
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Affine cones over smooth cubic surfaces

Citation for published version:
Cheltsov, I, Park, J & Wong, J 2016, 'Affine cones over smooth cubic surfaces', Journal of the European
Mathematical Society, vol. 18, no. 7, pp. 1537-1564. https://doi.org/10.4171/JEMS/622

Digital Object Identifier (DOI):
10.4171/JEMS/622

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Journal of the European Mathematical Society

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Oct. 2021

https://doi.org/10.4171/JEMS/622
https://doi.org/10.4171/JEMS/622
https://www.research.ed.ac.uk/en/publications/c6cd5be4-31be-412c-88a0-c63a97302847


ar
X

iv
:1

30
3.

26
48

v3
  [

m
at

h.
A

G
] 

 2
5 

M
ar

 2
01

3

AFFINE CONES OVER SMOOTH CUBIC SURFACES

IVAN CHELTSOV, JIHUN PARK AND JOONYEONG WON

Abstract. We show that affine cones over smooth cubic surfaces do not admit non-trivial
Ga-actions.

Throughout this article, we assume that all considered varieties are algebraic and defined over
an algebraically closed field of characteristic 0.

1. Introduction

One of the motivations for the present article originates from the articles of H. A. Schwartz
( [34]) and G. H. Halphen ( [17]) in the middle of 19th century, where they studied polyno-
mial solutions of Brieskorn-Pham polynomial equations in three variables after L. Euler (1756),
J. Liouville (1879) and so fourth ( [12]). Meanwhile, since the middle of 20th century the study
of rational singularities has witnessed great development ( [2], [5], [26]). These two topics, one
classic and the other modern, encounter each other in contemporary mathematics. For instance,
there is a strong connection between the existence of a rational curve on a normal affine surface,
i.e., a polynomial solution to algebraic equations, and rational singularities ( [15]).

As an additive analogue of toric geometry, unipotent group actions, specially Ga-actions, on
varieties are very attractive objects to study. Indeed, Ga-actions have been investigated for
their own sake ( [3], [18], [29], [35], [40]). We also observe that Ga-actions appear in the study
of rational singularities. In particular, the article [15] shows that a Brieskorn-Pham surface
singularity is a cyclic quotient singularity if and only if the surface admits a non-trivial regular
Ga-action. Considering its 3-dimensional analogue, H. Flenner and M. Zaidenberg in 2003
proposed the following question ( [15, Question 2.22]):

Does the affine Fermat cubic threefold x3 + y3 + z3 + w3 = 0 in A4 admit a

non-trivial regular Ga-action?

Even though it is simple-looking, this problem stands open for 10 years. It turns out that this
problem is purely geometric and can be considered in a much wider setting ( [19], [20], [21],
[22], [31]).

To see the problem from a wider view point, we let X be a smooth projective variety with
a polarisation H, where H is an ample divisor on X. The generalized cone over (X,H) is the
affine variety defined by

X̂ = Spec

(

⊕

n>0

H0 (X,OX (nH))

)

.

Remark 1.1. The affine variety X̂ is the usual cone over X embedded in a projective space by the
linear system |H| provided that H is very ample and the image of the variety X is projectively
normal.

Let Sd be a smooth del Pezzo surface of degree d and let Ŝd be the generalized cone over
(Sd,−KSd

). For 3 6 d 6 9, the anticanonical divisor −KSd
is very ample and the generalized

The second author has been supported by the Research Center Program (Grant No. CA1205-02) of Institute for
Basic Science in Korea.
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2 IVAN CHELTSOV, JIHUN PARK AND JOONYEONG WON

cone Ŝd is the affine cone in Ad+1 over the smooth variety anticanonically embedded in Pd.
In particular, for d = 3, the cubic surface S3 is defined by an cubic homogenous polynomial
equation F (x, y, z, w) = 0 in P3, and hence the cone Ŝ3 is the affine hypersurface in A4 defined

by the equation F (x, y, z, w) = 0. For d = 2, the generalized cone Ŝ2 is the affine cone in
A4 over the smooth hypersurface in the weighted projective space P(1, 1, 1, 2) defined by a

quasihomogeneous polynomial of degree 4. For d = 1, the cone Ŝ1 is the affine cone in A4 over the
smooth hypersurface in the weighted projective space P(1, 1, 2, 3) defined by a quasihomogeneous
polynomial of degree 6 ( [16, Theorem 4.4]).

It is natural to ask whether the affine variety Ŝd admits a non-trivial Ga-action. The problem
at the beginning is just a special case of this.

T. Kishimoto, Yu. Prokhorov and M. Zaidenberg have been studying this generalised problem
and proved the following:

Theorem 1.2. If 4 6 d 6 9, then the generalized cone Ŝd admits an effective Ga-action.

Proof. See [19, Theorem 3.19]. �

Theorem 1.3. If d 6 2, then the generalized cone Ŝd does not admit a non-trivial Ga-action.

Proof. See [22, Theorem 1.1]. �

Their proofs make good use of a geometric property called cylindricity, which is worthwhile
to be studied for its own sake.

Definition 1.4 ( [19]). Let M be a Q-divisor on X. An M -polar cylinder in X is an open
subset

U = X \ Supp(D)

defined by an effective Q-divisor D on X with D ∼Q M such that U is isomorphic to Z × A1

for some affine variety Z.

They show that the existence of an H-polar cylinder on X is equivalent to the existence of a
non-trivial Ga-action on the generalized cone over (X,H).

Lemma 1.5. Suppose that the cone X̂ is normal. Then the cone X̂ admits an effective Ga-action
if and only if X contains an H-polar cylinder.

Proof. See [21, Corollary 2.12]. �

Remark 1.6. If X is a rational surface, then there always exists an ample Cartier divisor H on
X such that X̂ is normal and X contains an H-polar cylinder (see [19, Proposition 3.13]), which

implies, in particular, that X̂ admits an effective Ga-action.

Indeed, what T. Kishimoto, Yu. Prokhorov and M. Zaidenberg proved for their two theorems
is that the del Pezzo surface Sd has a (−KSd

)-polar cylinder if 4 6 d 6 9 but no (−KSd
)-polar

cylinder if d 6 2.
The main result of the present article is

Theorem 1.7. A smooth cubic surface S3 in P3 does not contain any (−KS3
)-polar cylinders.

Together with Theorems 1.2 and 1.3, this makes us reach the following conclusion.

Corollary 1.8. Let Sd be a smooth del Pezzo surface of degree d. Then Ŝd admits a non-trivial
regular Ga-action if and only if d > 4.

In particular, we here present a long-expected answer to the question raised by H. Flenner
and M. Zaidenberg.
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Corollary 1.9. The affine Fermat cubic threefold x3 + y3 + z3 + w3 = 0 in A4 does not admit
a non-trivial regular Ga-action.

In order to show the non-existence of a (−KS3
)-polar cylinder on a cubic del Pezzo surface

S3, we apply the following statement.

Lemma 1.10. Let Sd be a smooth del Pezzo surface of degree d 6 4. Suppose that Sd contains
a (−KSd

)-polar cylinder, i.e., there is an open affine subset U ⊂ Sd and an effective anticanonical
Q-divisor1 D such that U = Sd \Supp(D) and U ∼= Z×A1 for some smooth rational affine curve
Z. Then there exists a point P on Sd such that

• the log pair (Sd,D) is not log canonical at the point P ;
• if there exists a unique divisor T in the anticanonical linear system |−KSd

| such that the
log pair (Sd, T ) is not log canonical at the point P , then there is an effective anticanonical
Q-divisor D′ on the surface Sd such that

– the log pair (Sd,D
′) is not log canonical at the point P ;

– the support of D′ does not contain at least one irreducible component of the support
of the divisor T .

Proof. This follows from [19, Lemma 4.11] and the proof of [19, Lemma 4.14] (cf. the proof
of [22, Lemma 5.3]). Since the proof is presented implicitly and dispersedly in [19], for the
convenience of the reader, we give a detailed proof in Appendix A. �

Applying Lemma 2.2, we easily obtain

Corollary 1.11. Let S3 be a smooth del Pezzo surface of degree 3. Suppose that S3 contains
a (−KS3

)-polar cylinder. Then there is an effective anticanonical Q-divisor D on S3 such that

• the pair (S3,D) is not log canonical at some point P on S3;
• the support of D does not contain at least one irreducible component of the tangent
hyperplane section TP of S3 at the point P .

The lemma above may be one example that shows how important it is to study singularities
of effective anticanonical Q-divisors on Fano manifolds. In addition, it shows that the prob-
lem proposed at the beginning is strongly related to the log canonical thresholds of effective
anticanonical Q-divisors on del Pezzo surfaces.

In this article, we prove the following

Theorem 1.12. Let Sd be a smooth del Pezzo surface of degree d 6 3 and let D be an effective
anticanonical Q-divisor on Sd. Suppose that the log pair (Sd,D) is not log canonical at a point
P . Then there exists a unique divisor T in the anticanonical linear system | −KSd

| such that
the log pair (Sd, T ) is not log canonical at the point P . Moreover, the support of D contains all
the irreducible components of Supp(T ).

Corollary 1.13. Let S3 be a smooth cubic surface in P3 and let D be an effective anticanonical
Q-divisor on S3. Suppose that the log pair (S3,D) is not log canonical at a point P . Then for
the tangent hyperplane section TP at the point P , the log pair (S3, TP ) is not log canonical at
P and Supp(D) contains all the irreducible components of Supp(TP ).

Note that Corollary 1.13 contradicts the conclusion of Corollary 1.11. It simply means that the
hypothesis of Corollary 1.11 fails to be true. This shows that Theorem 1.12 implies Theorem 1.7.
Moreover, we see that Theorem 1.12 recovers Theorem 1.3 through Lemma 1.10 as well.

1An anticanonical Q-divisor on a variety X is a Q-divisor Q-linearly equivalent to an anticanonical divisor of X,
meanwhile, an effective anticanonical divisor on X is a member of the anticanonical linear system | −KX |.
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Remark 1.14. The condition d 6 3 is crucial in Theorem 1.12. Indeed, if d > 4, then the
assertion of Theorem 1.12 is no longer true (cf. the proof of [19, Theorem 3.19]). For example,
consider the case when d = 4. There exists a birational morphism f : S4 → P2 such that f is
the blow up of P2 at five points that lie on a unique irreducible conic. Denote this conic by
C. Let C̃ be the proper transform of the conic C on the surface S4 and let E1, . . . , E5 be the
exceptional divisors of the morphism f . Put

D =
3

2
C̃ +

5
∑

i=1

1

2
Ei.

It is an effective anticanonical Q-divisor on S4 and the log pair (S4,D) is not log canonical at

any point P on C̃. Moreover, for any T ∈ | − KS4
|, its support cannot be contained in the

support of the divisor D.

To our surprise, Theorem 1.12 has other applications that are interesting for their own sake.
From here to the end of this section, let X be a projective variety with at worst Kawamata

log terminal singularities and let H be an ample divisor on X.

Definition 1.15. The α-invariant of the log pair (X,H) is the number defined by

α (X,H) = sup

{

λ ∈ Q

∣

∣

∣

∣

the log pair (X,λD) is log canonical for every

effective Q-divisor D on X with D ∼Q H.

}

.

The invariant α(X,H) has been studied intensively by many people who used different no-
tations for α(X,H) ( [1], [6], [14], [4, § 3.4] [10, Definition 3.1.1], [11, Appendix A], [38, Ap-
pendix 2]). The notation α(X,H) is due to G. Tian who defined α(X,H) in a different way
( [38, Appendix 2]). However, both the definitions coincide by [11, Theorem A.3]. In the case
when X is a Fano variety, the invariant α(X,−KX ) is known as the famous α-invariant of Tian
and it is denoted simply by α(X). The α-invariant of Tian plays a very important role in Kähler
geometry due to the following.

Theorem 1.16 ( [13], [30], [36]). Let X be a Fano variety of dimension n with at worst quotient
singularities. If α(X) > n

n+1
, then X admits an orbifold Kähler–Einstein metric.

The exact values of the α-invariants of smooth del Pezzo surfaces, as below, have been obtained
in [7, Theorem 1.7]. Those of del Pezzo surfaces defined over a field of positive characteristic
are presented in [28, Theorem 1.6] and those of del Pezzo surface with du Val singularities in [8]
and [33].

Theorem 1.17. Let Sd be a smooth del Pezzo surface of degree d. Then

α(Sd) =











1/3 if d = 9, 7 or S8 = F1;

1/2 if d = 6, 5 or S8 = P1 × P1;

2/3 if d = 4;

α(S3) =

{

2/3 if S3 is a cubic surface in P3 with an Eckardt point;

3/4 if S3 is a cubic surface in P3 without Eckardt points;

α(S2) =

{

3/4 if | −KS2
| has a tacnodal curve;

5/6 if | −KS2
| has no tacnodal curves;

α(S1) =

{

5/6 if | −KS1
| has a cuspidal curve;

1 if | −KS1
| has no cuspidal curves.
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Remark 1.18. Theorem 1.12 also provides the exact values of the α-invariants for smooth del
Pezzo surfaces of degrees 6 3. We here show how to extract the values from Theorem 1.12.
Let µ be the value in Theorem 1.17 for the α-invariant of Sd. From [32, Proposition 3.2] we
can easily obtain an effective anticanonical divisor C on the surface Sd such that (Sd, µC) is log
canonical but not Kawamata log terminal. This gives us α(Sd) 6 µ.

Suppose that α(Sd) < µ. Then there are an effective anticanonical Q-divisor D and a positive
rational number λ < µ such that (Sd, λD) is not log canonical at some point P on Sd. Since
λ < 1, the log pair (Sd,D) is not log canonical at the point P either. By Theorem 1.12, there
exists a divisor T ∈ | −KSd

| such that (Sd, T ) is not log canonical at P . In addition, Supp(D)
contains all the irreducible components of Supp(T ).

The log pair (Sd, λT ) is log canonical ( [32, Proposition 3.2]). Put Dǫ = (1 + ǫ)D − ǫT for
every non-negative rational number ǫ. Then D0 = D and Dǫ is effective for 0 < ǫ ≪ 1 because
Supp(D) contains all the irreducible components of Supp(T ). Choose the biggest ǫ such that Dǫ

is still effective. Then Supp(Dǫ) does not contain at least one irreducible component of Supp(T ).
Since (Sd, λT ) is log canonical at P and (Sd, λD) is not log canonical at P , the log pair

(Sd, λDǫ) is not log canonical at P either (see Lemma 2.2). In particular, the log pair (Sd,Dǫ)
is not log canonical at P . However, this contradicts Theorem 1.12 since Dǫ is an effective
anticanonical Q-divisor. Therefore, α(Sd) = µ.

Corollary 1.19. Let Sd be a smooth del Pezzo surface of degree d 6 3. If d = 3, suppose, in
addition, that S3 does not contain an Eckardt point. Then Sd admits a Kähler–Einstein metric.

The problem on the existence of Kähler–Einstein metrics on smooth del Pezzo surfaces is
completely solved by G. Tian and S.-T. Yau in [37] and [39]. In particular, Corollary 1.19
follows from [37, Main Theorem].

The invariant α(X,H) has a global nature. It measures the singularities of effective Q-divisors
on X in a fixed Q-linear equivalence class. F. Ambro suggested in [1] a function that encodes
the local behavior of α(X,H).

Definition 1.20 ( [1]). The α-function αH
X of the log pair (X,H) is a function on X into real

numbers defined as follows: for a given point P ∈ X,

αH
X(P ) = sup

{

λ ∈ Q

∣

∣

∣

∣

the log pair (X,λD) is log canonical at the point P ∈ X

for every effective Q-divisor D on X with D ∼Q H.

}

.

Lemma 1.21. The identity α(X,H) = infP∈X αH
X(P ) holds.

Proof. It is easy to check. �

In the case when X is a Fano variety, we denote the α-function of the log pair (X,−KX)
simply by αX .

Example 1.22. One can easily see that αPn(P ) 6 1
n+1

for every point P on Pn. This implies

that the α-function αPn is the constant function with the value 1
n+1

since α(Pn) = 1
n+1

.

Example 1.23. It is easy to see αP1×P1(P ) 6 1
2
for every point P on P1 × P1. Since α(P1 ×

P1) = 1
2
by Theorem 1.17, the α-function αP1×P1 is the constant function with the value 1

2
by

Lemma 1.21. Moreover, if X is a Fano variety with at most Kawamata log terminal singularities,
then the proof of [11, Lemma 2.21] shows that

αX×P1(P ) = min

{

1

2
, αX (pr1 (P ))

}

for every point P on X × P1, where pr1 : X × P1 → X is the projection on the first factor.
Using the similar argument in the proof of [11, Lemma 2.29], one can show that the α-function



6 IVAN CHELTSOV, JIHUN PARK AND JOONYEONG WON

of a product of Fano varieties with at most Gorenstein canonical singularities is the point-wise
minimum of the pull-backs of the α-functions on the factors.

As shown in Remark 1.18, the following can be obtained from Theorem 1.12 in a similar
manner.

Corollary 1.24. Let Sd be a smooth del Pezzo surface of degree d 6 3. Then the α-function
of Sd is as follows:

αS3
(P ) =



















2/3 if the point P is an Eckardt point;

3/4 if the tangent hyperplane section at P has a tacnode at the point P ;

5/6 if the tangent hyperplane section at P has a cusp at the point P ;

1 otherwise;

αS2
(P ) =











3/4 if there is an effective anticanonical divisor with a tacnode at the point P ;

5/6 if there is an effective anticanonical divisor with a cusp at the point P ;

1 otherwise;

αS1
(P ) =

{

5/6 if there is an effective anticanonical divisor with a cusp at the point P ;

1 otherwise.

By Lemma 1.21, Corollary 1.24 implies that Theorem 1.17 holds for smooth del Pezzo surfaces
of degrees at most 3. Thus, it is quite natural that we should extend Corollary 1.24 to all smooth
del Pezzo surfaces in order to obtain a functional generalisation of Theorem 1.17. This will be
done in Section 6, where we prove

Theorem 1.25. Let Sd be a smooth del Pezzo surface of degree d > 4. Then the α-function of
Sd is as follows:

αP2(P ) = 1/3;

αF1
(P ) = 1/3; αP1×P1(P ) = 1/2;

αS7
(P ) =

{

1/3 if the point P lies on the −1-curve that intersects two other −1-curves;

1/2 otherwise;

αS6
(P ) = 1/2;

αS5
(P ) =

{

1/2 if there is −1-curve passing through the point P ;

2/3 if there is no −1-curve passing though the point P ;

αS4
(P ) =



















2/3 if P is on a −1-curve;

3/4
if there is an effective anticanonical divisor that consists of

two 0-curves intersecting tangentially at the point P ;

5/6 otherwise.

Let us describe the structure of this article. In Section 2, we describe the results that will be
used in the proofs of Theorems 1.12 and 1.25. We also prove Theorem 1.12 for a smooth del
Pezzo surface of degree 1 (see Lemma 2.3). In Section 3, we prove two results about singular
del Pezzo surfaces of degree 2 that will be used in the proofs of Theorems 1.12 and 1.25. In
addition, we verify Theorem 1.12 for a smooth del Pezzo surface of degree 2 (see Lemma 3.5).
In Section 4, we prove Theorem 1.12 omitting the proof of Lemma 4.8 that plays a crucial role
in the proof of Theorem 1.12. In Section 5, we prove Lemma 4.8. In Section 6, Theorem 1.25 is
shown. In Appendix A, we prove Lemma 1.10.
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2. Preliminaries

This section presents simple but essential tools for the article. Most of the described results
here are well-known and valid in much more general settings (cf. [23], [24] and [25]).

Let S be a projective surface with at most du Val singularities, let P be a smooth point of
the surface S and let D be an effective Q-divisor on S.

Lemma 2.1. If the log pair (S,D) is not log canonical at the point P , then multP (D) > 1.

Proof. This is a well-known fact. See [25, Proposition 9.5.13], for instance. �

Write D =
∑r

i=1 aiDi, where Di’s are distinct prime divisors on the surface S and ai’s are
positive rational numbers.

Lemma 2.2. Let T be an effective Q-divisor on S such that

• T ∼Q D but T 6= D;
• T =

∑r
i=1 biDi for some non-negative rational numbers b1, . . . , br.

For every non-negative rational number ǫ, put Dǫ = (1 + ǫ)D − ǫT . Then

(1) Dǫ ∼Q D for every ǫ > 0;
(2) the set {ǫ ∈ Q>0 | Dǫ is effective.} attains the maximum µ;
(3) the support of the divisor Dµ does not contain at least one component of Supp(T );
(4) if (S, T ) is log canonical at P but (S,D) is not log canonical at P , then (S,Dµ) is not

log canonical at P .

Proof. The first assertion is obvious. For the rest we put

c = max

{

bi
ai

∣

∣

∣ i = 1, . . . , r

}

.

For some index k we have c = bk
ak
.

Suppose that c 6 1. Then ai > bi for every i. It means that the divisor D − T =
∑r

i=1(ai −
bi)Di is effective. However, it is impossible since D− T is non-zero and numerically trivial on a
projective surface. Thus, c > 1, and hence bk > ak.

Put µ = 1
c−1

. Then µ = ak
bk−ak

> 0 and

Dµ =
bk

bk − ak
D −

ak
bk − ak

T =

r
∑

i=1

bkai − akbi
bk − ak

Di,

where bkai − akbi > 0 by the choice of k. In particular, the divisor Dµ is effective and its
support does not contain the curve Dk. Moreover, for every positive rational number ǫ, Dǫ =
∑r

i=1(ai + ǫai − ǫbi)Di. If ǫ > µ, then

ǫ(bk − ak) > µ(bk − ak) =
ak

bk − ak
(bk − ak) = ak,

and hence Dǫ is not effective. This proves the second and the third assertions.
If both (S, T ) and (S,Dµ) are log canonical at P , then (S,D) must be log canonical at P

because D = µ
1+µ

T + 1
1+µ

Dµ and µ
1+µ

+ 1
1+µ

= 1. �

Despite its näıve appearance, Lemma 2.2 is a very handy tool. To illustrate this, we here
verify Theorem 1.12 for a del Pezzo surface of degree 1. This simple case also immediately
follows from the proof of [7, Lemma 3.1] or from the proof of [22, Proposition 5.1].

Lemma 2.3. Suppose that S is a smooth del Pezzo surface of degree 1 and D is an effective
anticanonical Q-divisor on S. If the log pair (S,D) is not log canonical at the point P , then
there exists a unique divisor T ∈ | −KS | such that (S, T ) is not log canonical at P . Moreover,
the support of D contains all the irreducible components of T .
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Proof. Let T be a curve in | −KS | that passes through the point P . Note that T is irreducible.
If the log pair (S, T ) is log canonical at P , then it follows from Lemma 2.2 that there exists
an effective anticanonical Q-divisor D′ on the surface S such that the log pair (S,D′) is not
log canonical at P and Supp(D′) does not contain the curve T . We then obtain 1 = T · D′ >

multP (D
′). This is impossible by Lemma 2.1. Thus, the log pair (S, T ) is not log canonical at

the point P .
Moreover, the divisor T is singular at the point P . Therefore, the point P is not the base

point of the pencil | −KS |. Consequently, such a divisor T is unique.
If the curve T is not contained in Supp(D), then 1 = T ·D > multP (D). Therefore, the curve

T must be contained in Supp(D) by Lemma 2.1. �

The following is a ready-made Adjunction for our situation. See [24, Theorem 5.50] for a
more general version.

Lemma 2.4. Suppose that the log pair (S,D) is not log canonical at P . If a component Dj

with aj 6 1 is smooth at the point P , then

Dj ·





∑

i 6=j

aiDi



 >
∑

i 6=j

aimultP (Dj ·Di) > 1.

Proof. See [28, Lemma 2.5] for a characteristic-free proof in dimension 2. �

Let f : S̃ → S be the blow up of the surface S at the point P with the exceptional divisor E
and let D̃ be the proper transform of D by the blow up f . Then

KS̃ + D̃ + (multP (D)− 1)E = f∗ (KS +D) .

The log pair (S,D) is log canonical at the point P if and only if the log pair (S̃, D̃+(multP (D)−
1)E) is log canonical along the curve E.

Remark 2.5. If the log pair (S,D) is not log canonical at P , then there exists a point Q on E

at which the log pair (S̃, D̃ + (multP (D)− 1)E) is not log canonical. Lemma 2.1 then implies

multP (D) + multQ(D̃) > 2.

If multP (D) 6 2, then the log pair (S̃, D̃ + (multP (D)− 1)E) is log canonical at every point of

the curve E other than the point Q. Indeed, if the log pair (S̃, D̃+(multP (D)− 1)E) is not log
canonical at another point O on E, then Lemma 2.4 generates an absurd inequality

2 > multP (D) = D̃ ·E > multQ(D̃) + multO(D̃) > 2.

3. Del Pezzo surfaces of degree 2

Let S be a del Pezzo surface of degree 2 with at most two ordinary double points. Then the
linear system | −KS | is free from base points and induces a double cover π : S → P2 ramified
along a reduced quartic curve R ⊂ P2. Moreover, the curve R has at most two ordinary double
points. In particular, the quartic curve R is irreducible.

Lemma 3.1. For an effective anticanonical Q-divisor D on S, the log pair (S,D) is log canonical
outside finitely many points on S.

Proof. Suppose it is not true. Then we may write D = m1C1 + Ω, where C1 is an irreducible
reduced curve, m1 is a positive rational number strictly bigger than 1 and Ω is an effective
Q-divisor whose support does not contain the curve C1. Since

2 = −KS ·D = −KS · (m1C1 +Ω) = −m1KS · C1 −KS · Ω > −m1KS · C1 > −KS · C1,
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we have −KS · C1 = 1. Then π(C1) is a line in P2. Thus, there exists an irreducible reduced
curve C2 on S such that C1 + C2 ∼ −KS and π(C1) = π(C2). Note that C1 = C2 if and
only if the line π(C1) is an irreducible component of the branch curve R. Since the curve R is
irreducible, this is not the case. Thus, we have C1 6= C2.

Note that C2
1 = C2

2 because C1 and C2 are interchanged by the biregular involution of S
induced by the double cover π. Thus, we have

2 = (C1 +C2)
2 = 2C2

1 + 2C · C2,

which implies that C1 ·C2 = 1−C2
1 . Since C1 and C2 are smooth rational curves, we can easily

obtain C2
1 = C2

2 = −1 + k
2
, where k is the number of singular points of S that lie on the curve

C1.
Now we write D = m1C1 +m2C2 + Γ, where m2 is a non-negative rational number and Γ is

an effective Q-divisor whose support contains neither the curve C1 nor the curve C2. Then

1 = C1·(m1C1 +m2C2 + Γ) = m1C
2
1+m2C1·C2+C1·Γ > m1C

2
1+m2C1·C2 = m1C

2
1+m2(1−C2

1 ),

and hence 1 > m1C
2
1+m2(1−C2

1 ). Similarly, from C2 ·D = 1, we obtain 1 > m2C
2
1+m1(1−C2

1 ).

The obtained two inequalities imply that m1 6 1 and m2 6 1 since C2
1 = −1 + k

2
, k = 0, 1, 2.

Since m1 > 1 by assumption, it is a contradiction. �

The following two lemmas can be verified in a similar way as that of [7, Lemma 3.5]. Never-
theless we present their proofs for reader’s convenience.

Lemma 3.2. For an effective anticanonical Q-divisor D on S, the log pair (S,D) is log canonical
at every point outside the ramification divisor of the double cover π.

Proof. Suppose that (S,D) is not log canonical at a point P whose image by π lies outside R.
Let H be a general curve in | −KS | that passes through the point P . Since π(P ) 6∈ R, the

surface S is smooth at the point P . Then

2 = H ·D > multP (H)multP (D) > multP (D),

and hence multP (D) 6 2.

Let f : S̃ → S be the blow up of the surface S at the point P . We have

KS̃ + D̃ + (multP (D)− 1)E = f∗ (KS +D) ,

where D̃ is the proper transform of the divisor D on the surface S̃ and E is the exceptional
curve of the blow up f . Then the log pair (S̃, D̃ + (multP (D)− 1)E) is not log canonical at
some point Q on E but log canonical at every point of E other than the point Q by Remark 2.5.
In addition, we have

(3.3) multP (D) + multQ(D̃) > 2.

Since π(P ) 6∈ R, there exists a unique reduced but possibly reducible curve C ∈ | − KX |

such that the curve C passes through the point P and its proper transform C̃ by the blow up
f passes through the point Q. Note that the curve C is smooth at the point P . Since (S,C) is
log canonical at the point P , Lemma 2.2 enables us to assume that the support of D does not
contain at least one irreducible component of the curve C.

If the curve C is irreducible, then

2−multP (D) = 2−multP (C)multP (D) = C̃ · D̃ > multQ(C̃)multQ(D̃) = multQ(D̃).

This contradicts (3.3). Thus, the curve C must be reducible.
We may then write C = C1+C2, where C1 and C2 are irreducible smooth curves that intersect

at two points. Without loss of generality we may assume that the curve C1 is not contained in
the support of D. The point P must belong to C2: otherwise we would have

1 = D · C1 > multP (D) > 1.
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We put D = nC2+Ω, where n is a non-negative rational number and Ω is an effective Q-divisor
whose support does not contain the curve C2. Then

1 = C1 ·D = (2−
1

2
k)n+ C1 · Ω > (2−

1

2
k)n,

where k is the number of singular points of S on C1. On the other hand, the log pair (S̃, nC̃2 +

Ω̃ + (multP (D) − 1)E) is not log canonical at the point Q, where C̃2 and Ω̃ are the proper

transforms of C2 and Ω, respectively, on the surface S̃, and we have n 6 1 by Lemma 3.1. We
then obtain

(2−
1

2
k)n = C̃2 · (Ω̃ + (multP (D)− 1)E) > 1

from Lemma 2.4. This is a contradiction. �

Lemma 3.4. For a smooth point P of S with π(P ) ∈ R, let TP be the unique divisor in |−KS|
that is singular at the point P . If the log pair (S, TP ) is log canonical at P , then for an effective
anticanonical Q-divisor D on S the log pair (S,D) is log canonical at the point P .

Proof. Suppose that (S,D) is not log canonical at the point P . Applying Lemma 2.2 to the log
pairs (S,D) and (S, TP ), we may assume that Supp(D) does not contain at least one irreducible
component of the curve TP . Thus, if the divisor TP is irreducible, then Lemma 2.1 gives an
absurd inequality

2 = TP ·D > multP (TP )multP (D) > 2multP (D) > 2

since TP is singular at the point P . Hence, TP must be reducible.
We may then write TP = T1 + T2, where T1 and T2 are smooth rational curves. Note that

the point P is one of the intersection points of T1 and T2. Without loss of generality, we may
assume that the curve T1 is not contained in the support of D. Then

1 = T1 ·D > multP (T1)multP (D) = multP (D) > 1

by Lemma 2.1. The obtained contradiction completes the proof. �

Lemmas 3.2 and 3.4 prove the following result.

Lemma 3.5. Suppose that the del Pezzo surface S is smooth. LetD be an effective anticanonical
Q-divisor on S. Suppose that the log pair (S,D) is not log canonical at a point P . Then there
exists a unique divisor T ∈ | −KS | such that (S, T ) is not log canonical at P . The support of
the divisor D contains all the irreducible components of T . In case, the divisor T is either an
irreducible rational curve with a cusp at P or a union of two −1-curves meeting tangentially at
the point P .

Proof. By Lemma 3.2, the point π(P ) must lie on R. Then there exists a unique curve T ∈ |−KS |
that is singular at the point P . By Lemma 3.4, the log pair (S, T ) is not log canonical at P .

Suppose that the support of D does not contain an irreducible component of T . Then the
proof of Lemma 3.4 works verbatim to derive a contradiction.

The last assertion immediately follows from [32, Proposition 3.2]. �

Consequently, Lemma 3.5 shows that Theorem 1.12 holds for a smooth del Pezzo surface of
degree 2.

4. Cubic surfaces

In the present section we prove Theorem 1.12. Lemma 2.3 and Lemma 3.5 show that The-
orem 1.12 holds for del Pezzo surfaces of degrees 1 and 2, respectively. Thus, to complete the
proof, let S be a smooth cubic surface in P3 and let D be an effective anticanonical Q-divisor of
the surface S.
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Lemma 4.1. The log pair (S,D) is log canonical outside finitely many points.

Proof. Suppose not. Then we may write D = mC + Ω, where C is an irreducible curve, m is
a positive rational number strictly bigger than 1 and Ω is an effective Q-divisor whose support
does not contain the curve C. Then

3 = −KS · (mC +Ω) = −mKS · C −KS · Ω > −mKS · C > −KS · C.

It implies that the curve C is either a line or an irreducible conic.
Suppose that C is a line. Let Z be a general irreducible conic on S such that Z +C ∼ −KS.

Since Z is general, it is not contained in the support of D. We then obtain

2 = Z ·D = Z · (mC +Ω) = 2m+ Z · Ω > 2m.

It contradicts our assumption.
Suppose that C is an irreducible conic. Then there exists a unique line L on S such that

L+ C ∼ −KS . Write D = mC + nL+ Γ, where n is a non-negative rational number and Γ is
an effective Q-divisor whose support contains neither the conic C nor the line L. Then

1 = L ·D = L · (mC + nL+ Γ) = 2m− n+ L · Γ > 2m− n.

On the other hand,

2 = C ·D = C · (mC + nL+ Γ) = 2n +C · Γ > 2n.

Combining two inequalities, we obtain 2m 6 1+n 6 2. This contradicts our assumption too. �

For a point P on S, let TP be the tangent hyperplane section of the surface S at the point P .
This is the unique anticanonical divisor that is singular at the point P . The curve TP is reduced
but it may be reducible.

In order to prove Theorem 1.12 we must show that (S,D) is log canonical at the point P
provided that one of the following two conditions is satisfied:

• the log pair (S, TP ) is log canonical at P ;
• the log pair (S, TP ) is not log canonical at P but Supp(D) does not contain at least one
irreducible component of the curve TP .

The log pair (S, TP ) is log canonical at P if and only if the point P is an ordinary double
point of the curve TP . Thus, (S, TP ) is log canonical at P if and only if TP is one of the following
curves: an irreducible cubic curve with one ordinary double point, a union of three coplanar
lines that do not intersect at one point, a union of a line and a conic that intersect transversally
at two points.

Overall, we must consider the following cases:

(a) TP is a union of three lines that intersect at the point P (Eckardt point);
(b) TP is a union of a line and a conic that intersect tangentially at the point P ;
(c) TP is an irreducible cubic curve with a cusp at the point P ;
(d) TP is an irreducible cubic curve with one ordinary double point;
(e) TP is a union of three coplanar lines that do not intersect at one point;
(f) TP is a union of a line and a conic that intersect transversally at two points.

We consider these cases one by one in separate lemmas, i.e., Lemmas 4.3, 4.5, 4.6, 4.7, 4.8 and
4.9. We however present the detailed proof of Lemma 4.8 in Section 5 to improve the readability
of this section. These lemmas altogether imply Theorem 1.12.

Lemma 4.2. If the support of D does not contain a line passing through the point P , then the
log pair (S,D) is log canonical at the point P .

Proof. Let L be a line passing through the point P that is not contained in the support of D.
Then the inequality 1 = L · D > multP (D) implies that the log pair (S,D) is log canonical at
the point P by Lemma 2.1. �
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Lemma 4.3. Suppose that the tangent hyperplane section TP consists of three lines intersecting
at the point P . If the support of D does not contain at least one of the three lines, then the log
pair (S,D) is log canonical at the point P .

Proof. It immediately follows from Lemma 4.2. �

From now on, let f : S̃ → S be the blow up of the cubic surface S at the point P . In addition,
let D̃ be the proper transform of D by the blow up f and E be the exceptional curve of f . We
then have

(4.4) KS̃ + D̃ + (multP (D)− 1)E = f∗ (KS +D) .

Note that the log pair (S,D) is log canonical at the point P if and only if the log pair

(S̃, D̃ + (multP (D)− 1)E)

is log canonical along the exceptional divisor E.

Lemma 4.5. Suppose that the tangent hyperplane section TP consists of a line and a conic
intersecting tangentially at the point P . If the support of D does not contain both of the line
and the conic, then the log pair (S,D) is log canonical at the point P .

Proof. Suppose that the log pair (S,D) is not log canonical at the point P . Let L and C be the
line and the conic, respectively, such that TP = L+C. By Lemma 4.2, we may assume that the
conic C is not contained but the line L is contained in the support of D. We write D = nL+Ω,
where n is a positive rational number and Ω is an effective Q-divisor whose support contains
neither the line L nor the conic C. We have multP (D) 6 C ·D = 2.

We write D̃ = nL̃+Ω̃, where Ω̃ and L̃ are the proper transforms of the divisor D and the line
L, respectively, on the surface S̃. Let C̃ be the proper transform of the conic C on the surface
S̃. Note that the three curves L̃, C̃ and E meet at one point.

The log pair (S̃, nL̃+Ω̃+(multP (D)−1)E) is not log canonical at some pointQ on E. However,
it is log canonical at every point on E except the point Q by Remark 2.5 since multP (D) 6 2.

We also obtain multP (D)+multQ(D̃) > 2 from Remark 2.5. This implies that the point Q does

not belong to C̃, and hence not to L̃ either. Indeed, if so, then

2−multP (D) = C̃ ·
(

nL̃+ Ω̃
)

> n+multQ(Ω̃) = multQ(D̃).

This contradicts the inequality from Remark 2.5.
Let g : S̃ → S̄ be the contraction of the −2-curve L̃. Then S̄ is a del Pezzo surface of degree 2

with one ordinary double point. In particular, the linear system | −KS̄ | is free from base points
and induces a double cover π : S̄ → P2 ramified along an irreducible singular quartic curve
R ⊂ P2. Note that the point g(L̃) is the ordinary double point of the surface S̄. Put Ω̄ = g(Ω̃),

Ē = g(E), C̄ = g(C̃) and Q̄ = g(Q). Then π(Ē) = π(C̄) since Ē + C̄ is an anticanonical divisor

on S̄. The point π(Q̄) lies outside R because the point Q lies outside C̃. Since the divisor
Ω̄ +

(

multP (D)− 1
)

Ē is Q-linearly equivalent to −KS̄ by construction, Lemma 3.2 shows that

the log pair (S̄, Ω̄ + (multP (D)− 1)Ē) is log canonical at Q̄. However, it is not log canonical at
the point Q̄ since g is an isomorphism in a neighborhood of the point Q. It is a contradiction. �

Lemma 4.6. Suppose that the tangent hyperplane section TP is an irreducible cubic curve with
a cusp at the point P . If the curve TP is not contained in the support of D, then the log pair
(S,D) is log canonical at the point P .

Proof. First, from the inequality

3 = TP ·D > multP (TP )multP (D) = 2multP (D),

we obtain multP (D) 6 3
2
. Suppose that (S,D) is not log canonical at P . Then the log pair

(S̃, D̃ + (multP (D) − 1)E) is not log canonical at some point Q on E. However, Remark 2.5
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shows that it is log canonical at every point on E except the point Q since multP (D) 6 3
2
. We

also obtain

multP (D) + multQ(D̃) > 2

from Remark 2.5.
The surface S̃ is a smooth del Pezzo surface of degree 2. The linear system | −KS̃ | induces

a double cover π : S̃ → P2 ramified along a smooth quartic curve R ⊂ P2. Let T̃P be the
proper transform of the curve TP on the surface S̃. Then the integral divisor E + T̃P is linearly
equivalent to −KS̃ , and hence π(E) = π(T̃P ) is a line in P2. Moreover, the curve T̃P tangentially
meet the curve E at a single point. Thus the point π(Q) lies on R if and only if the point Q is

the intersection point of E and T̃P .
Applying Lemma 3.2 to the log pair (S̃, D̃ +

(

multP (D)− 1
)

E), we see that the point π(Q)

belongs to R because the log pair (S̃, D̃+ (multP (D)− 1)E) is not log canonical at the point Q

and the divisor D̃ + (multP (D) − 1)E is Q-linearly equivalent to −KS̃ . The point Q therefore

lies on the curve T̃P . Then

3− 2multP (D) = T̃P · D̃ > multQ(D̃) > 2−multP (D).

This contradicts Lemma 2.1. �

For the remaining three cases, we show that the hypothesis of Theorem 1.12 is never fulfilled,
so that Theorem 1.12 is true.

Lemma 4.7. If the tangent hyperplane section TP is an irreducible cubic curve with a node at
the point P , then the log pair (S,D) is log canonical at the point P .

Proof. Suppose that (S,D) is not log canonical at P . The surface S̃ is a smooth del Pezzo surface

of degree two. Since D̃+(multP (D)− 1)E ∼Q −KY and the log pair (S̃, D̃+(multP (D)− 1)E)
is not log canonical at some point Q on E, it follows from Lemma 3.5 that there must be an
anticanonical divisor H on the surface S̃ such that has either a tacnode or a cusp at the point Q.

If the divisor H has a tacnode at the point Q, then it consists of the exceptional divisor E
and another −1-curve L meeting E tangentially at Q. Then the divisor f(H) is an effective
anticanonical divisor on S such that it has a cusp at the point P and it is distinct from the
divisor TP . This is impossible.

If the divisor H has a cusp at the point Q, then it must be irreducible. However, it is
impossible since H is singular at the point Q and E ·H = 1. �

Lemma 4.8. Suppose that the tangent hyperplane section TP consists of three lines one of
which does not pass through the point P . Then the log pair (S,D) is log canonical at P .

Proof. The proof of this lemma is the central and the most beautiful part of the proof of The-
orem 1.12. Since the proof is a bit lengthy, we present the proof in a separate section. See
Section 5. �

Lemma 4.9. Suppose that the tangent hyperplane section TP consists of a line and a conic
intersecting transversally. Then the log pair (S,D) is log canonical at the point P .

Proof. We write TP = L + C, where L is a line and C is an irreducible conic that intersect L
transversally at the point P . Suppose that (S,D) is not log canonical at the point P .

By Lemmas 2.2 and 4.2, we may assume that the conic C is not contained but the line L is
contained in the support of D. We write D = nL + Ω, where n is a positive rational number
and Ω is an effective Q-divisor whose support contains neither the line L nor the conic C.

The log pair (S̃, D̃ + (multP (D) − 1)E) is not log canonical at some point Q on E. How-
ever, Remark 2.5 shows that it is log canonical at every point on E except the point Q since
multP (D) 6 D · C = 2.
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Let Ω̃, L̃ and C̃ be the proper transforms of the divisor Ω, the line L and the conic C by the
blow up f , respectively.

Suppose that the point Q does not belong to the −2-curve L̃. Let g : S̃ → S̄ be the contraction
of the curve L̃. Then S̄ is a del Pezzo surface of degree 2 with only one ordinary double point
at the point g(L̃). In particular, the linear system | − KS̄ | induces a double cover π : S̄ → P2

ramified along an irreducible singular quartic curve R ⊂ P2.
Put Ω̄ = g(Ω̃), Ē = g(E), C̄ = g(C̃) and Q̄ = g(Q). Then π(Ē) = π(C̄) since Ē + C̄ is

an anticanonical divisor on S̄. The point π(Q̄) lies on R if and only if the point Q lies on C̃.
The log pair (S̄, Ω̄ + (multP (D)− 1)Ē) is not log canonical at Q̄ since g is an isomorphism in a
neighborhood of the point Q. Since the divisor Ω̄ +

(

multP (D) − 1
)

Ē is Q-linearly equivalent

to −KS̄ by construction, Lemma 3.2 shows that the point Q belongs to C̃.
Note that C̄+Ē is the unique curve in |−KS̄| that is singular at the point Q̄. But the log pair

(S̄, C̄ + Ē) is log canonical at the point Q̄. Hence, it follows from Lemma 3.4 that the log pair
(S̄, Ω̄ + (multP (D) − 1)Ē) is log canonical at the point Q̄. This is a contradiction. Therefore,

the point Q belongs to the −2-curve L̃.
Now we can apply [8, Theorem 1.28] to the log pair (S̃, nL̃+(multP (D)−1)E+Ω̃) at the point

Q to obtain a contradiction immediately. Indeed, it is enough to put M = 1, A = 1, N = 0,
B = 2, and α = β = 1 in [8, Theorem 1.28] and check that all the conditions of [8, Theorem 1.28]
are satisfied. However, there is a much simpler way to obtain a contradiction. Let us take this
simpler way.

There exists another line M on the surface S that intersects L at a point. The line M does
not intersect the conic C since 1 = TP ·M = (L + C) ·M = L ·M . In particular, the point P

does not lie on the line M . Let h : S̃ → Š be the contraction of the proper transform of the line
M on the surface S̃. Since M is a −1-curve and the point P does not lie on the line M , the
surface Š is a smooth cubic surface in P3.

Put Ω̌ = h(Ω̃), Ě = h(E), Ľ = h(L̃), Č = h(C̃), P̌ = h(Q) and Ď = h(D̃). Then (Š, Ď) is
not log canonical at the point P̌ since h is an isomorphism in a neighborhood of the point Q.
On the other hand, the divisor Ľ+ Č + Ě is an anticanonical divisor of the surface Š. Since the
point P̌ is the intersection point of Ľ and Ě and the divisor Ď is Q-linearly equivalent to −KŠ,

Lemma 4.8 implies that (Š, Ď) is log canonical at the point P̌ . This is a contradiction. �

As we already mentioned, Theorem 1.12 follows from Lemmas 4.3, 4.5, 4.6, 4.7, 4.8 and 4.9.
Thus Theorem 1.12 has been proved under the assumption that Lemma 4.8 is valid. This will
be shown in the following section.

5. The proof of Lemma 4.8

To prove Lemma 4.8, we keep the notations used in Section 4. We write TP = L +M +N ,
where L, M , and N are three coplanar lines on S. We may assume that the point P is the
intersection point of the two lines L and M , while it does not lie on the line N . We also write
D = a0L + b0M + c0N + Ω0, where a0, b0, and c0 are non-negative rational numbers and Ω0

is an effective Q-divisor on S whose support contains none of the lines L, M and N . Put
m0 = multP (Ω0).

Suppose that the log pair (S,D) is not log canonical at the point P . Let us seek for a
contradiction.

By Lemma 4.1, the log pair (S,D) is log canonical outside finitely many points. In particular,
we have 0 6 a0, b0, c0 6 1. Also, Lemma 2.1 implies m0 + a0 + b0 > 1.

Lemma 5.1. The inequality m0 + a0 + b0 > c0 + 1 holds.



AFFINE CONES OVER SMOOTH CUBIC SURFACES 15

Proof. Since the log pair (S, a0L+b0M+Ω0) is not log canonical at the point P either, it follows
from Lemma 2.4 that

1 + a0 − c0 = L · (D − a0L− c0N) = L · (b0M +Ω0) > 1,

which implies a0 > c0. Similarly, b0 > c0.
The log pair (S,L+M +N) is log canonical. Since the log pair (S, a0L+ b0M + c0N +Ω0)

is not log canonical at P , it follows from Lemma 2.2 that the log pair
(

S,
1

1− c0
D −

c0
1− c0

TP

)

is not log canonical at the point P . Then Lemma 2.1 shows

multP

(

1

1− c0
D −

c0
1− c0

TP

)

= multP

(

a0 − c0
1− c0

L+
b0 − c0
1− c0

M +
1

1− c0
Ω0

)

=
a0 − c0
1− c0

+
b0 − c0
1− c0

+
m0

1− c0
> 1.

It verifies m0 + a0 + b0 > c0 + 1. �

Since the rational numbers a0, b0, c0 are at most 1 and the log pair (S,L + M + N) is log
canonical, the effective Q-divisor Ω0 cannot be the zero-divisor. Let r be the number of the
irreducible components of the support of the Q-divisor Ω0. Then we write

Ω0 =
r
∑

i=1

eiCi0,

where ei’s are positive rational numbers and Ci0’s are irreducible reduced curves of degrees di0
on the surface S. We then see

(5.2) 3 = −KS ·

(

a0L+ b0M + c0N +

r
∑

i=1

eiCi0

)

= a0 + b0 + c0 +

r
∑

i=1

eidi0.

Denote by L̃, M̃ and Ñ the proper transforms of the lines L, M and N , respectively, on the
surface S̃ . For each i, denote by C̃i0 the proper transform of the curve Ci0 on the surface S̃.
Then

KS̃ + a0L̃+ b0M̃ + c0Ñ + (a0 + b0 +m0 − 1)E +

r
∑

i=1

eiC̃i0 = f∗ (KS +D) .

Recall that a0 + b0 +m0 = multP (D).

Lemma 5.3. The inequality multP (D) = a0 + b0 +m0 6 2 holds.

Proof. It immediately follows from the three inequalities

1 = L · (a0L+ b0M + c0N +Ω0) = −a0 + b0 + c0 + L · Ω0 > −a0 + b0 + c0 +m0,

1 = M · (a0L+ b0M + c0N +Ω0) = a0 − b0 + c0 +M · Ω0 > a0 − b0 + c0 +m0,

1 = N · (a0L+ b0M + c0N +Ω0) = a0 + b0 − c0 +N · Ω0 > a0 + b0 − c0.

�

The log pair

(5.4)

(

S̃, a0L̃+ b0M̃ + c0Ñ + (a0 + b0 +m0 − 1)E +

r
∑

i=1

eiC̃i0

)

is not log canonical at some point Q on E. Since multP (D) = a0 + b0 +m0 6 2, it follows from
Remark 2.5 that the log pair (5.4) is log canonical at every point of the curve E other than the
point Q.
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Let g : S̃ → S̄ be the contraction of the −2-curves L̃ and M̃ . Then S̄ is a del Pezzo surface
of degree 2 with two ordinary double points at the points g(L̃) and g(M̃ ). The linear system
| −KS̄ | induces a double cover π : S̄ → P2 ramified along an irreducible singular quartic curve
R ⊂ P2.

Lemma 5.5. The point Q on the exceptional curve E belongs to either the −2-curve L̃ or the
−2-curve M̃ .

Proof. Suppose that the point Q lies on neither L̃ nor M̃ . Put Ē = g(E), N̄ = g(Ñ ) and

Q̄ = g(Q). In addition, we put C̄i0 = g(C̃i0) for each i. Then π(Ē) = π(N̄). The point π(Q̄)
lies outside R since the point Q̄ is a smooth point of the anticanonical divisor Ē + N̄ on S̄.

Since g is an isomorphism in a neighborhood of the point Q, the log pair

(5.6)

(

S̄, c0N̄ + (a0 + b0 +m0 − 1) Ē +
r
∑

i=1

eiC̄i0

)

is not log canonical at the point Q̄. The divisor c0N̄ + (a0 + b0 +m0 − 1)Ē +
∑r

i=1 eiC̄i0 is an
effective anticanonical Q-divisor on the surface S̄. Hence, we are able to apply Lemma 3.2 to
the log pair (5.6) to obtain a contradiction. �

From now on we may assume that the point Q is the intersection point of the −2-curve L̃ and

the −1-curve E without loss of generality.

Let ρ : S 99K P2 be the linear projection from the point P . Then ρ is a generically 2-to-1
rational map. Thus the map ρ induces a birational involution τP of the cubic surface S. The
involution τP is classically known as the Geiser involution associated to the point P (see [27]).

Remark 5.7. By construction, the involution τP is biregular outside the union L ∪M ∪ N . In
fact, one can show that τP is biregular outside the point P and the line N . Moreover, one can
show that τP (L) = L and τP (M) = M .

For each i, put Ci1 = τP (Ci0) and denote by di1 the degree of the curve Ci1. We then employ
new effective Q-divisors

Ω1 =

r
∑

i=1

eiCi1;

D1 = a1L+ b1M + c1N +Ω1,

where a1 = a0, b1 = b0 and c1 = a0+ b0+m0− 1. Note that a0+ b0+m0− 1 > 0 by Lemma 2.1
(cf. Lemma 5.1).

Lemma 5.8. The divisor D1 is an effective anticanonical Q-divisor on the surface S. The log
pair (S,D1) is not log canonical at the intersection point of L and N .

Proof. Let h : S̃ → S′ be the contraction of the −1-curve Ñ . Then S′ is a smooth cubic surface
in P3. Put E′ = h(E), L′ = h(L̃), M ′ = h(M̃ ), Q′ = h(Q) and C ′

i0 = h(C̃i0) for each i. Then the
integral divisor L′ +M ′ + E′ is an anticanonical divisor of the cubic surface S′. In particular,
the curves L′, M ′ and E′ are coplanar lines on S′. Moreover, the point Q′ is the intersection
point of L′ and E′ by the assumption right after Lemma 5.5. It does not lie on the line M ′.

Let ιP be the biregular involution of the surface S̄ induced by the double cover π. Then ιP
induces a biregular involution υP of the surface S̃ since the surface S̃ is the minimal resolution
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of singularities of the surface S̄. Thus, we have a commutative diagram

S̃

f

��
g

&&▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
υP // S̃

f

��
g

xxqq
qq
qq
qq
qq
qq
q

S

ρ //

❋
❑

❖
❙

❲ ❩ ❪

S̄

π
��
❄❄

❄❄
❄❄

❄❄

ιP // S̄

π
��⑧⑧
⑧⑧
⑧⑧
⑧⑧

S.

ρoo

✇
s

♥
❦

❣❞❛P2

This shows τP = f ◦υP ◦f−1. On the other hand, we have υP (E) = Ñ since π ◦g(E) = π ◦g(Ñ ).
This means that there exists an isomorphism σ : S → S′ that makes the diagram

S̃

h
��

υP // S̃

f

��

S′ oo σ
S

commute. By construction, σ(L) = L′, σ(M) = M ′, σ(N) = E′, and σ(Ci1) = C ′
i0 for every i.

Recall the point Q′ is the intersection point of L′ and E′.
Since h is an isomorphism locally around the point Q, the log pair

(

S′, a0L
′ + b0M

′ + (a0 + b0 +m0 − 1)E′ +

r
∑

i=1

eiC
′
i0

)

is not log canonical at the point Q′. Since a0L̃ + b0M̃ + c0Ñ + (a0 + b0 +m0 − 1)E +
∑r

i=1 eiC̃i0 ∼Q −KS̃ , we have a0L
′ + b0M

′ + (a0 + b0 +m0 − 1)E′ +
∑r

i=1 eiC
′
i0 ∼Q −KS′ .

Therefore, it follows that

a0L+ b0M + (a0 + b0 +m0 − 1)N +

r
∑

i=1

eiCi1 ∼Q −KS ,

and the log pair (S, a0L+ b0M + (a0 + b0 +m0 − 1)N +
∑r

i=1 eiCi1) is not log canonical at the
intersection the point of L and N . �

Now we are able to replace the original effective Q-divisor D by the new effective Q-divisor
D1. By Lemma 5.8, both the Q-divisors have the same properties that we have been using so
far. However, the new Q-divisor Ω1 is slightly better than the original one Ω0 in the sense of the
following lemma.

Lemma 5.9. The degree of the Q-divisor Ω1 is strictly smaller than the degree of Ω0, i.e.,
r
∑

i=1

eidi1 <
r
∑

i=1

eidi0.

Proof. Since D1 ∼Q −KS by Lemma 5.8, we obtain

3 = −KS ·

(

a0L+ b0M + (a0 + b0 +m0 − 1)N +
r
∑

i=1

eiCi1

)

= 2a0 + 2b0 +m0 − 1 +
r
∑

i=1

eidi1.

On the other hand, we have a0 + b0 + c0 +
∑r

i=1 eidi0 = 3 by (5.2). Thus, we obtain

r
∑

i=1

eidi1 =

r
∑

i=1

eidi0 − (a0 + b0 +m0 − 1− c0) <

r
∑

i=1

eidi0

because a0 + b0 +m0 − 1− c0 > 0 by Lemma 5.1. �
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Repeating this process, we can obtain a sequence of the effective anticanonical Q-divisors

Dk = akL+ bkM + ckN +Ωk

on the surface S such that each log pair (S,Dk) is not log canonical at one of the three intersection
points L ∩M , L ∩N and M ∩N . Note that

Ωk =

r
∑

i=1

eiCik,

where Cik’s are irreducible reduced curves of degrees dik. We then obtain a strictly decreasing
sequence of rational numbers

r
∑

i=1

eidi0 >
r
∑

i=1

eidi1 > · · · >
r
∑

i=1

eidik > · · ·

by Lemma 5.9. This is a contradiction since the subset
{

r
∑

i=1

eini

∣

∣

∣
n1, n2, . . . , nr ∈ N

}

⊂ Q

is discrete and bounded below. It completes the proof of Lemma 4.8.

6. α-functions on smooth del Pezzo surfaces

In this section, we prove Theorem 1.25. Let Sd be a smooth del Pezzo surface of degree d.
Before we proceed, we here make a simple but useful observation.

Lemma 6.1. Let f : Sd → S be the blow down of a −1-curve E on the del Pezzo surface Sd.
Then S is a smooth del Pezzo surface and αSd

(P ) > αS(f(P )) for a point P of Sd outside the
curve E.

Proof. This is obvious. �

We already show that the α-function αP2 of the projective plane is the constant function with
the value 1

3
(see Example 1.22) and the α-function αP1×P1 of the quadric surface is the constant

function with the value 1
2
(see Example 1.23).

Lemma 6.2. The α-function αF1
on the blow-up F1 of P2 at one point is the constant function

with the value 1
3
.

Proof. Let P be a given point on F1. Let π : F1 → P1 be the P1-bundle morphism onto P1. Let
C be its section with C2 = −1 and let LP be the fiber of the morphism π over the point π(P ).
Since 2C + 3LP ∼ −KF1

, we have αF1
(P ) 6 1

3
. But α(F1) =

1
3
by Theorem 1.17. Thus, αF1

is

the constant function with the value 1
3
by Lemma 1.21. �

The surface S7 is the blow-up of P2 at two distinct points Q1 and Q2. Let E be the proper
transform of the line passing through the points Q1 and Q2 by the two-point blow up f : S7 → P2

with the exceptional curves E1 and E2.

Lemma 6.3. The α-function on the del Pezzo surface S7 of degree 7 has the following values

αS7
(P ) =

{

1/2 if P 6∈ E

1/3 if P ∈ E.
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Proof. Let P be a point on S. Then αS7
(P ) > α(S) = 1

3
by Theorem 1.17 and Lemma 1.21.

If the point P belongs to E, then αS7
(P ) 6 1

3
since 2E1 + 2E2 + 3E ∼ −KS . Therefore,

αS7
(P ) = 1

3
.

Suppose that the point P lies outside E. Let L be a line on P2 whose proper transform by
the blow up f passes through the point P . Since f∗(2L)+E is an effective anticanonical divisor
passing through the point P , we have αS7

(P ) 6 1
2
.

Let g : S → P1 × P1 be the birational morphism obtained by contracting the −1-curve E.
Then this morphism is an isomorphism around the point P . Then αS7

(P ) > αP1×P1(g(P )) by
Lemma 6.1. Since αP1×P1 is the constant function with the value 1

2
, we obtain αS7

(P ) = 1
2
. �

Lemma 6.4. The α-function αS6
on the del Pezzo surface S6 of degree 6 is the constant function

with the value 1
2
.

Proof. Let P be a given point on the del Pezzo surface S6. One can easily check αS6
(P ) 6 1

2
.

One the other hand, we have a birational morphism h : S6 → S7, where S7 is a del Pezzo surface
of degree 7, such that the morphism h is an isomorphism around the point P and the point
h(P ) is not on the −1-curve of S7 connected to two different −1-curves. Then αS6

(P ) > 1
2
by

Lemmas 6.1 and 6.3. �

Lemma 6.5. The α-function on a del Pezzo surface S5 of degree 5 has the following values

αS5
(P ) =

{

1/2 if there is a −1-curve passing through the point P ;

2/3 if there is no −1-curve passing though the point P .

Proof. Let P be a point on S5. Suppose that P lies on a −1-curve. Then there exists an
effective anticanonical divisor not reduced at P . Thus, αS5

(P ) 6 1
2
. Meanwhile, we have

1
2
= α(S5) 6 αS5

(P ) by Lemma 1.21 and Theorem 1.17. Therefore, αS5
(P ) = 1

2
.

Suppose that the point P is not contained in any −1-curve. Then there exist exactly five
irreducible smooth rational curves C1, . . . , C5 passing through the point P with −KS · Ci = 2
for each i (cf. the proof of [7, Lemma 5.8]). Moreover, for every Ci, there are four irreducible
smooth rational curves Ei

1, E
i
2, E

i
3 and Ei

4 such that 3Ci + Ei
1 + Ei

2 + Ei
3 + Ei

4 belongs to the
bi-anticanonical linear system | − 2KS5

| (cf. Remark 1.14). Therefore, αS5
(P ) 6 2

3
.

Suppose that αS5
(P ) < 2

3
. Then there is an effective anticanonical Q-divisor D such that

(S, λD) is not log canonical at the point P for some positive rational number λ < 2
3
. Then

multP (D) > 1
λ
by Lemma 2.1. Let f : S4 → S5 be the blow up of the surface S5 at the point P

with the exceptional curve E and let D̃ be the proper transform of the divisor D on the surface
S4. Then the surface S4 is a smooth del Pezzo surface of degree 4. We have

KS4
+ λD̃ + (λmultP (D)− 1)E = f∗ (KS5

+ λD) ,

which implies that the log pair (S4, λD̃ + (λmultP (D)− 1)E) is not log canonical.

On the other hand, the log pair (S4, λD̃ + λ(multP (D) − 1)E) is log canonical because the

divisor D̃ + (multP (D) − 1)E is an effective anticanonical Q-divisor of S4 and α(S4) = 2
3
by

Theorem 1.17. However, it is absurd because λ(multP (D)− 1) > λmultP (D)− 1. �

Lemma 6.6. The α-function on a del Pezzo surface S4 of degree 4 has the following values

αS4
(P ) =



















2/3 if P is on a −1-curve;

3/4
if there is an effective anticanonical divisor that consists of

two 0-curves intersecting tangentially at P ;

5/6 otherwise.
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Proof. Let P be a point on S4. If the point P lies on a −1-curve L, then there are mutually
disjoint five −1-curves E1, . . . , E5 that intersect L. Let h : S4 → P2 be the contraction of all Ei’s.
Since h(L) is a conic in P2, we see that 3L+

∑

16i65Ei is a member in the linear system |−2KS4
|

(cf. Remark 1.14). This means that αS4
(P ) 6 2

3
. Therefore, αS4

(P ) = 2
3
since α(S4) 6 αS4

(P )

by Lemma 1.21 and α(S4) =
2
3
by Theorem 1.17.

Suppose that the point P does not lie on a −1-curve. Put ω = 3
4
in the case when there is an

effective anticanonical divisor that consists of two 0-curves intersecting tangentially at the point
P and put ω = 5

6
otherwise.

One can easily find an effective anticanonical divisor F on the surface S4 such that (S4, λF )
is not log canonical at the point P for every positive rational number λ > ω (see [32, Proposi-
tion 3.2]). This shows that αS4

(P ) 6 ω. Moreover, it is easy to check that the log pair (S4, ωC)
is log canonical at the point P for each C ∈ | −KS4

|.
Suppose αS4

(P ) < ω. Then there is an effective anticanonical Q-divisor D such that (S, ωD)
is not log canonical at the point P . Note that there are only finitely many effective anticanon-
ical divisors C1, . . . , Ck such that each (S4, Ci) is not log canonical at the point P . Applying
Lemma 2.2, we may assume that for each i at least one irreducible component of Supp(Ci) is
not contained in the support of D.

Let f : S3 → S4 be the blow up of the surface S4 at the point P with the exceptional curve E
and let D̃ be the proper transform of the divisor D on the surface S3. Then S3 is a smooth cubic
surface in P3 and the curve E is a line in S3. Moreover, the log pair (S3, D̃+ (multP (D)− 1)E)
is not log canonical at some point Q on E because the log pair (S4,D) is not log canonical at
the point P .

Let TQ be the tangent hyperplane section of the cubic surface S3 at the point Q. Note that

the divisor TQ contains the line E. Since D̃ + (multP (D) − 1)E is an effective anticanonical
Q-divisor on S3, it follows from Corollary 1.13 that the log pair (S3, TQ) is not log canonical

at the point Q and the support of D̃ contains all the irreducible components of TQ. In fact, it
follows that the divisor TQ is either a union of three lines meeting at the point Q or a union
of a line and a conic intersecting tangentially at the point Q. The divisor f(TQ) is an effective
anticanonical divisor on S4 such that the log pair (S4, f(TQ)) is not log canonical at the point P .
This contradicts our assumption since the support of D contains all the irreducible components
of the divisor f(TQ). �

Consequently, Theorem 1.25 follows from Examples 1.22 and 1.23, and Lemmas 6.2, 6.3, 6.4,
6.5 and 6.6.

Appendix A.

This appendix is devoted to the proof of Lemma 1.10.
Let S be a smooth del Pezzo surface of degree at most 4. Suppose that S contains a (−KS)-

polar cylinder, i.e. there is an open affine subset U ⊂ S and an effective anticanonical Q-divisor
D such that U = S \ Supp(D) and U ∼= Z × A1 for some smooth rational affine curve Z. Put
D =

∑r
i=1 aiDi, where each Di is an irreducible reduced curve and each ai is a positive rational

number.

Lemma A.1 ( [22, Lemma 4.6]). The number of the irreducible components of the divisor D
is not smaller than the rank of the Picard group of S, i.e., r > rkPic(S) = 10 −K2

S > 6.

Proof. This immediately follows from the exact sequence
r
⊕

i=1

Z[Di] −→ Pic(S) −→ Pic(U) −→ 0,

since Pic(U) = 0. �
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To prove Lemma 1.10, we must show that there exists a point P ∈ S such that

• the log pair (S,D) is not log canonical at the point P ;
• if there exists a unique divisor T in the anticanonical linear system |−KS | such that the
log pair (S, T ) is not log canonical at the point P , then there is an effective anticanonical
Q-divisor D′ on the surface S such that

– the log pair (S,D′) is not log canonical at the point P ;
– the support of D′ does not contain at least one irreducible component of the support

of the divisor T .

The natural projection U ∼= Z×A1 → Z induces a rational map π : S 99K P1 given by a pencil
L on the surface S. Then either L is base-point-free or its base locus consists of a single point.

Lemma A.2 ( [22, Lemma 4.4]). The pencil L is not base-point-free.

Proof. Suppose that the pencil L is base-point-free. Then π is a morphism, which implies that
there exists exactly one irreducible component of Supp(D) that does not lie in a fiber of π.
Moreover, this component is a section. Without loss of generality, we may assume that this
component is Dr. Let L be a sufficiently general curve in L. Then

2 = −KS · L = D · L =

r
∑

i=1

aiDi · L = arDr · L,

and hence ar = 2. It implies α(S) 6 1
2
. However, it contradicts Theorem 1.17 since the degree

of the surface S is at most 4. �

Denote the unique base point of the pencil L by P . Let us show that the point P is the point
we are looking for. Resolving the base locus of the pencil L, we obtain a commutative diagram

W
f

��⑧⑧
⑧⑧
⑧⑧
⑧⑧ g

  ❇
❇❇

❇❇
❇❇

❇

S
π //❴❴❴❴❴❴❴ P1,

where f is a composition of blow ups at smooth points over the point P and g is a morphism
whose general fiber is a smooth rational curve. Denote by E1, . . . , En the exceptional curves of
the birational morphism f . Then there exists exactly one curve among them that does not lie
in the fibers of the morphism g. Without loss of generality, we may assume that this curve is
En. Then En is a section of the morphism g.

For every Di, denote by D̃i its proper transform on the surface W . Then every curve D̃i lies
in a fiber of the morphism g.

Lemma A.3. For every effective anticanonical Q-divisor H with Supp(H) ⊆ Supp(D), the log
pair (S,H) is not log canonical at the point P .

Proof. Write H =
∑k

i=1 ǫi∆i, where each ǫi is a non-negative rational number and each ∆i is

an irreducible reduced curve. Denote by ∆̃i the proper transform of ∆i on the surface W for

each i and put H̃ =
∑k

i=1 ǫi∆̃i. Then

KW + H̃ = f∗
(

KS +H
)

+
n
∑

i=1

δiEi ∼Q

n
∑

i=1

δiEi

for some rational numbers δ1, . . . , δn. For a sufficiently general fiber L of the morphism g,

−2 = KW · L = KW · L+
r
∑

i=1

ǫi∆i · L =
n
∑

i=1

δiEi · L = δn,
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because En is a section of the morphism g, every curve ∆̃i lies in a fiber of the morphism g and
every curve Ei with i < n also lies in a fiber of the morphism g. Hence, the log pair (S,H) is
not log canonical at the point P . �

Applying Lemma A.3 to (S,D), we see that the log pair (S,D) is not log canonical at P .
Thus, if there exists no anticanonical divisor T such that (S, T ) is not log canonical at P , then
we are done. Hence, to complete the proof of Lemma 1.10, we assume that there exists a unique

divisor T ∈ | −KS | such that (S, T ) is not log canonical at P . Then Lemma 1.10 follows from
the lemma below.

Lemma A.4. There exists an effective anticanonical anticanonical Q-divisor D′ on S such that
the log pair (S,D′) is not log canonical at the point P and Supp(D′) does not contain at least
one irreducible component of Supp(T ).

Proof. If Supp(D) does not contain at least one irreducible component of Supp(T ), then we
can simply put D = D′. Suppose that it is not the case, i.e., we have Supp(T ) ⊆ Supp(D).
Then T 6= D. Indeed, the number of the irreducible components of Supp(D) is at least 6 by
Lemma A.1. On the other hand, the number of the irreducible components of Supp(T ) is at
most 4 because −KS · T = K2

S and −KS is ample.
Since T 6= D, there exists a positive rational number µ such that the Q-divisor (1+µ)D−µT

is effective and its support does not contain at least one irreducible component of Supp(T ). Put
D′ = (1 + µ)D − µT . Note that D′ is also an effective anticanonical Q-divisor on S. By our
construction, Supp(D′) ⊆ Supp(D). Thus, the log pair (S,D′) is not log canonical at the point
P by Lemma A.3. This completes the proof. �

Note that U 6= S \Supp(D′), which implies that the number of the irreducible components of
Supp(D′) may be less than rkPic(S). Because of this, we can apply Lemma 2.2 only once here.
This shows that we really need to use the uniqueness of the divisor T in the anticanonical linear
system | −KS | such that (S, T ) is not log canonical at P in the proof of Lemma A.4. Indeed, if
there is another divisor T ′ in | −KS | such that (S, T ′) is not log canonical at P either, then we
would not be able to apply Lemma 2.2 since we may have D′ = T ′.
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