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Abstract 

Objective 

To explore whether aberrant transient chondrocyte behaviours occur in STR/Ort mouse joints 

(spontaneously osteoarthritis) and whether this is attributable to an endochondral growth 

defect. 

Methods 

STR/Ort mouse knee joints at advancing osteoarthritis stages and age-matched CBA (control) 

joints were examined, by affymetrix microarray profiling, multiplex PCR analysis and 

immunohistochemical labelling of endochondral markers including sclerostin and MEPE. 

The endochondral phenotype of STR/Ort mice was analysed by histology, microCT and ex 

vivo organ culture. A novel protocol for quantifying bony bridges across the murine epiphysis 

(growth-plate fusion) using synchrotron x-ray computed microtomography was developed 

and applied.  

Results 

Meta-analysis of transcriptional profiles revealed significant elevation in functions linked 

with endochondral ossification in STR/Ort mice (in comparison to CBA; P<0.05). Consistent 

with this, immunolabelling revealed increased MMP13 and collagen type-X expression in 

STR/Ort joints and multiplex RT-qPCR showed differential expression of known 

mineralisation regulators suggesting an inherent chondrocyte defect. Support for an 

endochondral defect was provided by accelerated growth, increased zone of growth-plate 

proliferative chondrocytes (P<0.05) and widespread collagen type-X/MMP13 labelling 

beyond the expected hypertrophic zone distribution. We found osteoarthritis development 

involved concomitant focal suppression of sclerostin/MEPE in STR/Ort mice. Our novel 
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synchrotron radiation microtomography method revealed increased numbers (P<0.001) and 

mean areal growth plate bridge densities (P<0.01) in young and aged STR/Ort compared to 

age-matched CBA mice.  

Conclusion 

Our data collectively supports an inherent endochondral defect that is linked to growth 

dynamics and subject to regulation by the MEPE/sclerostin axis that may represent an 

underpinning mechanism in pathological ossification in osteoarthritis. 
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Osteoarthritis (OA) is a degenerative joint disease and a world-wide healthcare burden. 

Characterised by articular cartilage loss, subchondral bone thickening and osteophyte 

formation, the OA joint afflicts much pain and disability. Its underpinning molecular 

mechanisms are, nevertheless, not fully understood; indeed it is even still a matter of debate 

as to which is the precipitating pathology. As such, there is an ever growing need for an 

effective disease modifying treatment. Canine hip dysplasia is a hereditary predisposition to 

the development of degenerative OA and this is more common in certain breeds, in particular 

those larger breeds which tend to grow more rapidly (1). Whilst no direct link has been made 

between growth dynamics and osteoarthritis, recent murine and human studies have prompted 

speculation that the articular cartilage chondrocytes may undergo a switching from their 

inherently stable phenotype to a more transient one characteristic of the chondrocytes in the 

growth plate (2-9). 

The epiphyseal growth plates are responsible for long bone development (endochondral 

ossification) and growth. This is secured by growth plate chondrocytes undergoing 

differentiation, maturation, hypertrophy and death, resulting in mineralisation of the cartilage 

matrix (10-13). Transience of growth plate cartilage chondrocytes is thus a crucial attribute. 

However, this could hardly contrast more than with the inherent stability of articular cartilage 

chondrocytes, in which these dynamic events must be restricted to assure life-long articular 

integrity and joint function. Interlinks between these apparently discordant phenotypes are 

not fully understood and whether switching in these behaviours may contribute to the 

structural demise of articular cartilage in OA joints is not yet established (13-15). However, 

based on the common embryology of cartilage and bone, along with the recent evidence 

supporting uncommon origins for growth plate and articular cartilage chondrocytes, it is not 

surprising that this hypothesis has been controversial (16-18). Regardless, an exploration of 
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the mechanisms controlling changes that chondrocytes undergo during their transition 

through the various stages of endochondral ossification may help to decipher those which 

underpin pathological ossification in OA.  

The STR/Ort mouse is a well-established, natural OA model, resembling the human 

condition. Mice develop articular cartilage lesions on the medial tibia plateau, with 

subchondral bone thickening and expected degenerative changes in other joint tissues from 

~18 weeks of age, coincident with attainment of skeletal maturity (19-22). CBA mice, the 

closest available parental strain show, in contrast, very low spontaneous OA susceptibility 

(21, 23). We therefore aimed to establish whether an aberrant deployment of the transient 

chondrocyte phenotype is observed in STR/Ort mouse joints and whether this can be 

attributed to modified growth dynamics underpinned by an inherent endochondral growth 

defect.  

Methods 

Animals. Male STR/Ort (bred in-house), and CBA (Charles River, UK) mice were used in all 

experiments. All procedures complied with Animals (Scientific Procedures) Act 1986 and 

local ethics committee.  

Meta-analysis of microarray data. Gene ontology classification was performed using DAVID 

(http://david.abcc.ncifcrf.gov/) on Affymetrix mouse gene microarray profiling of articular 

cartilage performed by us previously (22, 24).  

RNA extraction. RNA was extracted from knee joint articular cartilage from STR/Ort and 

CBA joints (n=3 joints/sample for each strain at each age) at ages 8-10, 18-20 and 40+ weeks 

of age, as described (22).  
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Multiplex RT-qPCR. A GeXP multiplex RT-qPCR assay was designed for gene targets; Ank, 

Dmp1, Enpp1, Mepe, Opn (Spp1), Phex, and Sost (Suppl. Table 3). Target-specific reverse 

transcription was performed as previously described using 50ng of total RNA (25, 26).  

Immunohistochemistry. Immunohistochemistry was performed on 6µm coronal sections using 

anti-sclerostin (1/100; R&D systems), anti-MMP13 (1/200; Abcam), anti-Col10a1 (1/500; 

Prof. Boot-Handford, University of Manchester) or anti-MEPE antibodies (1/200; Prof. 

Rowe, KUMC).  

Articular cartilage and growth plate zone analysis. Multiple toluidine blue stained coronal 

sections (n>6) from the joints of 4 individual mice (at each age) were used to measure the 

width of: (i) joint compartments (ii) growth plate zones based on established cell morphology 

(27).  

Joint imaging by micro-computed tomography (µCT). Joints were scanned using a laboratory 

source for 5 micron voxel size and at a synchrotron for 1 micron voxel size. The laboratory 

scans were performed with an 1172 x-ray microtomograph (Skyscan, Belgium) to evaluate 

the cortical and trabecular bone geometry. The synchrotron radiation microtomography was 

performed at Diamond Light Source on the Diamond-Manchester Branchline I13-2 with 

projections being reconstructed and a procedure developed to characterise each individual 

bridge and map their location on the tibial  joint surface (Supplementary methods) (28-30).  

Metatarsal organ cultures. Metatarsal bones (E15) were cultured for up to 7 days (31, 

32). The total length of the bone through the centre of the mineralising zone, and the length 

of the central mineralisation zone were determined using Image J analysis software.  
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Sclerostin ELISA. Serum sclerostin levels in CBA and STR/Ort mice at 8-10 weeks, 18-20 

weeks, and 40+ weeks (n=4 for each strain at each age) were measured using a mouse/rat 

sclerostin ELISA kit (R&D systems).  

Statistics. Data were analysed by one-way analysis of variance (ANOVA), the Student's t-

test, or a suitable non-parametric test using GraphPad prism 6 and following normality 

checks (La Jolla, USA). All data are expressed as the mean ± SEM. 

Results 

Retention of calcified cartilage thickness despite articular cartilage loss and 

subchondral bone thickening in STR/Ort mice. We first sought to determine 

temporospatial patterns of changing joint architecture in the STR/Ort mice. Consistent with 

previous findings (33) we show that young STR/Ort mice have thicker medial tibia articular 

cartilage than age-matched CBA controls (P<0.001). As STR/Ort mice age, this becomes 

thinner with concomitant thickening of subchondral bone, neither of which occur in CBA 

mice (P<0.001) (Fig. 1A&B). Despite this, there is no change in calcified cartilage thickness 

(Fig. 1B) and further analysis discloses similar changes in the medial femur (Suppl. Fig. 1). 

Lateral condyles in STR/Ort mice were unaffected by such age-related structural 

modifications. The lateral tibia also exhibited greater articular cartilage thickness, maybe in 

compensation to altered mechanical loads (Suppl. Fig. 1). 

Articular cartilage in STR/Ort mice deploys transient chondrocyte behaviours prior to 

OA onset. We next examined whether this predisposition to age-related subchondral bone 

thickening and loss of articular cartilage in STR/Ort OA was linked to the expression of 

markers of the transient chondrocyte phenotype. Initially, we used the DAVID functional 

annotation clustering tool to identify biological functions enriched within differentially 

expressed genes in articular cartilage from OA affected mice (STR/Ort >18weeks) compared 
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to unaffected mice (CBA 8-40 weeks, STR/Ort at 8-10 weeks) (22). Within the major gene 

ontology classifications, there was significant up-regulation of endochondral bone growth 

(P<0.01) (Table 1, Suppl. Table 1). No gene ontology classifications associated with skeletal 

development and ossification were found to be significantly down-regulated.  

These endochondral ossification gene ontologies in STR/Ort OA articular cartilage led us to 

examine protein expression of well-established chondrocyte hypertrophy markers in OA 

development. Immunohistochemistry revealed positive MMP13 labelling in both superficial 

and deep articular chondrocytes in the joints of STR/Ort mice prior to OA onset (Fig. 

1C&D). In accord with previous findings, an expected pattern of collagen type X expression 

was observed in the unaffected condyles of STR/Ort mouse joints, with immunolabelling 

restricted to hypertrophic chondrocytes (Fig. 1F). Intriguingly, collagen type X 

immunolabelling was observed throughout the medial condylar articular cartilage matrix in 

STR/Ort mice aged 8-10weeks, before histologically detectable OA (Fig. 1E). Multiplex gene 

analysis of genes associated with matrix mineralization confirmed significant elevation in 

Enpp1 and Ank mRNA isolated from 8-10 week-old STR/Ort mice articular cartilage, 

compared to CBA mice (P<0.001, Fig. 1G&H). Interestingly, these increases were 

diminished upon OA onset (P<0.001, at 18-20weeks, Fig. 1G&H). These findings suggest 

that OA-prone regions of the STR/Ort mouse cartilage exhibit an inherent instability defect in 

articular chondrocytes. 

STR/Ort mice exhibit accelerated growth, dysfunctional growth plate morphology and 

matrix mineralisation. To more fully define this inherent endochondral chondrocyte defect, 

we examined growth trajectories of 1-8 week old STR/Ort and CBA mice. We found that 

STR/Ort mice weigh less (P<0.05) until 4-5 weeks of age, corresponding with the attainment 

of sexual maturity, when they overtake the CBA mice (Fig. 2A). Consistent with this, 

analysis of embryonic longitudinal growth and mineralisation in vitro revealed aberrant rates 
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of growth and endochondral ossification in STR/Ort mouse metatarsals (31, 32) (Fig. 2C-F), 

involving both a slowing of metatarsal growth (Fig. 2E) and marked reductions in the 

mineralised portion of the element (Fig. 2F). 

Consistent with this accelerated growth phenotype, STR/Ort mice also have shorter tibiae at 3 

weeks of age (P<0.05), which is seemingly revised as tibia length at 6 weeks of age is not 

significantly different (Fig. 2B). This is further endorsed by comparisons of 8-week-old mice 

when the STR/Ort tibia is longer than in age matched CBA mice (P<0.01, Fig. 2B). MicroCT 

analysis revealed significantly enhanced cortical and trabecular parameters in 6 week old 

STR/Ort tibia, with higher % differences in BV/TV (12%; P<0.01), cortical thickness (23%; 

P<0.05), cortical area (23%; P<0.001), polar moment of inertia (46%; P<0.05), trabecular 

pattern factor (27%; P<0.05) and SMI (13%, P<0.05) compared to age-matched CBA mice 

(Suppl. Table 2). In comparison, there were no significant differences at 3 weeks of age 

(Suppl. Table 2).   

Growth plate zone analysis revealed a significantly enlarged proliferating zone of 

chondrocytes in both 3- and 6-week-old STR/Ort mice (P<0.001 and P<0.05, respectively; 

Fig. 2G). This was not apparent in 8-week-old STR/Ort mice when compared with age-

matched CBA (Fig. 2G). Despite the lack of any differences in the size of hypertrophic 

chondrocyte zones, immunolabelling for collagen type X disclosed the expected localisation 

in CBA mouse growth plates, limited exclusively to the hypertrophic zone and underlying 

metaphyseal bone at both 3- and 6-weeks of age (Fig. 2H&I). In contrast, STR/Ort mice at 

both ages showed considerably greater and more widely dispersed collagen type X expression 

which extended additionally into the proliferative chondrocyte zone (Fig. 2J&K). This 

disrupted distribution of growth plate zone markers was also evident for MMP13 in the 

growth plates of STR/Ort mice (Fig. 2L-O). 
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STR/Ort mouse OA is linked to modifications in the MEPE/sclerostin axis. Molecular 

mechanisms controlling endochondral ossification may help identify those involved in OA. 

We have previously shown MEPE, a member of the SIBLING family, to be a negative 

regulator of growth plate chondrocyte matrix mineralisation (31). Examination of MEPE 

expression by multiplex analysis found significantly higher Mepe mRNA in STR/Ort mouse 

articular cartilage than CBA mice (P<0.001) (Fig. 3A). Immunolabelling for MEPE showed 

differential expression across the tibia of the STR/Ort mouse joints, with a distinct lack of 

positive MEPE protein labelling in the medial (affected) aspects both prior to and during OA 

progression (Fig. 3C). This is in contrast to the lateral (unaffected) aspect of the STR/Ort 

joints and throughout all aspects of CBA joints where labelling for MEPE is observed 

throughout the depth of the articular cartilage tissue (Fig. 3C&D).   

Assessment of the MEPE regulator, Phex, revealing elevated mRNA in 8-10 week STR/Ort 

articular cartilage compared to age-matched CBA mice (P<0.001, Fig. 3B). In STR/Ort mice, 

this expression significantly decreased with OA onset (P<0.001, Fig. 4B). Identical age-

related expression patterns were found for Dmp1 mRNA, another SIBLING family member 

(P<0.001, Fig. 3E). Analysis of mRNA levels of osteopontin (Opn), a SIBLING with shared 

roles in biomineralisation, revealed significantly higher levels in aged STR/Ort compared to 

young STR/Ort mice (P<0.05, Fig. 3F) and age-matched CBA mice, resembling patterns of 

Mepe expression (P<0.05, Fig. 3F). Taken together, this suggests a regulatory role for the 

SIBLING family of proteins in OA development in these mice.      

We next sought to examine the temporal expression of another important regulator of MEPE 

expression, the Wnt signalling inhibitor sclerostin (Sost) (34). Our analyses showed greater 

Sost mRNA levels in articular cartilage of 8-10 week STR/Ort than in age-matched CBA 

mice (P<0.05, Fig. 4A), which significantly decreased with OA onset (P<0.01, Fig. 4A). 

Despite this, no differences were observed in circulating serum sclerostin concentrations in 
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these mice at any age, supportive of solely local effects (Fig. 4B). Consistent with this, 

sclerostin immunolabelling disclosed a clear enrichment in cells at the osteochondral 

interface in unaffected regions of STR/Ort mouse joints (arrows, Fig. 4C). In contrast, 

STR/Ort mice with OA showed suppression in positive sclerostin labelling in regions of 

subchondral bone-thickening underlying those with compromised articular cartilage integrity 

(Fig. 4D).  

Premature growth plate closure in STR/Ort mice linked to OA development. To directly 

test whether longitudinal growth, growth plate fusion and osteoarthritis exhibit inter-

relationships in STR/Ort mice we developed a novel protocol for quantifying bony bridges 

formed across the entire murine tibia epiphysis during growth plate fusion (Suppl. Methods, 

Fig. 5A-C). Applying this novel method to examine growth plate closure in STR/Ort and 

CBA mice at 8 and 40+ weeks of age revealed a dramatically (10-fold) greater total number 

of bridges in 8-week-old STR/Ort (137 ± 10) than in CBA mice (14 ± 10; Fig. 5D, E&H; 

P<0.001; Suppl. Fig. 2). This enriched growth plate bridging was apparent in all aspects of 

STR/Ort mouse tibiae (P<0.05; Fig. 5H). Although still evident in aged STR/Ort mice (40+ 

weeks), this enriched bone bridging was much more discrete (STR/Ort: 295 ± 72, CBA: 266 

± 53; Fig. 5F, G&I; Suppl. Fig. 2).  Mean areal bridge densities were also greater in STR/Ort 

mice at both ages (P<0.01, Fig. 5J). These exciting data reveal an accelerated cartilage-bone 

transition in the growth plate which, together with our aforementioned data, support an 

inherent endochondral defect in both the articular and growth plate cartilage in STR/Ort mice.      

Discussion 

Our data reveal changes in the articular cartilage of STR/Ort mouse knee joints consistent 

with an aberrant deployment of endochondral processes. This is associated with inherent 

longitudinal growth modifications, disrupted growth plate morphology, premature growth 
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plate fusion, and aberrant bone formation and matrix mineralisation prior to OA onset. These 

data indicate, at least in the spontaneous human-like OA in STR/Ort mice, that growth-

related endochondral ossification abnormalities may forecast mechanisms of OA 

development in articular cartilage.  

There is certainly some tantalising previously published data exploring expression of 

endochondral ossification markers which agrees with this notion (14). Collagen type X is a 

marker of chondrocyte hypertrophy, usually found in the growth plate and unique to the 

calcified cartilage in normal joints (35). Expression of collagen type X mRNA transcripts, as 

examined by in situ hybridization, have however been observed throughout articular cartilage 

in both young (9 week) and older (41+ weeks) STR/Ort mice (36). Here we provide evidence 

for the first time for associated collagen type X protein expression in these mice. In 

agreement with our studies, an additional marker of chondrocyte hypertrophy, MMP13 has 

also been detected in the calcified cartilage chondrocytes of STR/Ort mice at both young and 

old ages, at levels greater than in age-matched CBA (37). Similarly, higher expression levels 

of several other MMPs (MMP2, MMP3, MMP7, MMP9, MT1-MMP) were observed in the 

tibial articular chondrocytes of the STR/Ort mouse (37). Indeed, many of these MMPs were 

also shown to be significantly increased in our previous microarray study, further 

highlighting their likely role as key players in cartilage degradation in OA (22). The STR/Ort 

mouse growth plate has remained relatively unexamined with, to our knowledge, only one 

paper describing phenotypic changes associated with ageing. Chambers et al describe 

collagen type X mRNA expression localized to hypertrophic chondrocytes, as expected, in 

both young CBA and STR/Ort mice. However in the aged mice, there was no expression of 

collagen type X mRNA observed despite the preservation of collagen type II mRNA 

throughout the depth of the thinned growth plate cartilage (36). Our results now reveal 

aberrant expression of collagen type X and MMP13 additionally in the growth plate of young 
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STR/Ort mice. STR/Ort mice also display an increased zone of proliferative chondrocytes, 

based on well-established cell morphological features (27). As such, these results may seem 

counterintuitive and just highlight that there is clearly an inherent endochondral defect in the 

STR/Ort mice which may also precipitate OA pathogenesis.  

Molecular mechanisms controlling endochondral ossification may help identify those 

involved in OA. Effective control of the Wnt signalling pathway is certainly proving critical 

in regulating both the extent of OA joint pathology (38) and growth plate chondrocyte 

behaviour, and our data here corroborates this.  

Genetic and microarray analyses have been performed in STR/Ort mice in order to better 

elucidate their OA aetiology (39-42). Jaeger and colleagues identified a QTL associated with 

articular cartilage degeneration on chromosome 8 of the STR/Ort mouse (39). This however 

was not corroborated in a more recent QTL analysis in which STR/Ort mice were 

backcrossed to the C57BL/6N strain (43). This QTL was therefore suggested to be a 

recessive trait, as originally implicated by Walton and colleagues, among the polygenetic 

factors in STR/Ort OA (19, 43). Instead the authors identify a QTL for the OA phenotype that 

is mapped to chromosome 4 (43). Chromosome 8 was however revisited and fine mapping of 

the OA-QTL in a more recent study revealed Wnt related genes associated with altered 

chondrogenesis, including dickkopf 4 (Dkk4), secreted frizzled related protein 1 (Sfrp1) and 

fibroblast growth factor 1 (Fgfr1) (38, 42). Whilst a number of genes, including Wnt related 

genes, have been implicated in OA by association studies in human populations, there is a 

distinct lack of functional data to support a causative link between these associated genes and 

OA.  

Pasold et al., attempted to find such link and identified 23 polymorphic changes in the Sfrp1 

gene in STR/Ort in comparison to C57BL/6 mice (42). Further immunohistochemical studies 
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revealed the expression of sFRP1 was reduced in articular chondrocytes of young STR/Ort 

mice, and this was confirmed by in vitro analysis of STR/Ort mesenchymal stem cells (42). 

Our meta-analysis of previous STR/Ort microarray data herein did not reveal any significant 

changes in the gene expression of Dkk4, Sfrp1 or Fgfr1. Instead we provide evidence for the 

role of the Wnt inhibitor sclerostin, in OA development in STR/Ort mice. This is consistent 

with other studies which have shown expression of sclerostin in articular cartilage of various 

species including mice and sheep (44, 45). Whilst we observed no differences in serum 

sclerostin levels in STR/Ort mice, in humans an inverse relationship with radiographic knee 

OA severity has been observed, therefore implicating sclerostin as a potential biochemical 

marker (46).  

 

This does not mean that the role of sclerostin in OA is uncontroversial. Recent studies 

examining OA in aged sclerostin-deficient mice and in rats treated with sclerostin 

neutralising antibodies following surgical induction (45), concluded that genetic ablation of 

sclerostin does not alter spontaneous age-dependent murine OA development, nor does 

pharmacological inhibition of sclerostin in a surgical model of OA (45). This therefore 

highlights the growing need for further investigations into the precise role of sclerostin in this 

debilitating disease. This may come from examining the role of its downstream pathways; 

here we were interested in identifying the role of one such novel pathway involving the 

SIBLING protein MEPE (34). MEPE has been shown to be a critical regulator of osteoblast 

and chondrocyte matrix mineralisation (12, 31, 47, 48). The similarity in differential patterns 

of MEPE and sclerostin expression we observe in STR/Ort mice implies a novel mechanism 

by which sclerostin may function in OA. Alterations in this pathway support the case for 

abnormal Wnt/β-catenin signalling, as has been reported in many OA studies including in the 

STR/Ort mouse (42).  
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In endochondral growth, the Wnt pathway is known to play an intricate and yet critical role 

with cartilage specific β-catenin deficient mice lacking typical growth plate zones and 

exhibiting delayed endochondral ossification (49). It has been shown that appropriate control 

of Wnt signalling in the growth plate is essential in regulating proliferation, alignment, 

differentiation, hypertrophy and replacement of calcified matrix with bone (38). During 

chondrogenesis, Wnt signalling is thought to influence the cell-cell and cell-extracellular 

matrix interactions upon which this fundamental process depends. Various Wnt factors, 

including Wnt3a, Wnt6, Wnt7a and many more, have been implicated as inhibitors of 

chondrogenesis, whilst a similar number, including Wnt5a and Wnt5b, have stimulatory roles 

(38). Similar ambiguity applies to the role of Wnt signalling in chondrocyte hypertrophic 

differentiation (38). In particular, it has been revealed that Wnt signalling regulates the 

parathyroid related peptide (PTHrP), Indian hedgehog (ihh) and transforming growth factor 

(TGF)-β feedback loop (49). Chondrocytes undergoing hypertrophy secrete Ihh which acts 

upon the proliferating chondrocytes to maintain their proliferative state and to restrict 

hypertrophy. Ihh also stimulates TGF-β production which in turn upregulates PTHrP. This 

acts on the pre-hypertrophic chondrocytes to prevent their further differentiation and thus Ihh 

production (50). This pathway has also been implicated in OA with increased Ihh expression 

reported in OA cartilage and selective Ihh deletion protecting against surgical OA 

progression (51, 52). Whilst this pathway was not examined here, it would be interesting to 

examine whether sclerostin/MEPE regulates the PTHrP/Ihh pathway in the STR/Ort mouse 

and whether this contributes to their OA pathology.  Our data do however strengthen the 

intimacy of the relationship between molecular dysregulation of the Wnt/β-catenin pathway 

and endochondral growth defects. 
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Whether the results presented here are a unique feature of OA in the STR/Ort mouse or of 

OA in general is an interesting consideration and one that should be deliberated upon, as OA 

is being more widely accepted as a clinicopathological syndrome with multiple aetiologies. 

An elegant and comprehensive microarray study by Bateman and colleagues (53) in which 

gene expression profiling was performed in cartilage from wild-type mice with surgically 

induced OA (destabilisation of the medial meniscus, DMM) at 1, 2, and 6 weeks post-

surgery, details the full list of differentially expressed genes between DMM-operated and 

sham-operated mice. Bateman et al., found that the marker of hypertrophy MMP13, was 

unchanged in DMM-operated mice in comparison to sham-operated mice at all stages post-

surgery (53). This contrasts with our data in STR/Ort mice where elevated MMP13 

expression levels were found prior to and during OA. In accord with our data, Bateman et al., 

found Col10a1 to be significantly increased in DMM-operated mice in comparison to sham-

operated mice at 1 and 2 weeks post-surgery and the matrix mineralisation regulators Enpp1 

and Ank to be increased at all time points post-surgery (53). The differential expression of 

these matrix and mineralisation markers at early time points post-surgery suggests their 

involvement in the initial OA processes in the DMM model. This is in accord with our data 

which shows similar changes prior to OA development in STR/Ort mice. Together this 

suggests a point of integration with these endochondral pathways at which the different OA 

subtypes, surgical (DMM) and natural (STR/Ort), may converge.    

In this manuscript we highlight the MEPE/sclerostin pathway as a potential pathway for 

future investigation in OA research. Our data shows differential expression of MEPE and 

sclerostin in the STR/Ort mouse, along with the MEPE regulator PHEX and other members 

of the SIBLING family of proteins, DMP1 and osteopontin. In the DMM model, none of 

these genes of interest were changed (53). This therefore identifies this subset of genes as 

selective to the STR/Ort mouse OA and our identification of this molecular phenotype will 
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not only aid understanding into this diverse human condition, but also suggests that we may 

be able to identify specific gene signatures within particular at-risk human patients. 

Our reports of an inherent endochondral defect in STR/Ort mice is further strengthened by 

our data acquired using synchrotron x-ray computed microtomography that shows premature 

growth plate closure in STR/Ort mice. This novel method for 3D quantification of bony 

bridging will no doubt advance understanding of growth plate closure mechanisms, and our 

unique data revealing the complex internal topographies of the growth plate cartilage layer in  

CBA and STR/Ort mice (Fig. 5B&D) may also yield more insights into the micro-mechanical 

environment of the cells in the growth plate (54).  

This method has revealed that OA-prone STR/Ort and healthy CBA mice both display overt 

bone bridges prior to growth cessation. More specifically, spatial localisation of these bridges 

has shown greater clustering in STR/Ort mice, suggesting that their formation is driven by 

local factors, likely altered mechanical loading. The idea that STR/Ort mouse OA is driven 

by loading has certainly been supported by previous reports suggesting an association with 

medial patellar dislocation (55) and by those showing accelerated OA following mechanical 

joint loading (33). There have also been direct links made between growth plate function and 

mechanical loads, but whether this extends to the regulation of growth plate closure has yet to 

be explored (56). Regardless, it remains clear that these studies have, for the first time, shown 

that early growth plate closure is indicative of modified growth trajectory in STR/Ort mice 

and that growth ceases sooner in the lifetime of these OA-prone mice than in the closely-

related parental CBA strain which shows healthy joint ageing. These data may also be 

interpreted as evidence that the OA in STR/Ort mice is secondary to a chondrodysplasia. 

Data indicating internal tibia rotation of the tibia of STR/Ort mice may offer support for such 

a contribution (57). However, the linked deployment of transient chondrocyte behaviours in 

the articular cartilage prior to overt OA development that we observe suggests, instead, that 
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this reflects an inherent chondrocyte defect. Nonetheless, the likelihood that such 

relationships with modified growth trajectories are also prevalent in human OA is yet to be 

defined and longitudinal studies examining associations between growth plate dynamics and 

OA development in human patients would be particularly informative in our understanding of 

OA in general.  

Despite their predictable disease development with characteristics resembling those seen in 

human OA, including osteophytes, subchondral bone sclerosis, and synovial hyperplasia (19, 

20, 58) the insights into the aetiology of OA provided by our data from this STR/Ort mouse 

model are limited. For instance, the aetiology of this OA is not yet known, despite extensive 

genetic and microarray analyses (39-41). As such, there are potential factors which may 

confound interpretation of our data, and it is vital to highlight that our findings define only 

the distinct pathophysiological mechanisms important in this subset of OA. Concurrent with 

this, the molecular phenotype we describe is unmodified in CBA mice suggesting that it is 

disease and indeed STR/Ort OA specific as opposed to any result of ageing. It is still however 

important to consider the molecular phenotype of this particular OA as it is becoming more 

widely accepted that generalisation of the OA disease is somewhat distracting and flawed in 

our pursuit of a disease modifying treatment (59).  

In conclusion, our findings show that aberrant deployment of transient chondrocyte 

behaviours, consistent with re-initiation of endochondral processes, occurs in joints of 

spontaneously OA STR/Ort mice. Articular cartilage transcriptional profiles, labelling for 

endochondral markers and age-related growth plate dynamics, both in vivo and in vitro, 

support that OA in STR/Ort mice is allied to an inherent endochondral growth defect that is 

subject to regulation by the MEPE/sclerostin axis. Further investigation will determine 

whether this is an underpinning mechanism in some or all forms of pathological ossification 

in OA.  
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Figure Legends 

Figure 1. Measurements of uncalcified cartilage (white), calcified cartilage (grey) and 

subchondral bone (black) in the medial tibia of (A) CBA (B) STR/Ort mice at 8-10 weeks, 

18-20 weeks, and 40+ weeks (10 measurements in >6 sections/mouse, n=4). Results are 

presented as % of the thickness of each zone measured from articular surface to subchondral 

bone. Immunolabelling of STR/Ort mice joints prior to OA onset for MMP13 in the (C) 

medial tibia (D) lateral tibia, and collagen type X in the (E) medial tibia (F) lateral tibia. 

Images are representative of 3 individual mice. GeXP multiplex RT-qPCR analysis of (G) 

Enpp1 and (H) Ank mRNA in CBA and STR/Ort articular cartilage at 8-10weeks, 18-

20weeks and 40+ weeks of age (n=3 joints/sample).  

Figure 2. (A) Weights (g) of CBA and STR/Ort mice from 1-8 weeks of age (n>5). (B)  

Tibia length (mm) analysis in STR/Ort and age-matched CBA mice at 3-, 6- and 8-weeks of 

age (n=6). Measurements of digital images of E15 STR/Ort (C) and CBA (D) metatarsal 

bones in culture for 7 days. The growth rate (E) and (F) the percentage change in 

mineralisation zone length of metatarsal bones (n>8) (G) Growth plate zone lengths in 3-, 6-, 

and 8-week old STR/Ort and CBA mice (PZ – proliferative zone, HZ - hypertrophic zone) 

(10 measurements in >6 sections/mouse, n=4). Data are represented as mean ± SEM. 

*P<0.05, ***P<0.001. Immunohistochemical analysis of (H-K) Collagen type X in (H) 3 

week CBA (I) 6 week CBA (J) 3 week STR/Ort (K) 6 week STR/Ort (L-O) MMP13 (L) 3 

week CBA (M) 6 week CBA (N) 3 week STR/Ort (O) 6 week STR/Ort. Images are 

representative of 3 individual mice. Bar = 50µm. Data are represented as mean ± SEM. 

*P<0.05, **P<0.01, P<0.001***.   

Figure 3. GeXP multiplex RT-qPCR analysis of (A) Mepe (B) Phex mRNA in CBA and 

STR/Ort articular cartilage at 8-10weeks, 18-20weeks and 40+ weeks (n=3 joints/sample). 
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(C) Immunohistochemistry of MEPE in the lateral (non-affected) and medial (affected) tibia 

condyles in STR/Ort mice at stages prior to and at the onset of OA. (D) 

Immunohistochemistry of MEPE in the CBA tibia condyles. Images are representative of 3 

individual mice. GeXP multiplex RT-qPCR analysis of (E) Dmp1 (F) Opn mRNA in CBA 

and STR/Ort articular cartilage at 8-10weeks, 18-20weeks and 40+ weeks of age (n=3 

joints/sample).     

Figure 4. GeXP multiplex qPCR analysis of (A) Sost mRNA in CBA and STR/Ort articular 

cartilage at 8-10weeks, 18-20weeks and 40+ weeks of age (n=3 joints/sample). (B) Serum 

sclerostin in CBA and STR/Ort mice at the aforementioned ages (n=4). (C) 

Immunohistochemistry of sclerostin in the lateral (non-affected) and (D) medial (affected) 

tibia condyles in STR/Ort mice at stages prior to and at the onset of OA. Images are 

representative of 3 individual mice. 

Figure 5. Development of a 3D quantification method for growth plate bridging. (A) 3D 

representation of the whole 40+ week STR/Ort joint. (B) 3D representation of the growth 

plate cartilage (yellow) underneath the tibial joint surface (grey, A) (C) 3D representation of 

bridges crossing the growth plate underneath the tibial joint (black crosses indicate bony 

bridges identified by an observer). Location and areal density of bridges across the growth 

plate projected on the tibial joint surface: (D) STR/Ort 8 weeks, (E) CBA 8 weeks, (F) 

STR/Ort 40+ weeks, (G) CBA 40+ weeks. Number of bridges per tibia at (H) 8 weeks (I) 

40+ weeks (n=3). Lateral/medial and anterior/posterior segments were split in order to 

examine whether bridging is balanced during fusion. (J) Areal density, d. The areal density of 

bridges, d, is defined as the number of bridges per 256 µm x 256 µm window. Data are 

represented as mean of 3 animals ± S.E.M. P<0.05*, P<0.01**, P<0.001***. 

 

 

Page 24 of 42

John Wiley & Sons

Arthritis & Rheumatology

This article is protected by copyright. All rights reserved.



25 

 

Table 1: Gene ontology analysis of genes up-regulated in osteoarthritic articular cartilage in 

comparison to non-osteoarthritic articular cartilage. Genes showing >1.5 fold were analysed 

with DAVID software (n=491)    

 

 

Term % P-value 

Bone development 3.1 1.00E-05 

Ossification 2.8 2.80E-05 

Bone mineral formation 1.7 1.60E-04 

Skeletal system development 4 3.40E-04 

Cartilage development 1.7 6.10E-03 
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