood for the train-
ing set with respect to the hyperparameters. This process
involves inverting the dense matrix Kij at each iteration
of the optimisation algorithm. Although this procedure
is carried out offline, it still can become prohibitive for
large training sets. A related problem, as pointed out
in Sec. III C is that for large training sets the determi-
nant of the covariance matrix is typically small which
also contributes to making the covariance matrix hard to
invert.

One potential way around these issues is to consider a
covariance function with compact support,

k(τ) > 0 τ ∈ [0, T ] ,

k(τ) = 0 ∀ τ ∈ (T,∞) ,
(39)

where T is some threshold distance beyond which we as-
sume that the waveform differences become uncorrelated.
This leads to a sparse, band-diagonal covariance matrix,
which is much easier to invert. Care must be taken
when specifying the covariance function to ensure that
the function is still positive definite (which is required of
a GP): if the SE covariance function is truncated, then
the matrix formed from the new covariance function is
not guaranteed to be positive definite.

Nevertheless, it is possible to construct covariance
functions which have the requisite properties and sat-
isfy the compact support condition in Eq. (39). These
are typically based on polynomials. We consider a series
of polynomials proposed by [49], which we will refer to
as the Wendland polynomials. These have the property
that they are positive definite in RD and are 2q-time dif-
ferentiable at the origin. Therefore the discrete parame-
ter q is in some sense analogous to the η hyperparameter
of the Matérn covariance function in that it controls the
smoothness of the GP. Defining β to be

β =

⌊
D

2

⌋
+ q + 1 (40)

and using Θ(x) to denote the Heaviside step function, the
first few Wendland polynomials kD, q(τ) are given by,

kD, 0(τ) = σ2
fΘ(1− τ)(1− τ)β , (41)

kD, 1(τ) = σ2
fΘ(1− τ)(1− τ)β+1 [1 + (β + 1) τ ] , (42)

kD, 2(τ) =
σ2
f

3
Θ(1− τ)(1− τ)β+2 [ 3 + (3β + 6) τ

+
(
β2 + 4β + 3

)
τ2
]
, (43)

kD, 3(τ) =
σ2
f

15
Θ(1− τ)(1− τ)β+3

[
15 + (15β + 45) τ

+
(
6β2 + 36β + 45

)
τ2

+
(
β3 + 9β2 + 23β + 15

)
τ3
]
. (44)

These are plotted in Fig. 2. Other types of covariance
function with compact support have also been proposed
and explored in the literature (e.g., [50–52]), but we do
not consider them in this paper.

IV. PROPERTIES OF THE METHOD

In this section proofs of several useful features of the
marginalised likelihood are presented. In Sec. IV A we
derive the PE error in a linearised formalism, recovering
results of [8] as well as new results for our marginalised
likelihood; in Sec. IV B we use these results to show that
the marginalised likelihood should not exclude the true
parameter values even at large SNR, and in Sec. IV C,
we derive other limits of the marginalised likelihood at
specific points in parameter space.

A. The error at linear order

A more detailed understanding of the theoretical error
problem, and the solution offered by the marginalised
likelihood can be gained by examining the behaviour of
the likelihoods in the vicinity of a maximum.

The exact likelihood, from Eq. (4), is given by

L′(~λ) ∝ exp

(
−1

2

∥∥∥s− h(~λ)
∥∥∥2) , (45)
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and has a maximum at the best fit parameters, ~λbf , which
satisfy the equation〈

∂ah(~λbf)
∣∣∣s− h(~λbf)

〉
= 0 . (46)

The measured data consist of noise and the physical sig-

nal with the true parameters, ~λtr, that is s = n+ h(~λtr).
Therefore Eq. (46) becomes〈

∂ah(~λbf)
∣∣∣n+ h(~λtr)− h(~λbf)

〉
= 0 . (47)

Expanding the difference in the signals to leading order

in ∆~λ = ~λbf − ~λtr gives〈
∂ah(~λbf)

∣∣∣n−∆~λb∂bh(~λbf)
〉

= 0 , (48)

whence

∆~λa =
(
Σ−1

)ab 〈
n
∣∣∣∂bh(~λbf)

〉
, (49)

where Σab = 〈∂ah(~λbf)|∂bh(~λbf)〉. Therefore, at leading
order, the shift between the best fit and true parameters
for the exact likelihood consists of one term proportional
to n; we call this the noise error. The matrix Σab is
the usual Fisher information matrix (FIM) which char-
acterises the random errors at leading order [53].

The approximate likelihood, from Eq. (7), is given by

L(~λ) ∝ exp

(
−1

2

∥∥∥s−H(~λ)
∥∥∥2) , (50)

and has a maximum at the best fit parameters which
satisfy the equation〈

∂aH(~λbf)
∣∣∣s−H(~λbf)

〉
= 0 . (51)

Using s = n+ h(~λtr) in Eq. (51) and expanding to lead-

ing order in ∆~λ gives〈
∂aH(~λbf)

∣∣∣n− δh(~λtr)−∆~λb∂bH(~λbf)
〉

= 0 , (52)

thus

∆~λa =
(
Γ−1

)ab 〈
n
∣∣∣∂bH(~λbf)

〉
−
(
Γ−1

)ab 〈
δh(~λtr)

∣∣∣∂bH(~λbf)
〉
, (53)

where Γab = 〈∂aH(~λbf)|∂bH(~λbf)〉. Therefore, at leading
order the shift between the best fit and true parameters
for the approximate likelihood consists of two terms: the
noise error as before (except with the FIM evaluated with
the approximate model) and what we call the model er-
ror,

∆model
~λa = −

(
Γ−1

)ab 〈
δh(~λtr)

∣∣∣∂bH(~λbf)
〉
. (54)

The model error is independent of the noise realisation,
and hence represents a systematic error in the PE asso-
ciated with using inaccurate models.

The above treatment of the exact and approximate
likelihoods is a brief summary of part of the analysis done
by [8]. We now apply the same type of analysis to the
new marginalsied likelihood to see how this reduces or
removes the model error.

The marginalised likelihood is given in Eq. (9). From
Eq. (25) it can be seen that the interpolated waveform

difference µ(~λ) is a linear combination of δh(~λi) from the
training set. We will assume, for this calculation only,
that the waveform difference is also a small quantity in
the sense that ‖δh‖ � ‖h‖ with the norm from Eq. (6).
Therefore, µ = O(δh) and σf = O(δh). We shall keep
contributions up to O(δh).

Under the twin assumptions that ∆~λ and ‖δh‖ are
small, the marginalised likelihood is approximately given
by

L(~λ) ≈ exp

(
−1

2

∥∥∥s−H(~λ) + µ(~λ)
∥∥∥2) . (55)

This has a maximum at the best fit parameters ~λbf which
satisfy the equation

〈
∂a

(
µ(~λbf)−H(~λbf)

)∣∣∣s−H(~λbf) + µ(~λbf)
〉

= 0 .

(56)

Using s = n+ h(~λtr), and expanding to leading order in

∆~λ and δh gives

〈
−∂a

(
µ(~λbf)−H(~λbf)

)∣∣∣n+ h(~λtr)−H(~λbf) + µ(~λbf)
〉

= 0 , (57)〈
−∂a

(
µ(~λbf)−H(~λbf)

)∣∣∣n− δh(~λtr)−∆~λb∂bH(~λbf) + µ(~λbf)
〉

= 0 . (58)

This expression can be rearranged to find ∆~λ, dropping all terms second order in small quantities,

∆~λa =
(
Γ−1

)ab 〈
n
∣∣∣∂b (H(~λbf)− µ(~λbf)

)〉
−
(
Γ−1

)ab 〈
δh(~λtr)

∣∣∣∂bH(~λbf)
〉

+
(
Γ−1

)ab 〈
µ(~λbf)

∣∣∣∂bH(~λbf)
〉
. (59)
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Therefore, at leading order, the shift between the best
fit and true parameters for the marginalised likelihood
consists of three terms: the noise and model errors from
before, and a new shift arising from the marginalisation,

∆marg
~λa =

(
Γ−1

)ab 〈µ(~λbf)|∂bH(~λbf)〉. The expression
for the model and marginalisation errors are similar and
appear with opposite signs (as would be hoped since the
maginalised likelihood was designed to remove the model
error) so the remaining model error is proportional to

δh(~λbf)− µ(~λbf) (integrated inside the inner product).
If the training set is dense in the region of the

peak, and the hyperparameters have been correctly es-
timated, it is reasonable to assume that the GPR in-
terpolant of the waveform difference performs well, and

we have 〈δh(~λ)− µ(~λ)|·〉 ≈ 0. Under these conditions the
marginalised likelihood removes the systematic model er-
ror from the parameter estimates. In reality the interpo-
lation is not perfect, and the method is limited by the
available information in the training set, so that a resid-

ual model error proportional to 〈δh(~λbf) − µ(~λbf)|·〉 re-
mains.

B. The limit of large SNR

As first pointed out by [8], the systematic error asso-
ciated with the inaccurate model used in the approxi-
mate likelihood is independent of the SNR, whereas the
random error associated with the noise realisation de-
creases with increasing SNR. Therefore, there exists a
critical SNR for the approximate likelihood above which
the systematic model error dominates the random noise
error. If the approximate likelihood is used to infer the
parameters of a source with an SNR close to or above
this critical value then the inferred parameters are sig-
nificantly and systematically baised. In this section we
examine the behaviour of all three likelihood functions
for large SNR and show that the marginalised likelihood
does not suffer from this problem even in the limit of infi-
nite SNR. Therefore, parameter estimates obtained using
the marginalised likelihood can always be trusted.

In this section in order to ease the process of taking
the limit of large SNR all waveforms are understood to

be normalised such that ‖h(~λ)‖ = 1, and the amplitude

is taken out as a prefactor, so the full signal is Ah(~λ). In
addition we will assume for simplicity that the measured
value of A is equal to the true value for the signal; this
has no effect our final result.

The exact likelihood Eq. (4) is given by

L′(~λ) ∝ exp

(
−1

2

∥∥∥s−Ah(~λ)
∥∥∥2) . (60)

The measured data is given by s = n+Ah(~λtr), and the

exact likelihood is peaked at ~λbf = ~λtr + ∆~λ, where (see
Eq. (49))

∆~λa =
1

A

(
Σ−1

)ab 〈
n
∣∣∣∂bh(~λbf)

〉
. (61)

In this section, the FIM Σab is defined in terms of the
nomalised waveforms, i.e. Σab is independent of A; this is

done so that all of the dependence on A remains explicit.
The exact likelihood evaluated on the true parameters is
given by

L′(~λtr) ∝ exp

(
−1

2
‖n‖2

)
. (62)

The exact likelihood evaluated on the best-fit parameters
is given by

L′(~λbf) ∝ exp

[
−1

2

∥∥∥n+A
(
h(~λtr)− h(~λbf)

)∥∥∥2] . (63)

The ratio of these two likelihood values is denoted
Rexact = L′(~λtr)/L

′(~λbf). Expanding the difference

h(~λtr) − h(~λbf) in the above equation to leading order

in ∆~λ gives

lnRexact = −1

2

(
Σ−1

)ab 〈
n
∣∣∣∂ah(~λbf)

〉〈
n
∣∣∣∂bh(~λbf)

〉
.

(64)
The quantity Rexact is the factor by which the likelihood
of the true parameters is suppressed with respect to the
peak likelihood. From Eq. (64) it can be seen that this
factor is a random variable dependent on the noise reali-
sation n; the expectation of this random variable is given
by [39]

lnRexact = −1

2
. (65)

Both Eqs. (65) and Eq. (64) are independent of the sig-
nal amplitude A, and hence are unchanged by taking the
limit of large SNR, A→∞. Therefore (as one might have

expected) the exact likelihood evaluated at ~λtr remains
finite in this limit and the true parameters are never com-
pletely excluded from the posterior at any value of the
SNR.

The approximate likelihood Eq. (7) is given by

L(~λ) ∝ exp

(
−1

2

∥∥∥s−AH(~λ)
∥∥∥2) , (66)

The approximate likelihood is peaked at ~λbf = ~λtr + ∆~λ,
where (see Eq. (53))

∆~λa =
1

A

(
Γ−1

)ab 〈
n
∣∣∣∂bH(~λbf)

〉
−
(
Γ−1

)ab 〈
δh(~λtr)

∣∣∣∂bH(~λbf)
〉
. (67)

The FIM Γab is also here defined to be independent of
A. The approximate likelihood evaluated on the true
parameters is given by

L(~λtr) ∝ exp

[
−1

2

∥∥∥n+A
(
h(~λtr)−H(~λtr)

)∥∥∥2]
∝ exp

(
−1

2

∥∥∥n−Aδh(~λtr)
∥∥∥2) . (68)

The approximate likelihood evaluated on the best fit pa-
rameters is given by
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L(~λbf) ∝ exp

[
−1

2

∥∥∥n−A(h(~λtr)−H(~λbf)
)∥∥∥2]

∝ exp

[
−1

2

∥∥∥n+A
(
δh(~λtr)−∆~λa∂aH(~λbf)

)∥∥∥2] , (69)

where, as before, the waveform difference has been ex-

panded to leading order in ∆~λ. The ratio of the two like-

lihood Rapprox = L(~λtr)/L(~λbf) can be evaluated from
Eq. (68) and Eq. (69), and taking the limit of large SNR
gives

lim
A→∞

lnRapprox = −A
2

2

(
Γ−1

)ab 〈
δh(~λtr)

∣∣∣∂aH(~λbf)
〉

×
〈
δh(~λtr)

∣∣∣∂bH(~λbf)
〉
. (70)

Unlike Rexact, this ratio does not depend on n. This is
because in the limit of large SNR, only the terms from
the exponents of Eq. (68) and Eq. (69) proportional to A2

contribute, and the noise-dependent terms are all propor-
tional to A. Also unlike Rexact, this ratio does depend on
the amplitude and Rapprox → 0 in the limit of large SNR.
Therefore, as anticipated above, the approximate likeli-
hood excludes the true source parameters with complete

certainty in the limit of large SNR (unless 〈δh(~λtr)|·〉 = 0,
in which case the exact likelihood is recovered).

The marginalised likelihood Eq. (9) is given by

L(~λ) ∝ exp

−1

2

∥∥∥s−AH(~λ) +Aµ(~λ)
∥∥∥2

1 +A2σ2(~λ)

 . (71)

The marginalised likelihood is peaked at ~λbf = ~λtr + ∆~λ,
where, by comparison with Eq. (59),

∆~λa =
1

A

(
Γ−1

)ab 〈
n
∣∣∣∂b (H(~λbf)− µ(~λbf)

)〉
−
(
Γ−1

)ab 〈
δh(~λtr)

∣∣∣∂bH(~λbf)
〉

+
(
Γ−1

)ab 〈
µ(~λbf)

∣∣∣∂bH(~λbf)
〉
. (72)

The values of the marginalised likelihood evaluated on
the true and best-fit parameters are given by Eq. (73)
and Eq. (74), and the ratio of these two likelihoods is
denoted Rmarg,

L(~λtr) ∝ exp

−1

2

∥∥∥n−Aδh(~λtr) +Aµ(~λtr)
∥∥∥2

1 +A2σ2(~λtr)

 ; (73)

L(~λbf) ∝ exp

−1

2

∥∥∥n−Aδh(~λtr)−A∆~λa∂aH(~λbf) +Aµ(~λbf)
∥∥∥2

1 +A2σ2(~λbf)

 ; (74)

lim
A→∞

lnRmarg = − 1

2σ2(~λbf)

[(
Γ−1

)ab 〈
δh(~λtr)− µ(~λbf)

∣∣∣∂aH(~λbf)
〉〈

δh(~λtr)− µ(~λbf)
∣∣∣∂bH(~λbf)

〉
−
∥∥∥µ(~λbf)

∥∥∥2 +
∥∥∥µ(~λtr)

∥∥∥2 + 2
〈
δh(~λtr)

∣∣∣µ(~λtr)− µ(~λbf)
〉]

(75)

≈ − 1

2σ2(~λbf)

(
Γ−1

)ab 〈
δh(~λtr)− µ(~λbf)

∣∣∣∂aH(~λbf)
〉〈

δh(~λtr)− µ(~λbf)
∣∣∣∂bH(~λbf)

〉
. (76)

The approximation made in going from Eq. (75) to
Eq. (76) involves dropping terms which are products
of small quantities. Because the FIM is a symmetric,
positive-definite matrix, the numerator in Eq. (76) is a
negative number, and hence Rmarg < 1 as required to

ensure ~λbf is the peak of the likelihood.

As was the case with Rapprox, this expression for Rmarg

does not depend on the noise. However, unlike Rapprox

the expression for Rmarg also does not depend on the
amplitude A. Therefore, in the limit that the SNR be-
comes large Rmarg tends to a constant value which de-

pends quadratically on 〈δh(~λtr)− µ(~λbf)|·〉. As the SNR
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increases, the true parameters are not excluded from the
marginalised likelihood, instead the likelihood distribu-
tion tends to a constant distribution (i.e. no dependence
on n), and the ratio by which the true parameters are
disfavoured compared to the best fit parameters is set
by the ability of the GPR to recover the true waveform
difference.

Intuitively, the reason the marginalised likelihood is
able to achieve this useful behaviour, even if the true
waveform difference is not perfectly recovered by the

GPR interpolation (i.e. 〈δh(~λtr)−µ(~λbf)|·〉 6= 0), is due to
the way the hyperparameters in the covariance function
are chosen. The hyperparameters were fixed to their op-
timum values by maximising the hyperlikelihood for the
training set (as described in Sec. II). During this process
the overall scale hyperparameter σf gains a dependence
on the amplitude proportional to A2. Hence the GPR

uncertainty σ2(~λ) is also proportional to A2. As can be
seen from Eq. (71), in the limit of large SNR the am-
plitude dependence cancels in the exponential and the
marginalised likelihood tends to a constant distribution.
Therefore, the marginalised likelihood never excludes the
true source parameters from the final posterior with com-
plete certainty.

C. Limits of the marginalised likelihood across
parameter space

In this section we examine the behaviour of the
marginalised likelihood in the limit of being far from any
training points and being at a training point.

First we examine the behaviour of the marginalised
likelihood in the former case, at a large distance (τ2 � 1)
from any of the points in the training set. From Eq. (25)

it can be seen that well outside of the training set µ(~λ)→
0 and σ2(~λ) → σ2

f . Therefore, from Eq. (28), the log
marginalised likelihood tends to

lnL(~λ)→ lnL(~λ)

1 +
∑
i,jKij

〈
δh(~λi)

∣∣∣δh(~λj)
〉 . (77)

Well outside of the training set the marginalised likeli-

hood lnL(~λ) recovers the standard, approximate likeli-

hood L(~λ) up to a constant factor. This constant factor
is one plus a linear combination of the overlap integrals
of all the waveform differences in the training set. Since
the denominator in Eq. (77) is always greater than unity
(this is ensured by the positive-definite property of the
covariance matrix), it broadens any peak in the likelihood
outside of the training set. The amount of the broaden-
ing is set by the magnitude of the waveform differences in

the training set via the overlap matrix 〈δh(~λi)|δh(~λj)〉.
This is the behaviour that would be expected; in the
absence of any accurate waveforms the parameter uncer-
tainties obtained from the approximate waveforms should
be multiplied by a constant factor depending upon our

level of belief in the accuracy of the approximate wave-
form model. In turn, our level of belief in the accuracy
of the approximate waveform is learnt from the training
set in the process of training the GP.

We now consider the behaviour of the marginalised

likelihood evaluated at one of the training set points ~λ`.
First, consider the case where σn = 0. In this case, the

interpolated waveform difference, from Eq. (24), at ~λ`
recovers the true waveform difference, and the GPR un-

certainty, from Eq. (25), vanishes at ~λ`;

µ(~λ`) = δh(~λ`) , (78)

σ2(~λ`) = 0 . (79)

Therefore the marginalised likelihood in Eq. (28) recovers
the exact likelihood with no additional broadening.

L(~λ`) = L′(~λ`) . (80)

This is also the behaviour that would be expected; at a
point in parameter space where the accurate waveform is
known, the accurate likelihood is recovered.

If σn 6= 0, then Eq. (78) and Eq. (79) become

µ(~λ`) = δh(~λ`)− σ2
n

∑
i

k(~λi, ~λ`)δh(~λi) +O(σ4
n) ,

σ2(~λ`) = σ2
n

∑
i

k(~λi, ~λ`)k(~λi, ~λ`) +O(σ4
n) . (81)

In this case any peak in the marginalised likelihood will
be slightly shifted and broadened relative to the peak in
the accurate likelihood by an amount consistent with the
uncertainty σn in the approximate waveform model.

V. IMPLEMENTATION

A. Model waveforms

In order to implement the GPR, a choice has to be
made regarding which waveform models to use. The
method uses two waveform approximants; the accurate

h(~λ) and the approximate H(~λ) waveforms. The accu-
rate waveform should be the most accurate available at a
computational cost that permits the offline construction
of the training set D. The criteria for choosing the ap-
proximate waveform is less clear, a balance needs to be
struck between accuracy and speed. If the model is com-
putationally cheap but not accurate enough the wave-

form difference, δh(~λ) = H(~λ) − h(~λ), will be large and
vary on short length scales over parameter space; these
are the situations which will cause the GPR to perform
worst. On the other hand an accurate model which is
too computationally expensive could slow down any PE
to such an extent that there ceases to be any benefit in
using the marginalised likelihood instead of the accurate
likelihood.
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We used two waveform models implemented in
the LIGO Scientific Collaboration Algorithm Library
(LAL).4 As our intention here is to provide a proof of
principle, we choose the IMRPhenomC approximant [54]
as the accurate waveform and the widely used TaylorF2
approximant [28, 55, 56] as the approximate waveform;
both of these models are sufficiently fast to evaluate that
we can compute and then compare the three likelihoods

(accurate L′(~λ), approximate L(~λ), and marginalised

L(~λ)) and directly assess the performance of the GPR.

Both of the approximants we have chosen to use here
are frequency domain models, i.e. they naturally return
the waveform in the Fourier domain h̃(f).5 The IMRPhe-
nomC waveform includes inspiral, merger and ringdown,
while the TaylorF2 waveform only includes the inspiral.

We investigate the merger of non-spinning circular bi-
naries. This limits the number of intrinsic parameters
describing the system to two, the masses of the two com-

ponent objects, ~λ = {m1,m2}. To further simplify the
problem we place training set points only along a one-
dimensional subspace, which we choose to be a surface of
constant symmetric mass ratio, η = m1m2/(m1 + m2)2,
parametrised by the value of the chirp mass Mc =
(m1m2)3/5/(m1+m2)1/5. This keeps the size of the train-
ing set small, and hence the computational complexity of
the GPR to a minimum. This allows us to instead focus
our attention on the novel features of the marginalised
likelihood, and explore the effect of changing various fea-
tures of the method.

In Sec V B we describe the placement of the training
set points for the GPR; in order to investigate the ef-
fect of training set on the GPR interpolant two sets were
constructed with different numbers of points and grid
spacings. In Sec. V C we present results for maximising
the hyperlikelihood to find the optimum hyperparame-

ters, ~θop, for the interpolation; this is done for a range
of different covariance functions on each of the training
sets described in Sec. V B. In Sec. V D we interpolate the
waveforms across parameter space for the different train-
ing sets and different covariance functions described and

compare the interpolated waveforms H(~λ)− µ(~λ) to the

accurate waveforms h(~λ). In Sec. V E we present results

for the GPR uncertainty, σ2(~λ), for the different training
sets and different covariance functions considered. Fi-
nally in Sec. V F we present results for the marginalised

likelihood L(~λ), and compare with the results obtained

4 http://www.lsc-group.phys.uwm.edu/lal
5 In previous work [9] the marginalised likelihood has been im-

plemented with time domain approximants. The method works
equally with frequency domain or time domain models without
the need to transform between them. In the offline stage the
waveforms enter only via the overlap matrix 〈δh(~λi)|δh(~λj)〉, and
in the online stage the waveforms enter only in the linear combi-
nation for µ(~λ) in Eq. (24), which commutes with the operation
of taking the Fourier transform.

TABLE I: The properties describing the positions of the tem-
plate waveforms for each of the three training sets used.

∆Mc N

D0 1.0× 10−2M� 60

D1 5.0× 10−3M� 120

using the approximate likelihood L(~λ), and the exact

likelihood L′(~λ).

B. The training set

For simplicity we restrict the range of the coordinates
which we search over to reduce the computational com-
plexity. This is again to allow us to focus our attention
on the novel features of the method. The training sets
cover the chirp mass in the range Mc ∈ [5, 5.6]M� and
the symmetric mass ratio is fixed to the (almost) equal
mass ratio case η = 0.245. The placement of training set
points was done as a regular grid in chirp mass with a
step size between points of ∆Mc.

To allow us to explore the effect that the density of
points in the training set has on the marginalised likeli-
hood two different values for ∆Mc were considered. This
leads to two different training sets whose total number n
of points are different; the properties of these two train-
ing sets are summarised in Tab. I. It is expected that
the GPR interpolation, and hence the marginalised like-
lihood, will perform better when using the denser set D1.

Once the training set points {~λi} were specified, both

the approximate H(~λi) and accurate h(~λi) waveforms
discussed in Sec. V A were evaluated at each point, and

the waveform differences {δh(~λi)} stored for use during
the GPR interpolation. The matrix of waveform differ-

ence overlaps Mij = 〈δh(~λi)|δh(~λj)〉 was also evaluated
and stored for use during the hyperlikelihood maximisa-
tion procedure.

C. The hyperparameters

Initially the training sets described in Sec. V B were in-
terpolated using the SE covariance function in Eq. (32).
This covariance function has just two hyperparameters,
~θ = {σf , gMcMc

}. The 1-dimensional metric gMcMc
can

be exchanged for a length scale in the chirp mass pa-
rameter δMc ≡ 1/

√
gMcMc . A fixed noise term with

σ2
n = 10−4 was used for all the covariance functions in

this section, to make the inverse of the covariance func-
tion numerically stable as discussed in Sec. III C. The
hyperlikelihood for the training set D0 was maximised
with respect to these two hyperparameters. The opti-

http://www.lsc-group.phys.uwm.edu/lal
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FIG. 3: The hyperlikelihood for the SE covariance function,
maximised over the scale hyperparameter σf , plotted against
the chirp mass length scale δMc. The hyperlikelihood is
shown for both of the training sets (normalised to a peak
value of 1). The denser training set D1 was found to favour
smaller length scales.

mum values for the hyperparameters were found to be

σf = 3.49× 104 , (82)

δMc = 1.11× 10−2M� . (83)

The hyperlikelihood is shown in Fig. 3. The hyperlike-
lihood was also maximised for the training set D1 us-
ing the same SE covariance function and those results
are also shown in Fig. 3. For the denser training set
D1 the optimum length scale was found to be smaller,
δMc = 6.31 × 10−3M�. For both training sets, in the
limit that the length scale becomes much larger than the
total width of the training set (0.6M�) or much smaller
than the grid point spacing (∆Mc), the hyperlikelihood
tends to a constant value. This behaviour can be un-
derstood by examining the expression for the hyperlike-
lihood in Eq. (18).

In order to explore the effect that the choice of co-
variance function has on the marginalised likelihood, the
training sets were also interpolated using the Matérn co-
variance function in Eq. (35). This covariance function

has an additional hyperparameter, ~θ = {σf , gMcMc
, η}.

The hyperlikelihood for training set D0 was maximised
for this covariance function. It was found that the hyper-
likelihood surface did not possess a peak, instead a ridge
was found tending to a maximum at a value η →∞, and
values of σf and gMcMc

were found to be the same as
for the SE covariance function. In Fig. 4 we plot the log-
hyperlikelihood (maximised over σf ) against chirp-mass
length scale and the additional hyperparameter η.

As the Matérn covariance function recovers the SE
function in the limit η →∞, there will be no difference in
the performance of the interpolants for this training set
when using the Matérn or SE covariance functions. If the
volume under the hyperlikelihood surface (the hyperev-
idence) is used as a figure-of-merit for which covariance
function the data favours, then in this case the data is
equally well described by either covariance function, but
the SE covariance function is favoured over the Matérn
due to the smaller prior volume (the Occam penalty).

FIG. 4: The hyperlikelihood surface for the training set D0 us-
ing the Matérn covariance, maximised over the hyperparam-
eter σf , plotted against the chirp mass length scale δMc and
the hyperparameter, η. The hyperlikelihood does not show
a clear peak, instead a ridge in the hyperparameter space
favours the limiting case η → ∞, in which limit the Matérn
covariance function is equal to the SE covariance function.
On the near-side faces of the plot box we show the hyperlike-
lihood sliced parallel to the coordinate axes though the point
(δMc = 10−1.9M�, η = 10). The solid black line on the near,
left-hand face of the box very closely matches the solid black
curve in Fig. 3 (up to an arbitray additive constant).

The hyperlikelihood was also calculated for both train-
ing sets D0 and D1 using the PLE covariance, see
Eq. (33), and the Cauchy covariance, see Eq. (34), con-
sidered in Sec. III. In both cases a similar behaviour was
observed. For the PLE covariance, a peak in the hyper-
likelihood was found at η = 2, where the PLE covariance
equals the SE covariance. For the Cauchy covariance, a
ridge in the hyperlikelihood was found tending to a max-
imum for η → ∞ (similar to the Matérn case shown in
Fig. 4), in which limit the Cauchy covariance also recov-
ers the SE covariance. As with the Matérn covariance,
if the hyperlikelihood is used as a figure-of-merit for se-
lecting the covariance function then the SE covariance is
favoured over both the PLE and Cauchy functions due
to the Occam penalty.

It is clear that interpolations of the training sets
D0 and D1 using any of the PLE, Cauchy, or Matérn
covariance functions, evaluated at the hyperlikelihood-
maximising hyperparameters, would yield identical re-
sults to an interpolation using the simpler SE covariance.
For this reason, in the following sections we do not use the
PLE, Cauchy, or Matérn functions further and instead fo-
cus on the SE covariance function. We will, however, also
consider using the Wendland polynomial function in the
following sections as it reduces the computational cost.

The hyperlikelihood for the compact support Wend-
land polynomial covariance functions are shown in Fig. 4,
for the cases q = 0, 1, 2, 3. The compact-support func-
tions can develop multiple-peaks in the hyperlikelihood
surface associated with the length-scale of the training set
— multiples of the training-set grid spacing are indicated
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FIG. 5: The hyperlikelihood for the training set D0 using the
Wendland polynomial covariance functions, maximised over
the scale hyperparameter σf , plotted against the chirp-mass
length scale δMc. The vertical blue lines indicate multiples
of the training-set grid spacing ∆Mc.

with vertical blue lines in Fig. 4. These subsidiary peaks
occur in the δMc hyperparameter because as the size of
the compact-support region grows, the (integer) number
of training set points it contains changes discontinuously.

From Fig. 5 it can be seen that for the training set D0,
a value of q = 1 is favoured with a length-scale δMc =
4.37 × 10−2M�. In the following sections we will use
Wendland covariance function with all values of q (and
their associated peak hyperlikelihood length scales) to
interpolate D0.

The optimum hyperparameters depend on the detec-
tor noise power spectral density via the overlap matrix

〈δh(~λi)|δh(~λj)〉. In App. B, an investigation of the sensi-
tivity of the optimum hyperparameters to small changes
in the detector noise properties is described. It was found
that for any realistic changes to the noise curve, the op-
timum hyperparameters were changed by an amount too
small to have any noticeable effect on the interpolant.

D. The interpolated waveforms

The GPR waveform H(~λ) − µ(~λ) could be viewed as
a new waveform approximant formed from the approxi-
mant waveforms and the use of GPR on the training set
of accurate waveforms. It is then natural to ask how this
new approximant compares to the original ones. This
can be assessed by calculating the overlap between the
different waveforms, where the overlap is defined by

overlap(a, b) =
〈a|b〉
‖a‖ ‖b‖

, (84)

using the inner product defined in Eq. (5).
Only considering the overlap misses the important ex-

tra benefit which the marginalised likelihood approach
brings. Our method is not just supplying a new wave-
form approximant, but also providing a way of modifying
the posterior to account for the uncertainties known to
be in the approximant. This extra information which
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FIG. 6: A plot of the overlap between the interpolated wave-

form H(~λ)− µ(~λ) and the accurate waveform h(~λ) as a func-
tion of the chirp mass Mc. The bottom panel is the same
plot with a different ordinate axis scale. The two black lines
show the overlap using both training sets, D0 and D1, inter-
polated using the SE covariance function. The red line shows

the overlap between the approximate waveform H(~λ) and the

accurate waveform h(~λ) for comparison. The vertical blue
lines show the position of the training set points for D0. In
the bottom panel, it can be seen that, for either interpolant,
the overlap becomes one when evaluated at the training set
points.
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FIG. 7: A plot of the overlap (or overlap) between the interpo-

lated waveform H(~λ)−µ(~λ) and the accurate waveform h(~λ)
as a function of the chirp massMc. The different curves cor-
respond to using the Wendland polynomial covariance func-
tions with different values of q to interpolate the training set
D0. The vertical blue lines show the position of the training
set points for D0.
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modifies the likelihood surface is included through σ(~λ).
Nonetheless, it is still informative to temporarily treat

H(~λ) − µ(~λ) as if it were a new waveform approximant

and see how it compares with the approximants h(~λ) and

H(~λ) from which it was built. Fig. 6 shows the waveform

overlap between the interpolated waveform H(~λ)− µ(~λ)

and the accurate waveform h(~λ) as a function of chirp
mass near the edge of the training set. Also shown in
the dotted curve is the overlap between the approxi-

mate waveform H(~λ) and the accurate waveform h(~λ).
The interpolated waveforms have a much higher over-
lap than the approximate waveforms, as would be ex-
pected. Within the training set the overlap is increased
from ∼ 0.35 to no less than ∼ 0.985 even for the sparser
training set D0. For the denser training set D1 overlaps
no worse than ∼ 0.999 were found inside the range of
the training set. Outside the training set the interpo-
lated waveform tends rapidly to the approximate wave-

form H(~λ).
The training set waveforms were also interpolated us-

ing the Wendland compact support covariance functions
discussed in Sec. III D. The cases q = 0, 1, 2, 3 were con-
sidered separately. The waveform overlap using these in-
terpolants is plotted in Fig. 7. The performance of these
interpolants should be compared with the results using
the SE covariance function in Fig. 6.

The least smooth of the Wendland polynomials, the
q = 0 case, performs noticeably worse than the SE co-
variance; inside the training set the overlap drops as low
as ∼ 0.955 compared to ∼ 0.985 for the SE. However,
even a overlap of ∼ 0.955 is still a great improvement
over the overlap of ∼ 0.35 for the approximate wave-
form alone. For the q = 0 Wendland polynomial the in-
terpolant has a discontinuous first derivative, which can
be seen in Fig. 7 (this is expected and was discussed in
Sec. III and in detail in App. A). The higher values of
q have discontinuities in the higher ordered derivatives,
but these curves look smooth to the eye. The smoother
Wendland polynomials, with q > 0, all perform very sim-
ilarly to the SE covariance function; inside the training
set the overlap drops as low as ∼ 0.985 for the q = 2
interpolant.

E. The GPR uncertainty

The GPR performs an interpolation of the points in
the training set and naturally returns a Gaussian error

σ(~λ), see Eq. (25), for each interpolated point. In our
present 1-dimensional interpolation this is simply a func-
tion of Mc. A small section of this curve taken from
the edge of the training set is shown in Fig. 8. Inside
the training set, the error surface has a regular, periodic
pattern with minima at the training set points and max-
ima in between. This regularity is because the GP used
for the interpolation is stationary, the training-set points
used are regularly spaced, and each point has an iden-
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FIG. 8: A plot of the GPR uncertainty σ2(~λ) as a function of
the chirp mass parameter for both of the training sets, using
the SE covariance function. The vertical blue lines show the
position of the training set points for D0. Outside of the
training set the uncertainty tends to a constant σ2

f . Inside the
training sets the error is approximately periodic with minima
at the training set points. The maximum uncertainty inside
the training set is smaller for the denser training sets.
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FIG. 9: A plot of the GPR uncertainty σ2(~λ) as a function of
the chirp mass parameter for the training set D0, using the
Wendland polynomial covariance functions. The vertical blue
lines show the position of the training set points.

tical error (a jitter J = 10−4). If these conditions were
to be relaxed, then the error surface would become more

complicated. In general, a larger σ(~λ) indicates greater
theoretical uncertainty and highlights regions where we
would benefit from additional accurate waveforms (e.g.,
where it would be beneficial to perform more NR simu-
lations).

Near the edge of the training set the behaviour be-
comes less regular and well outside of the training set the

error tends to a constant value, σ2(~λ) → σf as ~λ → ∞.
This behaviour is seen in Fig. 8 for all three training sets.
The training sets with smaller grid spacings have smaller
uncertainties everywhere in parameter space.

The GPR uncertainty was also calculated using the
Wendland polynomial covariance functions to interpolate
the training set D0; these are shown in Fig. 9. The GPR
uncertainty, expressed as a fraction of σ2

f , is largest for
the smallest values of q; this can be traced back to the
optimum length scale for the Wendland polynomials in-
creasing with q (see Fig. 5). This means that the uncer-
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tainty grows more slowly as the interpolating point moves
away from the training set points, and hence reaches a
smaller maximum value between training set points. The
smoother (q > 0) Wendland polynomials perform simi-
larly to the SE covariance function, in the sense that both
the GPR interpolants (which we quantify via the overlap)
and the GPR uncertainties are almost identical. Hence,
in the following sections we will only consider using the
SE covariance function; the high q Wendland polynomi-
als would yield identical results.

F. The likelihood

Finally we put together the interpolated waveform

H(~λ) − µ(~λ) and the GPR uncertainty σ2(~λ) to give
the marginalised likelihood in Eq. (28). We compare the

performance of the marginalised likelihood L(~λ) to the

approximate likelihood L(~λ) and the accurate likelihood

L′(~λ). For the injected signal we use the accurate wave-

form h(~λ). We also consider the case where the noise re-
alisation is zero (the most likely realisation), this makes
comparisons easier.

We injected a signal at a chirp mass ofMc = 5.045M�;
this is inside the training set D0 and midway between
training set points. Injecting the signal midway between
the points is conservative as this is the point at which
we would expect the marginalised likelihood to perform
worst. The three different likelihoods were evaluated as
a function of chirp mass (all other parameters set to the
injected values). This was done at a range of SNRs and
the results are shown in Fig. 10. The top row of panels in
Fig. 10 show the likelihoods renormalised to a peak value
of one, this makes the relative positions of the peaks clear
and easy to compare. The bottom row of panels shows
the log-likelihood without any renormalisation, this il-
lustrates how the approximate likelihood is suppressed
relative to the true likelihood (the detection problem dis-
cussed in Sec. I).

The exact likelihood L′(~λ) is always peaked at the in-
jected value of the chirp mass (because the injected noise
realisation is zero) and the width of the peak decreases

with increasing SNR. The approximate likelihood L(~λ)
is peaked way from the true value, indicating a system-
atic error of ∆sysMc = 5.2 × 10−3M�. The width of
the approximate likelihood peak also decreases with in-
creasing SNR and for SNR & 12 (which is also roughly
the detection threshold [5, 30]) the true parameters are
excluded at increasing significance. The bottom row of
panels in Fig. 10 shows that the approximate likelihood
is suppressed by a significant amount, for a typical SNR
of 16 it is supressed by 80 in log relative to the ex-
act likelihood; this reduces the Bayesian evidence for a
detection. The factor by which the approximate like-
lihood is suppressed increases exponentially with SNR.
Finally, the marginalised likelihood is peaked much closer
to the exact likelihood: the systematic error is reduced

to ∆sysMc = 9.0 × 10−4M�. However, as discussed in
Sec. IV B, the peak in the marginalised likelihood does
not continually narrow as the SNR increases — for SNR
& 30 the width becomes constant. Consequently, the
true parameters are never excluded at high significance
— in the limit of infinite SNR the true parameters lie at
the ∼ 1σ level. The bottom panel of Fig. 10 shows that
the marginalised likelihood is not suppressed relative to
the exact likelihood in the vicinity of the peak.

Comparing the properly normalised likelihoods, we see
that the marginalised and exact likelihoods roughly agree
at low SNR. As the SNR is increased, the marginalised
likelihood deviates from the exact likelihood and devel-
ops oscillatory behaviour with period equal to the train-
ing set point spacing. In the limit of low SNR, all of the
parameter estimation uncertainty comes from the noise,
but as the SNR increases, the relative size of this statis-
tical uncertainty becomes smaller and at high SNR we
are dominated by model uncertainty. The marginalised
likelihood correctly encapsulates this behaviour, as can
be seen in the sequence from left to right in Fig. 10.

VI. SUMMARY

In [9], some of the authors suggested GPR as a means
of incorporating theoretical uncertainty into GW data
analysis. We have now thoroughly investigated the prop-
erties of the method, elucidating considerations for a
practical implementation. A detailed derivation of the
marginalised likelihood, and the use of GPR to interpo-
late model error was presented in Sec. II. GPR is non-
parametric, in the sense that only the functional form of
the covariance function is specified by hand, with its hy-
perparameters then learnt from the training set, making
it well suited to modelling theoretical uncertainty.

The choice of covariance function is central to GPR
as it encodes our prior beliefs about the function space
that we are interpolating. We discussed various choices
of covariance function in Sec. III. We have found that
the simple SE covariance function (as used in [9]) per-
forms as well as more complicated alternatives, at least
for the relatively small one dimensional training sets con-
sidered here. The compact-support Wendland covariance
functions with large q were found to perform comparably
to the SE, but offer the additional advantage of reduced
computational cost. This makes them appealing for fu-
ture work involving larger training sets.

We proved a number of properties for the marginalised
likelihood in Sec. IV, in particular its limiting behaviour
for large signal amplitude (where the theoretical errors
are known to be most significant [8]) and its limiting be-
haviour both far from and near a point in the training
set. In the discussion of the latter, the linearised results
previously obtained in [8] were recovered. All of these
properties demonstrate the suitability of GPR for mak-
ing robust inferences. The marginalised likelihood suc-
cessfully describes our belief in our inferences, including
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FIG. 10: A plot of the different likelihoods for a variety of SNRs. Vertical lines indicate the position of training set points. The
top row of panels show the likelihood normalised to the same peak value; this makes the peak positions clear and shows how
the marginalised likelihood tackles the parameter estimation problem associated with the inaccurate models. The bottom row
of panels shows the log-likelihood; this makes the suppression of the peak value of the approximate likelihood clear and shows
how the marginalised likelihood could be used to tackle the detection problem.

our uncertainty in waveform templates.
In Sec. V, we presented a 1-dimensional implementa-

tion of the marginalised likelihood with commonly used
waveform models and demonstrated that it offers an im-
provement in PE accuracy. Systematic error is reduced,
even in this example where the waveforms are qualita-
tively different: TaylorF2 is inspiral only while IMRPhe-
nomC includes merger and ringdown. The effect of differ-
ent training set sizes on the training of the GP was also
examined with our implementation; as expected, the per-
formance of the marginalised likelihood is improved by
using denser training sets. For large injected SNR, the
marginalised likelihood mitigates the severe systematic
error incurred by using inaccurate waveforms.

In conclusion, marginalising over waveform uncer-
tainty is a robust and effective method of accounting
for theoretical error in both PE and detection problems.
GPR is a natural and effective means of performing this
marginalisation. The marginalised likelihood is naturally
inferior to a likelihood calculated with more accurate (but
inevitably more computationally expensive) waveforms,
but it offers significantly improved performance over the
standard likelihood calculated with cheap waveforms. In
addition, the marginalised likelihood is almost as quick

to evaluate online as the standard likelihood, although
there is additional offline computation required to con-
struct the training set and train the Gaussian process.
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Appendix A: Continuity and differentiability of GPs

In this appendix we give proofs of the results stated in
Sec. III concerning the continuity and differentiability of
GPs, following the approach of [34].

Let ~λ1, ~λ2, ~λ3 . . . be a sequence of points in parame-

ter space which converges to a point ~λ∗, in the sense

lim`→∞ |~λ` − ~λ∗| = 0, where, as in Section III, |~x| de-
notes the norm with respect to the metric on parameter

space, as discussed in Section III A. The GP Y (~λ) is said

to be MS continuous at ~λ∗ if

lim
`→∞

E
[(
Y (~λ`)− Y (~λ∗)

∣∣∣Y (~λ`)− Y (~λ∗)
)]

= 0 , (A1)

where E[. . .] denotes the expectation of the enclosed
quantity over realisations of the GP. For notational con-
venience, we denote this MS limit as

Y (~λ∗) = l.i.m.
`→∞

Y (~λ`) , (A2)

where l.i.m. stands for “limit in mean” [57]. MS continu-
ity implies continuity in the mean,

lim
`→∞

E
[
Y (~λ`)− Y (~λ∗)

]
= 0 . (A3)

This follows from considering the variance of the quantity

Y (~λ`)−Y (~λ∗), and the fact that variance is non-negative.
There are other notions of continuity of GPs used in the
literature, but the notion of MS continuity relates most
easily to the covariance.

The mean and the covariance of a GP are defined as

m(~λ) = E
[
Y (~λ)

]
, (A4)

k(~λ1, ~λ2) = E
[(
Y (~λ1)−m(~λ1)

∣∣∣Y (~λ2)−m(~λ2)
)]
.

Using these, Eq. (A1) can be written as

lim
`→∞

{
k(~λ∗, ~λ∗)− 2k(~λ`, ~λ∗) + k(~λ`, ~λ`)

+
(
m(~λ∗)−m(~λ`)

∣∣∣m(~λ∗)−m(~λ`)
)}

= 0 ,(A5)

and using the continuity of the mean in Eq. (A3) gives

lim
`→∞

[
k(~λ∗, ~λ∗)− 2k(~λ`, ~λ∗) + k(~λ`, ~λ`)

]
= 0 . (A6)

This condition is satisfied if the covariance function is
continuous at the point ~λ1 = ~λ2 = ~λ∗. Therefore, we
arrive at the result that if the covariance function is con-
tinuous in the usual sense at some point ~λ∗, then the
corresponding GP is MS continuous at this point. (In
fact, a GP is continuous in MS if and only if the co-
variance function is continuous [34], although this is not
proved here.) In the special case of stationary covariance
this reduces to checking continuity of k(~τ) at ~τ = 0, and
in the special case of isotropic covariance, continuity of
k(τ) at τ = 0.

We now move on from continuity to consider differen-
tiability. In the spirit of Eq. (A1), the notion of taking
the MS derivative of a GP is defined as

∂Y (~λ)

∂~λa
= l.i.m.

ε→0
Xa(~λ, ε) , (A7)

where

Xa(~λ, ε) =
Y (~λ+ ε êa)− Y (~λ)

ε
(A8)

with parameter-space unit vector êa. This definition can
be extended to higher-order derivatives in the obvious
way [34].

The MS derivative of a GP is also a GP; this follows
simply from the fact that the sum of Gaussians is also

distributed as a Gaussian. The covariance of Xa(~λ, ε) is
given by

Kε(~λ1, ~λ2) = E
[(
Xa(~λ1, ε)− Ξ(~λ1, ε)

∣∣∣
Xa(~λ2, ε)− Ξ(~λ2, ε)

)]
(A9)

where Ξa(~λ, ε) = E[Xa(~λ, ε)]. It then follows that

Kε(~λ1, ~λ2) =
k(~λ1 + ε, ~λ2 + ε)− k(~λ1, ~λ2 + ε)

ε2

−k(~λ1 + ε, ~λ2)− k(~λ1, ~λ2)

ε2
. (A10)

Substituting this into Eq. (A7), the limit in MS be-
comes a normal limit, and the result is obtained that
the MS derivative of a MS continuous GP with covari-
ance function k(~λ1, ~λ2) is a GP with covariance function

∂2k(~λ1, ~λ2)/∂~λa1∂
~λa2 . In general the covariance function

of the nd-times MS differentiated GP

∂ndY (~λ)

∂~λa1∂~λa2 . . . ∂~λand

, (A11)

is given by the 2nd-times differentiated covariance func-
tion

∂2ndk(~λ1, ~λ2)

∂~λa11 ∂
~λa12 ∂

~λa21 ∂
~λa22 . . . ∂~λ

and
1 ∂~λ

and
2

. (A12)

https://dcc.ligo.org/LIGO-T1200307/public
https://dcc.ligo.org/LIGO-T0900288/public
https://tds.ego-gw.it/ql/?c=8940
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FIG. 11: The left-hand panel shows three different noise curves for ground-based detectors in the advanced era. Also shown in
red is an unrealistic noise which we use for comparison. The centre-panel shows the hyper-likelihood surface for the training
set D0 using the SE covariance function and with the overlap matrix calculated using each of the noise curves in the left-hand
panel. The right-hand panel shows the waveform overlap between the accurate and the interpolated waveform evaluated for
parameter values between two training set points. The interpolants based on the realistic noise curves perform equally well
(the curves lie on top of each other). The unrealistic noise curve performs worst, but still gives overlaps greater than 0.994.

From the above results relating the MS continuity of
GPs to the continuity of the covariance function at
~λ1 = ~λ2 = ~λ∗, it follows that the nd-times MS deriva-
tive of the GP is MS continuous (the GP is said to be
nd-times MS differentiable) if the 2nd-times derivative

of the covariance function is continuous at ~λ1 = ~λ2 = ~λ∗
[47]. So it is the smoothness properties of the covariance
function along the diagonal points that determines the
differentiability of the GP. (It can also be shown that if
a covariance function is continuous at all diagonal points
~λ1 = ~λ2 then it’s everywhere continuous.)

Appendix B: The effect of small changes in the noise
PSD on the GPR interpolant

In the offline stage of the method, the GP was trained
using the hyperlikelihood in Eq. (18). The result of this
process was an interpolant which enabled fast online PE.
However, this splitting into offline and online stages also
has a potential problem, because the training process

makes use of the overlap matrix Mij = 〈δh(~λi)|δh(~λj)〉
which, in turn, depends upon the detector noise PSD
Sn(f). The noise PSD is not constant; it changes on short
timescales as the noise drifts in the instrument (e.g., [58]),
on longer timescales it changes more dramatically as the
instrument is gradually upgraded [5]. There are also dif-
ferences between different detectors, for example between
the aLIGO and AdV instruments (or even between the
two aLIGO interferometers). It would be a significant
drawback if the offline training stage of the process had
to be repeated for every single candidate signal because
of small differences in the detector PSD.

We do not expect small changes in the noise curve
to have a significant effect on the resulting interpolant.
First, the noise can be rescaled by an overall constant
and have no effect on the position of the peak in the hy-
perlikelihood; this can be seen from Eq. (18). Second, the
peak in the hyperlikelihood is typically wide, and using
the hyperparameters from anywhere in the vicinity of the

peak still gives reasonable, if not perfect, interpolation.
Accordingly, when the PSD changes, some of the differ-
ence can be absorbed by an overall scaling, which has
no effect on the results, and the remaining change shifts
the peak of the hyperlikelihood away from the previously
optimised values, but not enough to limit their applica-
bility. If this is the case, then GPs trained on slightly
different noise PSDs perform nearly identically to each
other and there is no need to retrain for the new PSD.

To assess the sensitivity of our results to changes
in the noise curve, we considered three different noise
curves chosen to represent the range of possibilities in the
advanced-detector era. These are: an estimate of the ob-
serving run 1 (O1) aLIGO sensitivity (the early curve of
[59]); the zero-detuned high-power (ZDHP) design sensi-
tivity of aLIGO [2, 60], and the design sensitivity of AdV
[3, 61]. As an additional check, we also considered an in-
verted top-hat noise curve. All of these noise curves are
plotted in the left-hand panel of Fig. 11. We then took
the training set D0 and trained the SE GP to find the
optimum hyperparameters. Shown in the centre-panel
of Fig. 11 is the hyperlikelihood surface as a function of
chirp mass length scale for the different noise curves. As
expected, for the range of realistic noise curves the peak
in the hyperlikelihood only shifts by a small amount. Fi-
nally we used the optimum hyperparameters from each of
these hyperlikelihood surfaces to interpolate the training
set and calculated the overlap to the accurate waveforms
using the ZDHP noise curve; the results of this are shown
in the right-hand panel of Fig. 11. For the range of re-
alistic noise curves, the overlap is equally good (cf. [47]).
Although the inverted top-hat noise curve gives notice-
ably lower overlaps, even in that case the drop in the
overlap is still less than 0.1%, which is smaller than the
difference between the approximate and GPR likelihoods.

This suggests it is safe to train a GP with a fixed noise
curve (typical for the instruments considered). The re-
sulting interpolants can be used to analyse all signals
without worrying about small drifts in the noise.
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