Performance Analysis of Spatial Modulation and Space Shift Keying with Imperfect Channel Estimation over Generalized $\eta - \mu$ Fading Channels

Raed Mesleh, Senior Member, IEEE, Osamah S. Badarneh, Member, IEEE, Abdelhamid Younis, and Harald Haas, Member, IEEE

Abstract—Novel performance analysis of spatial modulation (SM) and space shift keying (SSK) over generalized $\eta - \mu$ fading channel in the presence of Gaussian imperfect channel estimation at the receiver is presented in this paper. A general expression for the pairwise error probability (PEP) is derived along with an asymptotic expression at high signal-to-noise ratio (SNR). The $\eta - \mu$ fading channel has Nakagami-m, Rayleigh, One-Sided Gaussian and Nakagami-q (Hoyt) channels as special cases. The derived expression for the PEP is valid for integer, as well as for non-integer values of the fading parameter μ. The impact of channel estimation errors with different η and μ values are investigated. Analytical results are sustained through Monte Carlo simulation results and close match is reported for wide range of SNR and for different system parameters.

Index Terms—$\eta - \mu$ fading, spatial modulation (SM), space shift keying (SSK), performance analysis, imperfect channel knowledge.

I. INTRODUCTION

WIRELESS signals do not travel directly from transmitter to receiver, but are subject to multi-path propagation. In the past, the ultimate goal of wireless communication was to combat the distortion caused by multi-path propagation in order to approach the theoretical limit of capacity for a band-limited channel. With the advent of new technologies such as MIMO (multiple-input multiple-output) systems, location dependent multi-path propagation is exploited constructively. In fact, multi-path propagation can be considered as multiple channels between transmitter and receiver, which can be utilized to provide higher total capacity than the theoretical limit for a conventional channel [1].

Space modulation techniques, such as spatial modulation (SM) [2] and space shift keying (SSK) [3], are promising MIMO techniques for future wireless communication systems. In such techniques, location dependent spatial information are utilized to carry additional information bits to boost the overall spectral efficiency. At the same time, only single transmit antenna among the set of existing antennas is active at each particular time instant. Thereby, typical MIMO problems such as inter-channel interference, which requires high receiver complexity, transmit antenna synchronization, and the need of multiple RF chains are entirely avoided [2], [4].

The basic fundamental idea of these techniques may be traced back to [5], which was further developed into spatial modulation in [2], [4], [6]. It has been shown that such techniques achieve lower complexity and enhanced error performance with moderate number of transmit antennas as compared to other conventional MIMO techniques [2], [3], [7]–[9]. Besides and unlike what was anticipated, these techniques are shown to be more robust to channel estimation errors, as compared to other MIMO techniques, since the error probability depends on the Euclidean difference between different channel paths associated with different transmit antennas rather than the actual channel realizations themselves [10]–[12]. Hence, these techniques have been intensively studied in the past few years [13, and references therein].

Performance analysis of SSK in Rayleigh, Nakagami-m, and Rician fading channels have been reported in [14], [15], [16], and [17], respectively. Also, SSK performance analysis with imperfect channel knowledge at the receiver is conducted in [11], [18], [19] and with practical channel estimates is reported in [20], [21].

SM performance analysis over Rayleigh fading channels with perfect channel knowledge has been reported in [4] and with imperfect channel knowledge in [10], [11]. As well, practical implementation of SM system with detailed performance analysis highlighting the impact of several practical system impairments is reported in [21]. The performance of SM over Nakagami-m fading channels is studied in [16], [22]. The authors introduced a comprehensive analytical framework to compute the average bit error probability for any MIMO setup with arbitrary correlated fading channels and for generic modulation schemes. An adaptive spatial modulation transmission scheme to achieve better system performance under a fixed data rate is presented in [23], and a simplified ML-based scheme for M-QAM SM that is computationally less complex than the conventional ML scheme is proposed in [7].

In all previous literature that consider SM/SSK and their performance analysis, Rayleigh, Rice and Nakagami-m fading channels are only considered. The considered Nakagami-m fading channel in previous studies, as in [16], assumes a Nakagami envelope distribution and a uniform-phase distribution of the fading channel. Though it has been shown in [24] that the Nakagami channel phase is not uniform and a distribution of the phase has been derived. The phase distribution can be shown to have insignificant impact on systems with MRC receiver, such as STC MIMO systems. However,
considering the joint ML detector of SM/SSK systems, the phase distribution assumption impacts the performance of these systems significantly. For instance, considering uniform-phase Nakagami channel, it has been shown that increasing the Nakagami m parameter enhances the performance of SSK system [16]. While it is shown in this paper that the performance of SM/SSK systems degrades as the μ parameter of the $\eta - \mu$ channel, which is directly related to Nakagami m parameter, increases. This different conclusion can be supported by noting that as $m \to \infty$, the Nakagami envelope distribution becomes Gaussian and MIMO paths would not be resolvable. Hence, SM/SSK systems performance enhances for large m values only if power imbalance among antennas is considered. Otherwise, major performance degradation is anticipated [22], [25].

In this paper, a general framework for SM/SSK performance analysis is taken with perfect and imperfect channel knowledge at the receiver over $\eta - \mu$ fading channel is presented. $\eta - \mu$ fading channel is a general fading distribution proposed in [26], where well-known distributions such as Rayleigh, Nakagami-m, and Hoyt (Nakagami-q) can be derived as special cases. The effect of imperfect channel knowledge and the impact of changing the channel parameters η and μ on the performance of these systems will be analyzed. Similar works for other MIMO techniques were proposed recently in literature. For instance, analytical expressions for the exact random coding exponent of MIMO systems employing STBC and operating over $\eta - \mu$ fading channels are derived in [27]. SM performance over $\eta - \mu$ fading channel is presented in [28]. However, [28] considers perfect channel knowledge at the receiver and assumes the envelope of the fading channel to follow $\eta - \mu$ while the phase is uniformly distributed. These simplified assumptions lead to entirely different analysis and results as compared to reported results in this paper. An upper bound expression for the capacity of MIMO systems under the general $\eta - \mu$ fading model is proposed in [29]. It is shown that the theoretical bound depends only on the first and the second moments of the random elements in the channel matrix [29].

Thereby and with reference to current literature, our contributions in this paper are three folds: i) the performance of SM/SSK systems operating over generalized $\eta - \mu$ fading channels with imperfect channel knowledge at the receiver is studied and a general closed-form expression for the pairwise error probability (PEP) is derived. ii) The derived PEP is used to obtain an upper bound of the average bit error rate (BER), and iii) an asymptotic expression, yet simple and accurate for the PEP at pragmatic SNR is obtained.

The remainder of this paper is organized as follows. In Section II, the system and channel models are introduced. Section III presents the derivation of the PEP. Some representative plots for our analytical results, along with their interpretations are illustrated in Section IV. Section V draws the conclusions for this paper.

Mathematical Notations and Functions: matrices are shown in boldface uppercase letters (e.g., A), vectors are shown in boldface lowercase letters (e.g., x), $\mathbb{E} \{ \cdot \}$ denotes expectation, $\text{Var} \{ \cdot \}$ represents the variance, $\| \cdot \|_F$ is the Frobenius norm, $f_X(\cdot)$ represents the probability density function (PDF), $\Gamma(\cdot)$ is the gamma function. The Kronecker product of A and B is shown as $A \otimes B$, $\mathcal{M}_X(\cdot)$ is the moment generating function (MGF) of random variable X, vec(A) denotes the vectorization operator which stacks the columns of A in a column vector, $\det(A)$ is the determinant, $\text{PEP}(\cdot)$ and $\text{PEP}_{\text{Asym}}(\cdot)$ are the PEP and asymptotic PEP, $Q(\cdot)$ is the Q-function.

II. SYSTEM AND CHANNEL MODELS

A. System Model

A general $N_t \times N_r$ SM/SSK MIMO system is depicted in Fig. 1, where N_t and N_r being the number of transmit- and receive-antennas, respectively. A block of k-bits ($k = \log_2(M) + \log_2(N_t)$) is mapped into a constellation vector $x \in \mathbb{C}^{N_t \times 1}$, i.e., $x = [x_1 \ x_2 \cdots x_{N_t}]^T$.

Note, $\log_2(M)$ bits are used to represent an M-QAM (quadrature amplitude modulation) symbol x, from the signal constellation, whereas $\log_2(N_t)$ represents the number of bits required to identify the active transmit-antenna index j in the antenna-array 1.

That is,

$$x_{j,t} = \begin{bmatrix} 0 & \cdots & j^\text{th position} & 0 \end{bmatrix}^T,$$

(1)

where $x_t = 1$ for SSK system. The signal vector $x_{j,t} \in \mathbb{C}^{N_t \times 1}$ is then transmitted over the wireless channel $H \in \mathbb{C}^{N_r \times N_t}$. A fading channel matrix H with $\eta - \mu$ fading entries h_i, ($i = 1, 2, \cdots, N_t N_r$) is assumed in this paper. The received signal experiences complex zero-mean additive white Gaussian (AWGN) noise vector $w \in \mathbb{C}^{N_r \times 1}$ with the variance of its elements being σ_n^2, i.e., $w = [w_1 \ w_2 \cdots w_{N_r}]^T$. Thus, the received signal vector y is given by

$$y = \sqrt{E_s} H x_{j,t} + w,$$

(2)

where $y \in \mathbb{C}^{N_r \times 1}$ and E_s denotes the transmitted signal energy. Without loss of generality, the average transmitted power in SM/SSK systems is normalized to unity $E \left[x_{j,t}^H x_{j,t} \right] = E_s = 1$.

At the receiver, the estimate of H channel is \tilde{H}, which is obtained through transmitting orthogonal Hadamard sequences at the beginning of each frame and assumed to be static over one frame. We assume that H and \tilde{H} are jointly ergodic and stationary processes. Further, assuming orthogonality between the channel estimate and the estimation error, we have

$$\tilde{H} = H - e_h,$$

(3)

1Please note that SSK is a special case from SM where only spatial constellation symbols are utilized and no signal constellation symbol is transmitted. Hence and for the sake of brevity, we will discuss SM system here and refer to SSK when appropriate.
where $e_h \in \mathbb{C}^{N_r \times N_t}$ is the channel-estimation error matrix, with complex Gaussian entries having zero mean and σ^2_e variance. Note that σ^2_e is a parameter that captures the quality of the channel estimation and can be appropriately chosen depending on the channel dynamics and estimation schemes. The estimation error reduces linearly with increasing the number of pilots. Also, the PDF of \mathbf{H} no longer follows an $\eta - \mu$ distribution and calculating such PDF is mathematically involved. However, it will be shown later that the PDF of \mathbf{H} is not required to analyze the performance of SM/SSK systems and only statistical properties such as mean and covariance need to be known.

At the receiver, the transmitted data and spatial symbols are jointly detected using the ML optimal detector [4] as

$$\hat{I} = \arg \min_{j \in \{1 : N_t\}} \|y - \mathbf{H}\mathbf{x}_{j,i}\|_F^2. \quad (4)$$

It is important to note that $\mathbf{x}_{j,i} \in \mathcal{S}$, where \mathcal{S} is a 2^k space containing all possible combinations of spatial and signal constellation symbols. This is unlike the ML equation in [4] and other commonly used equations in literature where the spatial symbol determines the channel vector and x is an element from the signal constellation space. Even though both definitions are equivalent, the considered one in (4) simplifies and generalizes the performance analysis of SM/SSK systems as will be shown later.

B. Channel Model

The $\eta - \mu$ distribution represents the small-scale variation of the fading signal in a non-line-of-sight environment and is originally proposed in two formats [30]. Format I considers a signal composed of clusters of multi-path waves propagating in a non-homogeneous environment. The in-phase and quadrature components of the fading signal within each cluster are assumed to be independent from each other and have different powers. Format II differs from format I in assuming the in-phase and quadrature components of the fading signal within each cluster to have identical powers and are correlated with each other.

The joint phase and envelope $\eta - \mu$ PDF is given by [30],

$$f_{R,\Theta}(r, \theta) = \frac{2\mu_0\mu_0r^{4\mu_1-1}|\sin(2\theta)|^{2\mu_1-1}}{(h^2-H^2)^{2\mu}r^2|\Gamma(\mu)|} \times \exp\left(\frac{2\mu_0hr}{(h^2-H^2)}(h + H\cos(2\theta))\right). \quad (5)$$

The physical parameter $-1 < \eta < 1$ represents the correlation coefficient between the scattered in-phase and quadrature components of each cluster of multi-path. As such, $\eta = H/h$, with $H = \eta/(1 - \eta^2)$ and $h = 1/(1 - \eta^2)$. Whereas, the physical parameter μ is related to the number of multi-path clusters in the environment. Based on this definition, the $\eta - \mu$ distribution includes other distributions as special cases. The Hoyt (Nakagami-q) distribution can be obtained by setting $(1 - \eta)/(1 + \eta) = q^2$ and $\mu = \frac{1}{2}$, the Nakagami-m distribution is obtained when $\eta = 1$ and $\mu = m$, the Rayleigh

is realized when $\eta = 0$ and $\mu = \frac{1}{2}$ and the One-Sided Gaussian distributions is obtained by setting $\eta = 1$ and $\mu = \frac{1}{2}$.

The $N_r \times N_t \eta - \mu$ MIMO channel is obtained as

$$h_{zv} = r \exp(j\theta), \forall z \in \{1 : N_r\} \& v \in \{1 : N_t\} \quad (6)$$

where h_{zv} is the $\eta - \mu$ channel complex fading gain between receive antenna z and transmit antenna v and r is the envelope defined as

$$r^2 = x^2 + y^2,$$

where $x^2 = \sum_{i=1}^{2\mu} x_i^2$ and $y^2 = \sum_{i=1}^{2\mu} y_i^2$ with x_i and y_i being mutually Gaussian variates with $\mathbb{E}(x_i) = \mathbb{E}(y_i) = 0$, $\mathbb{E}(x_i^2) = \mathbb{E}(y_i^2) = \sigma_h^2$, and $\eta = \mathbb{E}(x_i y_i)/\sigma_h^2$. The phase θ is then obtained as,

$$\theta = \arctan \left(\frac{y}{x} \right). \quad (8)$$

The impact of varying the physical parameters η and μ on the $\eta - \mu$ channel are shown in Fig. 2. An important notice is the similar behavior of the channel with either increasing μ or decreasing η. As such, impact of these changes on the SM/SSK systems performance should be similar. Increasing the value of μ to 1.5 instead of 0.5 clearly increases the peaks of the joint PDF, which increases the similarities between different channel paths associated with different transmit antennas. Thus, correlation between different channel paths increases, which should degrade the SM/SSK performance. Recall, also, that the $\eta - \mu$ channel includes the Nakagami-m channel as a special case where $m = \mu$. As such, increasing the value of μ increases the number of multi-path clusters and creates a highly correlated channel. As $m \rightarrow \infty$, the Nakagami channel becomes Gaussian and MIMO communication would not be possible since it would be impossible to resolve different channel paths. Similarly, decreasing η increases the peaks of the joint PDF and the spatial correlation. Note that η represents the correlation coefficient between the scattered in-phase and quadrature components of each cluster of multi-path. Thereby, as η increases, the correlation between in-phase and quadrature component of each cluster increases but the spatial correlation among different channel paths associated with different antennas decreases, which should enhance the SM/SSK performance. Nonetheless, the impact of decreasing η on the performance of SM/SSK systems is shown later to be less severe as compared to increasing μ. These observations will be highlighted in details in the results section and will be discussed further then.
III. Performance Analysis

The average BER of a SM system can be calculated using the union-bound technique [3], [16], [31], [32] given by

\[P_{\text{BER}} \leq \frac{1}{2r^k} \sum_{j=1}^{N_t} \sum_{j=j+1}^M \sum_{i=i+1}^{N_r} N_b \text{PEP}(x_{j,i} \rightarrow x_{j,i}) , \]

(9)

where \(\text{PEP}(x_{j,i} \rightarrow x_{j,i}) \) represents the pairwise error probability of deciding on \(x_{j,i} \) given that \(x_{j,i} \) is transmitted, with \(j, j = 1, 2, \cdots, N_t \) and \(i, i = 1, 2, \cdots, M \), and \(N_b \) is the number of bit errors associated with the corresponding PEP event. From (4), the general PEP of SM system can be written as

\[\text{PEP}(x_{j,i} \rightarrow x_{j,i}) = Q \left(\sqrt{\varphi \| \mathbf{H} \Psi \|^2} \right) \]

\[= \frac{1}{\pi} \int_0^{\pi/2} \exp \left(-\frac{\varphi \| \mathbf{H} \Psi \|^2}{2\sin^2 \theta} \right) d\theta , \]

(10)

where \(\varphi = \frac{1}{2(\sigma^2 \| x_{j,i} \|^2 + N_0)} \) and \(\Psi \) for SM-MIMO system is given by \(\Psi = x_{j,i} - x_{j,i} \), whereas for SSK-MIMO system \(\Psi = x_{j,i} - x_{j,i} \).

Taking the expectation of (10) yields

\[\text{PEP}(x_{j,i} \rightarrow x_{j,i}) = \frac{1}{\pi} \int_0^{\pi/2} \mathcal{M} \left(-\frac{\varphi \| \mathbf{H} \Psi \|^2}{2\sin^2 \theta} \right) d\theta , \]

(11)

where \(\mathcal{M}(\cdot) \) is the moment generating function MGF of the random variable \(\| \mathbf{H} \Psi \|^2 \).

In the following, a novel approach to express the argument of the MGF in (11) is given, which is different than the existing analysis in literature for SM/SSK systems in the presence of channel estimation errors, and will be shown to lead to a general expression for the PEP. Similar approach was used to derive the performance of STC system in correlated channels in [33] and for deriving the PEP of a transmit diversity SM system over correlated Rayleigh fading channel in [19]. An alternative approach using Gil-Pelaez inversion theorem was considered in [20].

The MGF arguments in (11) can be written as [34]

\[\| \mathbf{H} \Psi \|^2 = \text{tr} (\mathbf{H} \Psi \mathbf{H}^H \mathbf{H}^H \Psi \) \]

\[= \text{vec} (\mathbf{H}^H) (\mathbf{I}_{N_r} \otimes \mathbf{H} \Psi \mathbf{H}^H) \text{vec} (\mathbf{H}^H) , \]

(12)

where \(\mathbf{I}_{N_r} \) is an \(N_r \times N_r \) identity matrix, \(\text{tr}(\cdot) \) is the trace operation and \(\text{vec}(\cdot) \) is the vectorization operation.

Let \(\mathbf{Q} \) be a Hermitian matrix and \(\mathbf{u} \) is a complex random variable with real and imaginary parts of its components being normally distributed and has equal mean and variance. It is assumed in this paper that the real and imaginary parts of the \(\eta - \mu \) fading channel are normally distributed random variables. In the \(\eta - \mu \) channel and as shown in (7), \(x_i \) and \(y_i \) are Gaussian random variables while \(x^2 = \sum_{i=1}^{2\mu} x_i^2 \) and \(y^2 = \sum_{i=1}^{2\mu} y_i^2 \) are chi-squared distribution random variables with \(2\mu \) degrees of freedom. The squared envelope of the channel is the summation of these two random variables. To obtain the real and imaginary parts of the \(\eta - \mu \) channel, (6) should be used. As can be clearly seen, a proof that the real and imaginary parts of the random channel follow a Gaussian distribution is very complicated and beyond the scope of this paper. However, large numbers of complex \(\eta - \mu \) channel entries are generated in Matlab for different \(\eta \) and \(\mu \) values, and the PDFs of the real and the imaginary parts of the complex channel are computed numerically and depicted in Fig. 3. Reported results validate the assumption that the real and imaginary parts of the \(\eta - \mu \) fading channel follow an approximate Gaussian distribution. Also, it is shown in next section that the analytical and simulation results demonstrate close-match for wide range of SNR values, which corroborate the validity of this assumption.

Let the mean matrix of \(\mathbf{u} \) be \(\bar{\mathbf{u}} \) and the covariance is \(\mathbf{C} \). Then from [35], for any Hermitian matrix \(\mathbf{Q} \), the MGF of \(\mathbf{u}^H \mathbf{Q} \mathbf{u} \) is,

\[\mathcal{M}(s) = \frac{\exp \left(s \bar{\mathbf{u}}^H \mathbf{Q} (\mathbf{I} - s \mathbf{C})^{-1} \bar{\mathbf{u}} \right)}{|\mathbf{I} - s \mathbf{C}|} , \]

(13)

where \(\mathbf{I} \) denotes the identity matrix with proper dimensions. Using (12) and (13), the MGF in (11) can be written as

\[\mathcal{M}(s) = \frac{\exp \left(s \times \text{vec}(\mathbf{H}^H) \Delta (\mathbf{I}_{N_r} - s \mathbf{C})^{-1} \text{vec}(\mathbf{H}^H) \right)}{|\mathbf{I} - s \mathbf{C}|} , \]

(14)

where \(\Delta = \mathbf{Psi}^H \).

Now, plugging (14) into (11) yields

\[\text{PEP}(x_i \rightarrow x_i) = \frac{1}{\pi} \int_0^{\pi/2} \frac{1}{|\mathbf{I}_{N_r} + \varphi \mathbf{C} \Delta|} \exp \left[-\frac{\varphi}{2\sin^2 \theta} \triangledown \text{vec}(\mathbf{H}^H) \right] d\theta . \]

(15)

Accordingly, the PEP of SM/SSK-MIMO systems is given by

\[\text{PEP}(x_i \rightarrow x_i) \leq \frac{1}{2} \frac{1}{|\mathbf{I}_{N_r} + \varphi \mathbf{C} \Delta|} \times \exp \left[-\frac{\varphi}{2\sin^2 \theta} \text{vec}(\mathbf{H}^H) \right] \Delta (\mathbf{I}_{N_r} + \frac{\varphi}{2} \mathbf{C} \Delta)^{-1} \text{vec}(\mathbf{H}^H) . \]

(16)

Note that (16) is a general expression for the PEP of SM/SSK-MIMO systems in the presence of imperfect channel knowl-
edge at the receiver.

Substituting (16) into (9) and using the Chernoff bound [31], an expression for the average BER in SM-MIMO systems operating over the $\eta - \mu$ fading channel is found as

$$P_{\text{SM ABER}}^{\text{SM}} \leq \frac{2^{-k}}{k} \sum_{j=1}^{N} \sum_{i=1}^{N_1} \sum_{j=1}^{M} \sum_{i=1}^{M} N_b \times \frac{1}{2} |I_{N_1 N_r} + \frac{\varphi}{2} C \Delta| \times \exp \left[-\frac{\varphi}{2} \text{vec} \left(\mathbf{\Pi}^H \right)^H \Delta \left(I_{N_1 N_r} + \frac{\varphi}{2} C \Delta \right)^{-1} \text{vec} \left(\mathbf{\Pi}^H \right) \right],$$

which reduces to

$$P_{\text{SM ABER}}^{\text{SSK}} \leq \frac{2^{-k}}{k} \sum_{j=1}^{N} \sum_{i=1}^{N_t} N_b \times \frac{1}{2} |I_{N_1 N_r} + \frac{\varphi}{2} C \Delta| \times \exp \left[-\frac{\varphi}{2} \text{vec} \left(\mathbf{\Pi}^H \right)^H \Delta \left(I_{N_1 N_r} + \frac{\varphi}{2} C \Delta \right)^{-1} \text{vec} \left(\mathbf{\Pi}^H \right) \right],$$

for SSK systems.

But the mean matrix $\mathbf{\hat{H}}$ and the covariance matrix \mathbf{C} for the $\eta - \mu$ fading channel envelope must be given to evaluate the average BER in (17) and (18). From [26] and considering format 2 $\eta - \mu$ channel, the mean and variance can be obtained as

$$\mathbb{E}\{\mathbf{H}\} = \frac{(1 - \eta^2)^{\mu + \frac{1}{2}} \Gamma(2\mu + 1)}{\sqrt{2\mu} \Gamma(2\mu)} \times 2F_1(\frac{1}{4}; \mu; \frac{1}{4}; \mu; \frac{1}{2}; \eta^2),$$

$$\text{Var}\{\mathbf{H}\} = \mathbb{E}\{\mathbf{H}^2\} - (\mathbb{E}\{\mathbf{H}\})^2,$$

where $2F_1(\cdot)$ is the Gauss hyper-geometric function [36].

The variance is given by

$$\text{Var}\{\mathbf{H}\} = \mathbb{E}\{\mathbf{H}^2\} - (\mathbb{E}\{\mathbf{H}\})^2,$$

where $\mathbb{E}\{\mathbf{H}^2\}$ is given by

$$\mathbb{E}\{\mathbf{H}^2\} = \frac{(1 - \eta^4)^{\mu + \frac{1}{2}} \Gamma(2\mu + 1)}{2\mu \Gamma(2\mu)} \times 2F_1(\mu + 1; \mu + \frac{1}{2}; \mu + \frac{1}{2}; \eta^2).$$

Using (19) and (20), the mean matrix $\mathbf{\hat{H}}$ and the covariance matrix \mathbf{C} can be given as:

$$\mathbf{\hat{H}} = \mathbb{E}\{\mathbf{H}\} \times \mathbf{1}_{N_r \times N_t},$$

$$\mathbf{C} = \text{Var}\{\mathbf{H}\} \times \mathbf{1}_{N_r \times N_t},$$

where $\mathbf{1}_{N_r \times N_t}$ is an $N_r \times N_t$ all ones matrix.

A. Asymptotic Analysis

In order to clearly show the system diversity gain and the effect of system parameters on the overall system performance, an asymptotic expression for the PEP is obtained in what follows. For high SNR (i.e., $\rho \gg 1$), and following similar steps as described in [33], (15) can be written as

$$\text{PEP}^{\text{sym}}(x_{j,i} \rightarrow x_{j,i}) \leq \frac{1}{2} \left(\frac{\varphi}{2} \text{\Delta Var}\{\mathbf{H}\} \right)^{-N_r} \prod_{i=1}^{\delta} \frac{1}{\alpha_i} \left[\exp \left(-\frac{1}{\text{Var}\{\mathbf{H}\}}(\mathbb{E}\{\mathbf{H}\})^2 \right) \right]^{N_r},$$

where $\delta = \text{rank}(\Psi^H \Psi)$, and α_i is the non-zero eigenvalues of $\Psi^H = (x_{j,i} - x_{j,i})(x_{j,i} - x_{j,i})^H$.

Please note that $\delta = 1$ for SM/SSK system and is zero when $x_{j,i} = x_{j,i}$. Also, the first eigenvalue of Ψ^H is always zero for SM/SSK system, $\alpha_1 = 0$, which eliminates the multiplication term. Hence, the asymptotic PEP in (24) reduces to

$$\text{PEP}^{\text{sym}}(x_{j,i} \rightarrow x_{j,i}) \leq \frac{1}{2} \left(\frac{\varphi}{2} \text{\Delta Var}\{\mathbf{H}\} \right)^{-N_r}$$

(25)

It is evident from (25) that a diversity order of N_r is achieved for SM/SSK system over general $\eta - \mu$ fading channel in the presence of imperfect channel knowledge.

IV. NUMERICAL AND SIMULATIONS RESULTS

In the analysis, a 4×4 MIMO system is considered and 4-QAM modulation is used for SM systems. The channel is assumed to be static for each frame and a frame length of 500 symbols is considered. Orthogonal Hadamard pilot symbols are inserted at the beginning of each frame for channel estimation purposes. The pilot sequences, each of length N_t symbols, are transmitted simultaneously from the multiple transmit antennas and least square algorithm is considered at the receiver to estimate the channel. The variance of the Gaussian estimation error decreases as the SNR of the data symbols increases (the pilot symbols have the same energy as the data symbols), i.e., $\sigma^2_d = (\text{SNR})^{-1}$ [18], [32]. For Monte Carlo simulation results, at least 10^6 bits are transmitted for each considered SNR value and the number of transmitted bits increases up to 10^7 at high SNR values. Performance analysis for different values of η and μ are presented.

In Figs. 4–9, the performance of SM system for different $\eta - \mu$ combination values are depicted. In Fig. 4, analytical, simulation and asymptotic results are shown for $\eta = 0.1$ and $\mu = 0.5$. Analytical results demonstrate close-match to simulation results for wide range of SNR values. While asymptotic results follow the slope of simulation results at high and pragmatic SNR values. Please note that the analytical bound is a bit loose at low SNR but tighten fast as the SNR increases. SM performance assuming perfect channel knowledge ($\sigma^2_d = 0$) is also depicted to show the impact of channel estimation error on the performance of SM system. As noticed in the figure, channel estimation error causes about 2dB degradation in SNR. Similar behavior can be noticed in Fig. 5, Fig. 6, and Fig. 7 for different combinations of $\eta - \mu$ values. The results validate the derived analysis and highlight the impact of channel estimation error on the SM system performance.

In Fig. 8, the impact of changing the values of the μ parameter for fixed $\eta = 0.4$ on the performance of SM system is studied. Recall that the Nakagami-m channel is realized when $\eta = 1$ and $\mu = m$. As such, increasing the value of μ should results in similar performance behavior as increasing the value of m for Nakagami-m fading channel. As discussed previously, the Nakagami-m distribution becomes Gaussian as $m \rightarrow \infty$ and the channel paths will be irresolvable unless power imbalance is considered among the transmit antennas, which makes MIMO communication impossible. Thus, SM
A novel performance analysis of SM/SSK MIMO systems over generalized $\eta - \mu$ fading channel in the presence of Gaussian imperfect channel estimation are presented in this paper. Analysis consider the exact channel model and the fact that the phase in not uniform. A general closed-form expression for the PEP is derived and an approximate expression for high SNR is also given. The derived expressions are general and can be readily used for various well-known fading channels such as Nakagami-m and Hoyt distributions. Also, the derived analysis can easily be used to evaluate SM/SSK performance in idealistic condition where full channel knowledge is assumed at the receiver by setting $\sigma^2_e = 0$. Besides, the effect of varying η and μ fading parameters on the overall system performance is investigated. It is shown that, unlike the already reported results in literature, increasing μ value increases the spatial correlation among different channel paths associated with different transmit antennas, which significantly degrades system performance. Whereas, system performance slightly enhances with increasing the value of η.

V. CONCLUSION

REFERENCES

Fig. 11. Average BER performance of SSK 4 × 4 MIMO system versus SNR for η = 0.6 and μ = 0.5.

