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A Frequency Domain Approach to

Eigenvalue-Based Detection with Diversity

Reception and Spectrum Estimation

Ebtihal H. G. Yousif1, Member, IEEE,

and Tharmalingam Ratnarajah1, Senior Member, IEEE

and Mathini Sellathurai2, Senior Member, IEEE

Abstract

In this paper, we investigate a frequency domain approach for eigenvalue-based detection of a

primary user, based on equal gain combining (EGC) and spectrum estimation with Bartlett’s method.

This paper considers two techniques for eigenvalue detection which are Maximum Eigenvalue Detection

(MED) and the Maximum-Minimum Eigenvalue (MME) detector. We exploit the eigenvalues that are

associated with the Hermitian form representation of Bartlett’s estimate to assess the performance of

the aforementioned eigenvalue techniques in the frequency domain. For each case, we quantify the

performance based on the probabilities of false alarm and missed detection over Rayleigh and Rician

fading. A bivariate Mellin transform approach is employed to obtain the probability distribution function

for the ratio of the extreme eigenvalues under each hypothesis. All obtained formulas are validated via

Monte-Carlo simulations, and the results give a clear insight into the performance of the investigated

methods. In frequency domain, MED outperforms both the MME detector and Periodogram-based energy
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detection even in a worst case scenario of noise uncertainty, while the MME detector exhibits heavy-

tailed statistical characteristics and thus its receiver operating characteristics tend to stay on the line of

no-discrimination. The performance of MED is further enhanced by careful choice of combinations of

the total length of the sensing frame and number of sub-slots.

Index Terms

Bartlett’s method, bivariate Mellin transform, eigenvalue analysis, EGC, Hermitian quadratic forms,

order statistics, spectrum sensing.

I. INTRODUCTION

Multiple antennas were shown to provide significant enhancement in the performance of

wireless communications systems. A notable application is developing efficient detection tech-

niques that enables opportunistic spectrum access (OSA), which is required for next generation

technologies such as cognitive radio (CR) systems and Leased Shared Access (LSA). A CR

network consists of license-exempt nodes that sense and exploit underused frequency spectrum.

The phrases ”primary users (PUs)” and ”secondary users (SUs)” are coined to refer to original

license owners and license-exempt users respectively. On the other hand, LSA is a new approach

that allows incumbents (license owners) to share the spectrum with a limited number of LSA

licensees [1]. In a specific region, such mode of operation is governed by the national regulatory

agency (NRA) and the sharing agreement with the incumbents.

In general, sensing methods are categorized based on the characteristics of the signal to be

detected [2]. Apart from the common detection methods of matched filtering, energy detection

and cyclostationary feature detection (CFD), one particular method is eigenvalue detection [3]–

[6]. The conventional approach for eigenvalue detection uses the eigenvalues of the sample

covariance matrix. Methods of eigenvalue-based detection include: 1) maximum eigenvalue de-

tection (MED); 2) maximum-minimum eigenvalue (MME) detection; 3) energy-with-minimum-

eigenvalue (EME) detection; and 4) the generalized likelihood ratio test (GLRT). MED is

investigated in [3], and both the EME and the MME detectors are considered in [4]. Also, using

random matrix theory a cooperative spectrum sensing approach based on the MME detector was

investigated in [5]. Taking into account the impact of noise uncertainty, a throughput analysis

was conducted for the MME and MED methods in [7]. Finally, a sensing-throughput trade-off
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was provided in [6], with a focus on EME and GLRT. It is also noteworthy that the analysis

provided in all the aforementioned studies did not consider a frequency domain (FD) approach.

In this paper, we consider a new approach for eigenvalue detection in frequency domain using

reception diversity and spectrum estimation. Previous work in frequency domain techniques was

presented in [8] using Periodograms, and [9] for Bartlett’s method, and [10] for Welch’s method

of segmented and overlapped averaging, and finally in [11] for the Multitaper method. Note

that all the aforementioned previous work using spectrum estimation did not develop eigenvalue

methods. In this paper, and since we focus on frequency domain, we exploit the eigenvalues that

are associated with the spectrum estimate, which results from diagonalizing the Hermitian form

representation of the spectrum estimate.

The contributions of this paper are explained as follows. Using multiple antennas and diversity

reception with equal gain combining (EGC), we investigate the MED and the MME detectors

in FD based on Bartlett’s method. For both cases, the performance is quantified in terms of the

probabilities of false alarm and missed detection. For the case of the MME detector, and due

to correlation, a bivariate Mellin transform approach1 is employed to derive the probability

distribution function (PDF) of the ratio of extreme eigenvalues. Furthermore, a comparison

is demonstrated between MED, the MME detector and Periodogram-based energy detection

assuming a worst case scenario for noise uncertainty. It will be shown that in FD the MED

detector yields the best performance even under noise uncertainty. On the other hand, it will be

shown that the decision statistic for the MME detector has a right heavy tail which forces the

receiver operating characteristic curves to lie on the line of no-discrimination. Further insight

into the performance of the investigated detectors will be discussed over Rayleigh and Rician

fading.

The rest of this paper is organized as follows. Section II presents the problem formulation.

Section III, investigates direct estimation of the eigenvalues and their statistical attributes. The

performance of MED is investigated in Section IV, and the MME detector is analyzed in Section

V. The ergodic performance is investigated in Section VI over Rayleigh and Rician fading. In

Section VII simulation results are provided, and finally Section VIII concludes the paper. Proofs

for specific derivations are presented in the appendices.

1See [12]–[14] for the double Mellin integral technique for correlated variables.
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II. PROBLEM FORMULATION

A. Mathematical Operators

The following notations will be used in this paper. All vectors will be represented by boldface

lower case characters, and matrices will be denoted by uppercase boldface characters. Ia is the

identity matrix with order a. The notation λi(A) denotes the i-th eigenvalue of the square matrix

A, and the subscript will be omitted when A has rank one. The notation diag(a1, . . . , an) is a

n× n diagonal matrix with diagonal elements a1, . . . , an.

The imaginary unit is j. The notations (·)T and (·)† denote the transpose and the conjugate

transpose respectively. The notations | · |, ∥ · ∥p and ∥ · ∥F denote the magnitude operator, the

p-norm and the Frobenius norm respectively. Finally the notation +| · |+ denote the permanent

of a matrix.

Any estimated parameter will be denoted by (̂·). The notation
⊕

is the direct sum operator.

The notation Sn is a symmetric group on the finite set {1, . . . , n}. The expectation operator

is E{·}, fa(·) is the PDF of the variable a, and the cumulative distribution function (CDF) of

a will be denoted by Fa(·). The notation EXP(·) denotes the exponential distribution, whereas

both exp(·) and e(·) denote the exponential function.

Finally, the Mellin transformation of g(x) into the variable s ∈ C will be denoted by

M{g(x); s}, and the inverse transformation is M−1 {g(s);x}. The bivariate Mellin transform

is M{g(x, y); s1, s2}, and the corresponding inverse will be written as M−1 {g(s1, s2); x, y}.

B. System Model

Let us consider the case of detecting a primary node that is equipped with a single antenna,

using a secondary node equipped with N antenna branches. The output samples from all branches

are assumed independent and identically distributed (i.i.d.). It is assumed that the sensing frame

is of length M , with K sensing sub-slots, where each sub-slot contains mB samples. At each

time instant, EGC 2 is employed to combine the received samples from all branches. The

resultant sequence of samples is used to estimate the eigenvalues of Bartlett’s method of spectrum

2From a spectrum sensing point of view, maximum ratio combining (MRC) is not addressed in this paper since it is usually

used within a cooperative spectrum sensing context (with reporting channels and a central data fusion center) and it requires

the channel state information (CSI) from the primary node to the secondary user(s), and from each secondary user to the fusion

center [15].
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estimation. Hence, the estimated eigenvalues will be used as a test statistic to distinguish between

the hypothesis H0 (the primary user is idle), and the alternate hypothesis H1 (the primary user

is active).

Based on the aforementioned scenario, let x(t) ∈ CN×1 denote the received signal by the

secondary node at the t-th time instant. The hypothesis has the form

H0 : x(t) = w(t), (1)

H1 : x(t) = h(t)s(t) +w(t), (2)

where x(t) has the form

x(t) =


x(1, t)

x(2, t)
...

x(N, t)

 , t = 0, . . . ,M − 1. (3)

and h ∈ CN×1 and ω ∈ CN×1 denote the channel and the noise vectors respectively, which are

defined as

h(t)=
[
h(1, t) h(2, t) . . . h(N, t)

]T
, (4)

ω(t)=
[
ω(1, t) ω(2, t) . . . ω(N, t)

]T
(5)

and x(n, t) denotes the received signal by the n-th antenna at the t-th time instant, which is

given by

H0 : x(n, t) = w(n, t), (6)

H1 : x(n, t) = h(n, t)s(t) + w(n, t), (7)

where n = 1, 2, . . . , N and t = 0, 1, . . . ,M − 1. The notation w(n, t) denote the instantaneous

value of AWGN at the n-th receiving branch. The noise is assumed to be a circular symmetric

complex Gaussian process with E{|w(n, t)|2} = σ2
w. Also, the noise samples are assumed

independent and identically distributed. The notation s(t) denotes the instantaneous symbol

transmitted by the primary user at the t-th time instant, such that E{|s(t)|2} = σ2
s . Finally,

h(n, t) is the instantaneous channel from the primary node to the n-th receiving branch.

From a generic point of view, EGC has reduced implementation complexity compared with MRC (because of the weights

requirements for MRC), and outperforms the selection combiner (SC) [16].
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C. Diversity Combining and Spectrum Estimation

As stated before, the sensing frame consists of M samples and a number of K sub-slots, where

each sub-slot consists of mB samples. Henceforth, let us define the column vector xEGC ∈ CM×1

that is received by the end of the sensing frame, where

xEGC = vec (x̃1, . . . , x̃K) , (8)

where x̃p ∈ CmB×1 represent the output after diversity combining of the p-th sensing slot, i.e,

x̃p =



∑N
i=1 x(i, (p− 1)mB)∑N
i=1 x(i, (p− 1)mB + 1)∑N
i=1 x(i, (p− 1)mB + 2)

...∑N
i=1 x(i, pmB −1)


, p = 1, 2, . . . , K. (9)

In frequency domain, let f denote the frequency index, where f = 0, . . . ,mB−1, and therefore

the longer the sensing sub-slot, the larger the resolution. It is shown in [9], that Bartlett’s estimate

can be written as a positive semi-definite Hermitian quadratic form. In this case, after EGC the

spectrum S(f) can be estimated using Bartlett’s method as

Ŝ(f)= x†
EGCV(f)xEGC, (10)

=
1

K

K∑
p=1

x̃†
p ṽ(f) ṽ

†(f) x̃p, (11)

where V(f) ∈ CM×M is defined as

V(f) =
1

K

K⊕
p=1

ṽ(f)ṽ(f)†, (12)

and ṽ(f) ∈ CmB×1 is given by

ṽ(f) =
1

mB

[
1, e

− 2πj
mB

f
, . . . , e

− 2πj
mB

f(mB−1)
]T

. (13)

However, the PDF of a diagonalizable Hermitian quadratic form can be represented in terms

of the eigenvalues that are associated with the quadratic form. In this case, the eigenvalues to

be addressed are the eigenvalues of the product of the covariance matrix and the matrix of

the Hermitian quadratic form [17]. Henceforth, let R̂EGC denote the sample covariance matrix
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estimated from xEGC, and let R̂p be the sample covariance matrix associated with the p-th

segment x̃p, where p = 1, . . . , K. We have

R̂EGC,
1

M
xEGCx

†
EGC, (14)

R̂p,
1

mB

x̃px̃
†
p. (15)

The Hermitian form representation of the estimate Ŝ(f) is a function of the eigenvalues of the

product of covariance matrix R̂EGC and the matrix V(f). It was shown in [9] that the rank of the

aforementioned matrix product is K, and therefore there are K non-zero eigenvalues associated

with this product. This is attributed to the fact that the covariance matrix has full rank, while

the matrix of the Hermitian form, V(f), has rank K. The p-th eigenvalue is given by

λp

(
R̂EGCV(f)

)
=

1

K
λ
(
R̂pṽ(f)ṽ

†(f)
)
. (16)

D. Noise Uncertainty

Let σ̂2
w = ϱσ2

w be the expected noise power due to noise uncertainty, where ϱ is the noise

uncertainty factor. In dB, the factor ϱ is uniformly distributed within the interval [−B,B] and

usually B is limited by 2 dB [18], where the upper bound B is given by

B = sup {10 log10 ϱ} , (17)

and hence the PDF of ϱ is given by

fϱ(z) =


5

log(B)z
10−0.1B < z < 100.1B,

0 elsewhere.
(18)

Noise uncertainty occurs because of the varying nature of the noise variance as a function of

time and/or location. Noise uncertainty is a challenging issue for spectrum sensing, because it

affects the performance of detectors by imposing bounds that may make the detector extremely

unreliable beyond specific values of the SNR [18].

III. ESTIMATION AND STATISTICAL ATTRIBUTES OF EIGENVALUES

In the subsequent parts of the paper we will follow the notations used in [19] and [20] for

order statistics. The notation ℓ̂(1) ≤ . . . ≤ ℓ̂(K) will be used to denote the ordered eigenvalues,

such that the maximum eigenvalue is ℓ̂max = ℓ̂(K) and the minimum eigenvalue is ℓ̂min = ℓ̂(1).
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Henceforth, the non-ordered eigenvalues will be denoted as ℓ̂1, . . . , ℓ̂K . Also, the PDF and the

CDF of the r-th estimated eigenvalue are fℓ̂r and Fℓ̂r
respectively. For notational convenience

and brevity we will use

fr(z) = fℓ̂r(z), (19a)

Fr(z) = Fℓ̂r
(z), (19b)

f(r)(z)= fℓ̂(r)(z), (19c)

F(r)(z)= Fℓ̂(r)
(z), (19d)

where r = 1, . . . , K. As a first step, we need to obtain direct formulas to estimate the eigenvalues

which are associated with the spectrum estimate. First, since we know that the p-th eigenvalue

is the eigenvalue associated with the p-th segment, then we can write

λp

(
R̂EGCV(f)

)
=

1

K
tr
(
R̂pṽ(f)

†ṽ(f)
)
, (20)

=
1

K
ṽ(f)†R̂pṽ(f). (21)

Second, the result of the multiplication R̂pṽ(f)ṽ
†(f) is given by

R̂pṽ(f)ṽ
†(f) =

1

m2
B

×



mB−1∑
i=0

N∑
p=1

N∑
q=1

x(p, 0)x(q, i)†e
− 2π

mB
jfi

. . .

mB−1∑
i=0

N∑
p=1

N∑
q=1

x(p, 0)x(q, i)†e
− 2π

mB
jf(i−mB+1)

mB−1∑
i=0

N∑
p=1

N∑
q=1

x(p, 1)x(q, i)†e
− 2π

mB
jfi

. . .

mB−1∑
i=0

N∑
p=1

N∑
q=1

x(p, 1)x(q, i)†e
− 2π

mB
jf(i−mB+1)

... . . . ...
mB−1∑
i=0

N∑
p=1

N∑
q=1

x(p,mB − 1)x(q, i)†e
− 2π

mB
jfi

. . .

mB−1∑
i=0

N∑
p=1

N∑
q=1

x(p,mB − 1)x(q, i)†e
− 2π

mB
jf(i−mB+1)


(22)

and then the estimated p-th eigenvalue is obtained as

ℓ̂p =
1

Km2
B

mB−1∑
i=0

N∑
p=1

N∑
q=1

mB−1∑
r=0

x(p, r)x(q, i)†e
− 2π

mB
jf(i−r)

. (23)

Henceforth, considering the statistical properties of x̃p, it follows that

H0 : x̃p ∼ CN (0, Nσ2
wImB

), (24a)

H1 : x̃p ∼ CN (0, σ2
sZpZ

†
p +Nσ2

wImB
), (24b)
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where Zp ∈ CmB×mB is defined as

Zp= diag

(
N∑
i=1

h(i, (p− 1)mB),
N∑
i=1

h(i, (p− 1)mB + 1),

N∑
i=1

h(i, (p− 1)mB + 2), . . . ,
N∑
i=1

h(i,mBp− 1)

)
. (25)

Based on (23), and with the aid of [21] and [8], the p-th estimated eigenvalue is exponentially

distributed as

ℓ̂p ∼


EXP

(
mBK

Nσ2
w

)
, H0,

EXP

(
mBK

Nσ2
w + 1

mB
∥Zp∥2Fσ2

s

)
, H1,

(26)

where Z is given by (25).

IV. MAXIMUM EIGENVALUE DETECTION

The eigenvalues associated with a spectrum estimate can be used within the context of spectrum

sensing, and this will be explained as follows. For example, at a given frequency index, when

the primary user is absent then all of the eigenvalues of the quadratic form representation of the

spectrum estimate are equivalent to Nσ2
w

mBK
, i.e, ℓ1 = . . . = ℓK = Nσ2

w

mBK
. However, when a primary

user is present we have that ℓp >
Nσ2

w

mBK
for p = 1, . . . , K. Hence, let us summarize the steps of

maximum eigenvalue detection using the eigenvalues that are associated with Bartlett’s estimate

as follows:

• Step 1: Obtain the output of K successive sensing sub-slots, i.e., x̃1, . . . , x̃K .

• Step 2: Estimate the covariance matrices R̂1, . . . , R̂K .

• Step 3: Estimate the maximum eigenvalue using

ℓ̂max = max

{
1

K
λp

(
R̂EGCV(f)

)}K

p=1

. (27)

• Step 4: For a predetermined threshold η, apply the test

ℓ̂max ≥ η, (28)

where the threshold is restricted by η > Nσ2
w

mBK
.

Let us consider the null hypothesis H0. In this case, the estimated (but not ordered) eigenvalues

are i.i.d., and the maximum estimated eigenvalue is the maximum of a number of K i.i.d.
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exponential variables. Hence, based on the distribution parameters provided by (26), the PDF of

the maximum estimated eigenvalue is given by

fℓ̂max
(z;H0) =

mBK
2

σ2
wN

exp

(
−mBK

σ2
wN

z

)[
1− exp

(
−mBK

σ2
wN

z

)]K−1

. (29)

By making use of the previous equation and for a given threshold η, the probability of false

alarm is obtained as

Pfa(η)= Prob
{
ℓ̂max ≥ η |H0

}
= 1−

[
1− exp

(
−mBK

σ2
wN

η

)]K
. (30)

On the other hand, when the channel is occupied by a primary user, the estimated (and not

ordered) eigenvalues are independent but not identically distributed. Henceforth, let us define f

and F as

f = [f1(.), . . . , fK(.)] , (31)

F= [F1(.), . . . , FK(.)] . (32)

With the aid of [19], the PDF of the r-th ordered estimated eigenvalue is given by

f(r)(z; f ,F) =
1

(r − 1)!(K − r)!

+

F1(z) . . . FK(z)
+

r − 1 rows
...

...

F1(z) . . . FK(z)

f1(z) . . . fK(z)

1− F1(z) . . . 1− FK(z)
K − r rows

...
...

1− F1(z) . . . 1− FK(z)

. (33)

Henceforth, based on the previous equation, the PDF of the estimated maximum eigenvalue is

obtained as

fℓ̂max
(z; f ,F) =

∑
G⊂SK

fg1(z)Fg2(z) . . . FgK (z), (34)

where the symmetric group SK contains all bijections from {1, . . . , K} to itself, and the

conjugacy classes are labeled as partitions of K. In this case, the subgroup G contains the

K distinct permutations of the subscripts g1, . . . , gK . Hence, one can write

fℓ̂max
(z; f ,F) =

K∑
i=1

fi(z)
K∏

p=1,p̸=i

Fp(z). (35)
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The cumulative distribution of the r-th order statistic is [20]

F(r)(z;F) =
K∑
i=r

∑
G

i∏
l=1

Fgl(z)
K∏

l=i+1

1− Fgl(z), (36)

where G is the summation that extends over all the K distinct permutations (j1, . . . , jn) of

1, . . . , K. Hence, the CDF of the maximum estimated eigenvalue is

Fℓ̂max
(z;F) =

K∏
i=1

Fi(z). (37)

Therefore, the probability of missed detection is given by

Pm(η)= Prob
{
ℓ̂max < η |H1

}
=

K∏
p=1

1− exp

(
−mBKη

σ2
wN + 1

mB
σ2
s∥Zp∥2F

)
. (38)

V. MAXIMUM-MINIMUM EIGENVALUE DETECTION

In this section the maximum-minimum eigenvalue detector is investigated and analyzed. In

this case, the test statistic is the ratio of the maximum and the minimum estimated eigenval-

ues. However, as a consequence of ordering, the maximum and the minimum eigenvalues are

correlated. Henceforth, let us use the notation

TMME =
ℓ̂max

ℓ̂min

=
ℓ̂(K)

ℓ̂(1)
. (39)

to denote the test statistic. The steps of maximum-minimum eigenvalue detection can be sum-

marized by the following steps.

• Step 1: Obtain the output of K successive sensing slots: x̃1, . . . , x̃K .

• Step 2: Estimate the sample covariance matrices R̂1, . . . , R̂K .

• Step 3: For each value of f, obtain the extreme eigenvalues:

ℓ̂min = min

{
λp

(
1

K
R̂pṽ(f)ṽ

†(f)

)}K

p=1

, (40)

ℓ̂max = max

{
λp

(
1

K
R̂pṽ(f)ṽ

†(f)

)}K

p=1

. (41)

• Step 4: Apply the test
ℓ̂max

ℓ̂min

≥ η,

where η > 1.
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A. PDF of the Ratio TMME Under H0

In order to derive the probability distribution of TMME, we need the joint PDF of the minimum

and the maximum estimated eigenvalues f(1),(K)(zmin, zmin). Let us start with the case of the null

hypothesis H0. The PDF and the CDF of the minimum eigenvalue are given by

f(1)(z;H0)=
mBK

2

Nσ2
w

exp

(
−mBK

2

Nσ2
w

z

)
, (42)

and

F(1)(z;H0)= 1− exp

(
−mBK

2

Nσ2
w

z

)
(43)

respectively. On the other hand, considering the maximum estimated eigenvalue, the PDF is

already given by (29) and then the CDF is

F(K)(z;H0)=

[
1− exp

(
−mBK

Nσ2
w

z

)]K
. (44)

Hence, with the aid of [22, Eq(3.4)], the joint PDF of the maximum and the minimum eigenvalues

is obtained as

f(1),(K)(z(1), z(K)) =
K!

K − 2!
f(1)(z(1))f(K)(z(K))

[
F(K)(z(K))− F(1)(z(1))

]K−2
, (45)

Substituting equations (29), (42), (43) and (44) in (45) and applying the binomial theorem we

arrive at

fℓ̂min,ℓ̂max

(
z(1), z(K);H0

)
= K!

(
mBK

2

Nσ2
w

)2

exp

(
−mBK

2

Nσ2
w

z(1)

)
exp

(
−mBK

Nσ2
w

z(K)

)
×

K−2∑
i=0

1

i!Γ(K − i− 1)

[
1− exp

(
−mBK

2

Nσ2
w

z(K)

)]Ki+K−1 [
exp

(
−mBK

Nσ2
w

z(1)

)
− 1

]K−i−2

,(46)

where Γ(·) denotes the gamma function Γ(n) =
∫∞
0

yn−1e−y dy. Given a bivariate PDF, the

statistical distributions of products and quotients of dependent random variables were investigated

by [23], and reported by [24]. The derivation approach is based on the method that is employed

for independent random variables [25] and the two dimensional Mellin integral [14], [26]. One

result from the theorems presented by Fox in [14] can be summarized as follows.

Theorem 1 (PDF of Ratio of Correlated Variables): Let U and V be positive and real random

variables with bivariate PDF fU,V (u, v). The PDF of the ratio Z = U
V

can be obtained through

the inverse Mellin transform of the double Mellin integral M [fU,V (u, v); s1, s2] as

fZ(z) = M−1

{
M
{
fU,V (u, v); s, 2− s

}
; z

}
. (47)
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Hence, using the joint PDF of the maximum and minimum eigenvalues obtained in (46), the

PDF of the ratio of the maximum and minimum eigenvalues can be obtained using the inversion

method of (47). The two dimensional Mellin transform of the joint PDF f(1),(K)(z(1), z(K)) into

G(s1, s2) is

G(s1, s2) =M
{
f(1),(K)(z(1), z(K)); s1, s2

}
=

∫ ∞

0

∫ ∞

0

zs1−1
(1) zs2−1

(K) f(1),(K)(z(1), z(K)) dz(1)dz(K), (48)

given that z(1) < z(K).

Corollary 1: The PDF of the ratio of the maximum and minimum estimated eigenvalues is

given by

fMME(z)=
K!

(K − 2)!

K−2∑
i=0

Ki+K−1∑
c=0

K−i−2∑
r=0

×

{
1

i!c!r!

Γ(K − 1)Γ(K(i+ 1))

Γ(K(i+ 1)− c)Γ(K − i− r − 1)
(−1)K+c−r−i

(
K(1 + r) + z(c+ 1)

)−2
}
.

(49)

Proof: The proof is provided in Appendix A.

The cumulative distribution function can be derived by making use of (49), and then the

probability of false alarm is obtained as follows.

Corollary 2: The probability of false alarm for MME eigenvalue detection, based in Bartlett’s

method, is given by

Pfa(η) =K(K − 1)
K−2∑
i=0

Ki+K−1∑
c=0

K−i−2∑
r=0

1

i!

1

c!

1

r!

(−1)KK2(1 + c)−1(K(1 + r) + (1 + c)η)−2

(1−K(i+ 1))c(2−K + i)r(2−K)i
(50)

where (a)b denotes Pochhammer’s symbol.

Corollary 3: The PDF of the ratio of the maximum and minimum estimated eigenvalues,

given by (49), represents a heavy tailed distribution.

Proof: By making use of the result presented in Corollary 2, it is required to show that the

limit of eκaprob[TMME > a] is infinity as a → ∞, for κ ∈ [0,∞). Hence, applying L’Hôpital’s
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rule and after some manipulations we have that

lim
a→∞

eκaprob[TMME > a|H1]

= K(K − 1)

×
K−2∑
i=0

Ki+K−1∑
c=0

K−i−2∑
r=0

{(
K − 2

i

)(
Ki+K − 1

c

)(
K − i− 2

r

)
κeκaK(−1)K−i+c−r

(c+ 1)(r + 1)

}
,

= ∞. (51)

Therefore, based on the previous result the moment generating function of the ratio of the

maximum and the minimum eigenvalues is infinite as the corresponding PDF has a heavy right

tail.

B. PDF of the Ratio TMME Under H1

In this part, we derive the PDF of the ratio of the maximum and the minimum eigenvalues

assuming the alternate hypothesis H1. In this case, the ordered eigenvalues are independent, but

not identically distributed as an impact of the time varying nature of the channel. To derive the

joint PDF for this case, the PDF and the CDF of the maximum eigenvalue are already given

by (35) and (37). However, expressions are required for the PDF and the CDF of the minimum

eigenvalue which can be obtained as follows. By making use of the expression given by (33),

the PDF of the minimum eigenvalue is obtained as

fℓ̂min
(z; f ,F) =

1

(K − 1)!

+

f1(z) . . . fK(z)
+

1− F1(z) . . . 1− FK(z)
K − 1 rows

...
...

1− F1(z) . . . 1− FK(z)

. (52)

After substituting the values of fi(z) and Fi(z) for i = 1, . . . , K, the previous result can be

reduced into a more convenient form. Hence, the PDF of the minimum eigenvalue can be

rewritten as

fℓ̂min|H1
(z; f ,F) =

K∑
i=1

mBK

σ2
wN + 1

mB
σ2
s∥Zi∥2F

exp

(
−

K∑
p=1

mBKz

σ2
wN + 1

mB
σ2
s∥Zp∥2F

)
. (53)

The cumulative distribution can be obtained from (36), and thus we get

Fℓ̂min
(z;F)=

K∑
i=1

∑
G⊂SK

i∏
l=1

Fjl(z)
K∏

l=i+1

1− Fjl(z). (54)
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Next, given f and F, the joint probability distribution function of the extreme order statistics is

given by

fℓ̂min,ℓ̂max
(z(1), z(K); f ,F)

=
1

(K − 2)!

+ f1(z(1)) . . . fK(z(1))
+

F1(z(K))− F1(z(1)) . . . FK(z(K))− FK(z(1))
K − 2 rows

... . . . ...

F1(z(K))− F1(z(1)) . . . FK(z(K))− FK(z(1))

f1(z(K)) . . . fK(z(K))

.(55)

However, equation (55) can be reduced into the summation:

f
(
z(1), z(K); f ,F

)
=
∑

G⊂SK

fg1
(
z(1)
)g3−1∏
g2=g1+1

Fg2

(
z(K)

)
− Fg2

(
z(1)
)
fg3
(
z(K)

)
, (56)

where summation is performed over all values of the subgroup G that consists of all the distinct

permutations of the subscripts g1, g2, g3. Thus, for this case every distinct term is counted (K−2)!

times, and hence the total number of summed elements is K(K−1). Therefore, in the consequent

subsections, only specific cases of K. Henceforth, let αi denote the scale parameter that is

associated with the PDF of the i-th non-ordered eigenvalue. For each investigated case of K,

we will use Theorem 1 to derive the PDF of the ratio of the associated maximum and minimum

eigenvalues using similar derivation steps to Appendix A.

1) K=2: The simplest case is having two sensing sub-slots. In this case, we have that G =

{{1, 2}, {2, 1}} and from (55) the joint PDF can be rewritten as

f
(
z(1), z(K)

)
=α1 exp

(
−α1z(K)

)
α2 exp

(
−α2z(1)

)
,+α1 exp

(
−α1z(1)

)
α2 exp

(
−α2z(K)

)
, (57)

where αi is given by

αi =
mBK

σ2
wN + 1

mB
σ2
s∥Zi∥2F

. (58)

In order to derive the PDF of the ratio of the maximum and minimum eigenvalues using Theorem

1, let G2(s1, s2) denote the double Mellin integral of the joint PDF when K = 2, and then we

August 23, 2015 DRAFT



1053−587X (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TSP.2015.2474309, IEEE Transactions on Signal Processing

IEEE TRANSACTIONS ON SIGNAL PROCESSING 16

get

G2(s1, s2) =M
{
f
(
z(1), z(2)

)
; s1, s2

}
,

=s−1
1 α1α2(α1 + α2)

−s1−s2Γ(s1 + s2)

×

{
1

s1
2F1

(
1, s1 + s2; s1 + 1;

α2

α1 + α2

)
1

s2
2F1

(
1, s1 + s2; s1 + 1;

α1

α1 + α2

)}
, (59)

where 2F1(.; ., .; .) is the Gaussian hypergeometric function and the strip of analyticity is defined

as {
(s1, s2) : ℜ[s1] > 0,ℜ[s2] > 0

}
.

Similar to the same derivation procedure that is employed in Appendix A, the PDF of the ratio

in this case is obtained as

f(z) =
1

2πj

α1α2

(α1 + α2)
2

×
∫ σ+j∞

σ−j∞
β(2− s, 1)

[
2F1

(
1, 2; 3− s;

α2

α2 + α1

)
+ 2F1

(
1, 2; 3− s;

α1

α1 + α2

)]
z−s ds

(60)

where

σ ∈
{
s : 0 < ℜ[s] < 2

}
,

and hence it can be easily obtained that

f(z)=
α1α2

(α2 + α1z)2
+

α1α2

(α1 + α2z)2
. (61)

Using the previous result, the probability of missed detection is given by

Pm(η;α1, α2) = 1− α2

α2 + α1η
− α1

α1 + α2η
. (62)

where αi is given by (58).

2) K=3: When K = 3, then by making use of (55) the joint PDF can be written as

f
(
z(1), z(K);K = 3

)
=
∑
G⊂S3

αi1 exp
(
−αi1z(K)

)
αi2 exp

(
−αi2z(1)

)
exp

(
−αi3z(1)

)
−
∑
G⊂S3

αi1 exp
(
−αi1z(K)

)
αi2 exp

(
−αi2z(1)

)
exp

(
−αi3z(K)

)
, (63)
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where the summation extends over all distinct permutations of the subscripts (i1, i2, i3) of (1, 2, 3).

Using the previous result, the bivariate Mellin transform G3(s1, s2) = M
{
f(z(1), z2); s1, s2

}
is

given by

G3(s1, s2) =
∑
G⊂S3

αi1αi2Γ(s1 + s2)

s1(αi1 + αi2 + αi3)
s1+s2

{
2F1

(
1, s1 + s2; s1 + 1;

αi2 + αi3

αi1 + αi2 + αi3

)

−2F1

(
1, s1 + s2; s1 + 1;

αi2

αi1 + αi2 + αi3

)}
, (64)

and applying Theorem 1 the PDF of the ratio is obtained by inverting G3(s1, s2). We get

f(z) =M−1

{
M
{
f(z(1), z3); 2− s, s

}
; z

}
=
∑
G⊂S3

αi1αi2

(αi1z + αi2 + αi3)
2 −

∑
G⊂S3

αi1αi2

(αi1z + αi2 + αi3z)
2 . (65)

Thus, using the previous result, the probability of missed detection is obtained as

Pm(η;αi1 , αi2 , αi3)

= 1−
∑
G

αi2

(
αi1η + αi2 + αi3

)−1

+
∑
G

αi1αi2

(
αi1 + αi3

)−1(
αi1η + αi2 + αi3η

)−1

. (66)

3) K=4: When 4 sensing sub-slots are employed, the complexity of computing the permanent

expression in (55) is increased, as the order of SK is K!. Hence, by making use of (55), and for

a number of 4 sensing sub-slots the joint PDF of the maximum and the minimum eigenvalues

is obtained as given by

f(z(1), z(K);αi1 , αi2 , αi3 , αi4)

=
∑
G

αi1e
−αi1

z(1)e−αi2
z(1)e−αi3

z(1)αi4e
−αi4

z(K) +
∑
G

αi1e
−αi1

z(1)e−αi2
z(K)e−αi3

z(K)αi4e
−αi4

z(K)

−
∑
G

αi1e
−αi1

z(1)e−αi2
z(1)e−αi3

z(K)αi4e
−αi4

z(K) −
∑
G

αi1e
−αi1

z(1)e−αi2
z(K)e−αi3

z(1)αi4e
−αi4

z(K) ,

(67)
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and the bivariate Mellin transform is given by

G4(s1, s2)=
Γ(s1 + s2)∑4

n=1 αn

×
∑
G⊂S4

αi1αi4

{
2F1

(
1, s1 + s2; s1 + 1;

αi1 + αi2∑4
n=1 αn

)
+ 2F1

(
1, s1 + s2; s1 + 1;

αi1 + αi3∑4
n=1 αn

)

−2F1

(
1, s1 + s2; s1 + 1;

∑3
i=1 αi∑4
n=1 αn

)
− 2F1

(
1, s1 + s2; s1 + 1;

αi1∑4
n=1 αn

)}
.

(68)

Finally inverting G4(s1, s2) into f(z) yields

f(z;αi1 , αi2 , αi3 , αi4)

=
∑
G⊂S4

αi1αi4 (αi1 + αi2 + αi3 + αi4z)
−1 +

∑
G⊂S4

αi1αi4 (αi1 + (αi2 + αi3 + αi4) z)
−1

−
∑
G⊂S4

αi1αi4 (αi1 + αi2 + (αi3 + αi4) z)
−1 −

∑
G⊂S4

αi1αi4 (αi1 + αi3 + (αi1 + αi2) z)
−1 .

(69)

Hence, by making use of the previous result the probability of missed detection is given by

Pm(η;αi1 , αi2 , αi3 , αi4) = 1−
∑
G⊂S4

{
αi1

αi1 + αi2 + αi3 + αi4z
+

αi1αi4 (αi2 + αi3 + αi4)
−1

αi1 + (αi2 + αi3 + αi4) z

− αi1αi4 (αi3 + αi4)
−1

αi1 + αi2 + (αi3 + αi4) z
− αi1αi4 (αi1 + αi2)

−1

αi1 + αi3 + (αi1 + αi2) z
.

}
(70)

VI. ERGODIC PERFORMANCE OVER RAYLEIGH AND RICIAN FADING

In this part, the average probability of missed detection is investigated for propagation over

Rayleigh and Rician fading, and the theoretical bounds are provided for the average probabilities.

A. MED

1) Rayleigh Fading: Let us assume that the channel magnitude from the transmitting node to

the n-th antenna branch is Rayleigh distributed, where Var [|h(n, t)|] = Ω. Considering MED, it

can be shown via Jensen’s inequality that the average probability of missed detection is bounded

by

E {Pm(η;Z1, . . . ,ZK)} ≤
(
1− exp

(
−mBKη

N(σ2
w + σ2

sΩ)

))K

. (71)
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2) Rician Fading: Let us assume that the channel magnitude is a Rician process, where

E{|h(n, t)|} = µh and Var [|h(n, t)|] = σ2
h. Hence, it also follows that E

{
∥Zp∥F

}
and E

{
∥Zp∥2F

}
are given by

E
{
∥Zp∥F

}
= 0.5mBσh

√
πNL 1

2

(
−Nν2

σ2
h

)
(72)

and

E
{
∥Zp∥2F

}
= N2|µh|2mB +Nσ2

hmB

(
1− π

4

(
L 1

2

(
−|µh|2N

σ2
h

))2
)
, (73)

respectively, where La(·) is the Laguerre polynomial and

L1/2(a) = e
a
2

[
(1− a) I0

(
−a

2

)
− aI1

(
−a

2

)]
(74)

where In(y) =
∑∞

m=0
1

m!Γ(m+n+1)

(
y
2

)2m+n denotes the n-th order modified Bessel function of

the second kind. Considering MED, the average probability of missed detection is bounded by

E {Pm(η;Z1, . . . ,ZK)} ≤
[
1− exp

(
−mBKη

Nσ2
w +Nσ2

hσ
2
s +N2|µh|2σ2

s

)]K
. (75)

B. MME Detection

Considering the MME detector, the average eigenvalue is independent of the channel variations.

In this case, it can be shown that the theoretical bounds for the average probability of missed

detection are

E {Pm(η;K = 2)}≤ η − 1

η + 1
, (76)

E {Pm(η;K = 3)}≤ 2(η2 − 2η + 1)

(2η + 1)(η + 2)
, (77)

E {Pm(η;K = 4)}≤ 3(η3 − 3η2 + 3η − 1)

(3η + 1)(η + 3)(η + 1)
. (78)

VII. SIMULATION RESULTS AND DISCUSSION

In this section we provide some numerical results to evaluate the performance of the investi-

gated detectors. We verify the accuracy of the obtained formulas for the maximum eigenvalue

detector and the maximum-minimum eigenvalue detector. Also, we provide further simulation

results to give a deeper insight into the performance of both detectors. For Monte-Carlo simu-

lations, the results are averaged over 105 realizations.
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A. The MED Detector

Fig.1 illustrates the complementary receiver operating characteristic curves for the maximum

eigenvalue detector. The figure depicts the average probability of missed detection versus the

probability of false alarm for various values of the number of receiving branches N , assuming

propagation over Rayleigh and Rician fading. Lines represent theoretical results, and symbols

represent Monte-Carlo simulations. The simulation parameters are M = 16, K = 2, σ2
s = −3dB,

σ2
w = 0dB and |µh|2 = 13. As the number of receiving branches increases, the probability of

miss is reduced assuming propagation over Rician fading. However, as it can be seen from the

figure, the case of propagation over Rayleigh fading seems to be immune to variations in the

number of receiving branches. This is mathematically justified by looking into the expression

of the theoretical bound given by (71), which shows that only significant variations of K, the

number of sub-slots, can produce a change in the average probability of miss3. This can be

attributed to:(
1− exp

(
−mBKη

N(σ2
w + σ2

sΩ)

))K

≈ exp

(
−Kexp

(
− mBKη

N(σ2
w + σ2

sΩ)

))
. (79)

However, as the number of sub-slots becomes large enough, i.e., K → ∞, the average probability

of miss is increased, i.e., E{Pm} = 1.

Fig.2 demonstrates the impact of varying the number of sub-slots K, for a fixed value of

M . The figure depicts the complementary receiver operating characteristics for several cases

of the number of sensing sub-slots over Rayleigh and Rician fading. The parameters used for

simulation are M = 1024, N = 4, σ2
w = 0dB, σ2

s = −6dB and |µh|2 = 4. It can be seen that

the performance is enhanced as the number of sensing sub-slots is increased when the SNR (per

branch) is enhanced for fixed M .

In fact, looking at the structure of the maximum eigenvalue detector, it can be seen that it

is analogous to choosing the maximum of several Periodograms, except that in this case the

Periodograms are scaled with a factor that contains the number of sensing sub-slots. Therefore,

increasing the total number of samples per sensing frame should not interfere with the perfor-

mance of the detector. On the other hand, increasing the number of sensing sub-slots for a fixed

length of the sensing frame will provide further improvement in the performance of the detector.

3When K is varied and all other parameters are fixed, or only K and N are varied simultaneously.
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B. The MME Detector

In Fig.3 we illustrate the heavy-tailed behavior of the maximum-minimum eigenvalue detector

based on Bartlett’s method. The three sub-figures demonstrate the heavy tail of the PDF as the

upper value of the samples is limited by z = 103 for the first case in Fig.3a, z = 1010 for

the second case in Fig.3b and z = 1020 for the third case in Fig.3c. As shown in Corollary 3,

the PDF of the ratio of the maximum and the minimum eigenvalues exhibits a heavy right tail.

As a consequence, there will be an absence of positive exponential moments , i.e., the moment

generating function will be infinite for all values larger than zero.

In Fig.4, the obtained formulas for the probabilities of false alarm and missed detection are

verified. The figure illustrates the receiver operating characteristic curves, i.e., Pd , 1−Pm versus

Pfa. The results are obtained using 3 receiving branches, M = 96, K = {2, 3, 4}, σ2
w = 10dB,

σ2
s = 0dB, σ2

h = 3dB and |µh|2 = 18. The figure compares between: the results from Monte-

Carlo simulation, the theoretical averages of the expressions obtained in Section V-B and the

theoretical bounds obtained in Section VI. For the case of K = 3, the summation subgroup G

for (66) is given by

G =
{
{1, 2, 3} , {2, 1, 3} , {2, 3, 1} ,

{3, 2, 1} , {1, 3, 2} , {3, 2, 1}
}
. (80)

Using 4 sensing sub-slots, the subgroup G ⊂ S4 for the sum required in (70) is given by

G =
{
{3, {1, 2}, 4} , {4, {1, 2}, 3} , {2, {1, 3}, 4} ,

{4, {1, 3}, 2} , {2, {1, 4}, 3} , {2, {1, 4}, 3} ,

{1, {2, 3}, 4} , {4, {2, 3}, 1} , {1, {2, 4}, 4} ,

{3, {2, 4}, 1} , {1, {3, 4}, 2} , {2, {3, 4}, 1}
}
. (81)

It is obvious that the theoretical models are accurate. However, due to the heavy tailed charac-

teristics of the PDF of the ratio of the extreme eigenvalues the ROC curves tend to lie on the

line of no-discrimination.

Fig.5 illustrates a comparison between the MED and the MME methods for various values

of the length of the sensing frame and fixed number of sub-slots. The simulation parameters

are K = 32, σ2
w = 2dB, σ2

s = −3dB, σ2
h = 1.76dB, |µh|2 = 2 for M = {256, 1024, 2048}.
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The figure shows the results based on both Rayleigh and Rician fading. Note that the curves

of Rician fading for the MME method are identical to the results from Rayleigh fading, and

therefore omitted from the figure for brevity. Generally, the MED method is also immune to

variation of M when the number of segments is fixed.

C. Comparison with Periodogram-based ED and Impact of Noise Uncertainty

Assuming that a single Periodogram is used, and assuming noise uncertainty and by making

use of the results of [8] the probability of false alarm and the probability of detection are given

by

Pfa(η, ϱ)= E
{
exp

(
−η

ϱσ2
wN

)}
, (82)

and

Pd(η, ϱ) = E


exp


−η

ϱσ2
wN + σ2

s

NM

M−1∑
q=0

∣∣∣∣∣
N∑
p=1

h(p, q)

∣∣∣∣∣
2




,

(83)

respectively, where

min(Pd(η, ϱ)) =

exp
(

−η
N(ϱσ2

w+σ2
sσ

2
h)

)
, Rayleigh,

exp
(

−η
N(ϱσ2

w+σ2
sσ

2
h+N |µh|2)

)
, Rician.

(84)

Considering the MED detector, the probability of false alarm and the probability of detection

will be affected by noise uncertainty. The probability of false alarm is

Pfa(η, ϱ)= E

{
1−

[
1− exp

(
−mBK

ϱσ2
wN

η

)]K}
, (85)

and the probability of missed detection is

Pm(η, ϱ)= E

{
K∏
p=1

1− exp

(
− mBK

ϱσ2
wN + 1

mB
σ2
s∥Zp∥2F

η

)}
. (86)

Considering the MME detector, and looking into the probability of false alarm given by (50),

and looking into the results for the probability of missed detection that are given by (62) for the
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case of K = 2, (66) for K = 3 and (70) for K = 4, it is obvious that the MME detector is not

affected by noise uncertainty.

Assuming propagation over Rayleigh fading, Fig.6 shows a comparison between the maximum

eigenvalue detector and the Periodogram. The results shown in the figure assume a worst case

of noise uncertainty when the factor ϱ is limited by B = 2dB4. The simulation parameters

are N = 4, SNR = {0,−4} (dB). For the MED detector it is assumed that M = 1024 and

K = 16. The periodogram was simulated for M = 64. Similarly, Fig.7 provides the performance

comparison under noise uncertainty but assuming Rician fading. The simulation parameters are

B = 2dB, σ2
s = {−10,−20} (dB), M = 1024, K = 32, E[|µ2

h|2] = 4.5. Another example is

provided for the periodogram using a sample size of 64. In both figures (Fig.6 andFig.7), the

MED method outperforms periodogram based ED. It is worthy to mention that the periodogram

is immune to changes on samples size (this is illustrated by simulating the periodogram for both

M = 1024 and M = 64). On the other hand careful choice of combinations of sample size and

number of segments provides enhanced performance by the MED detector.

VIII. CONCLUSION

In this study, the aim is to assess the applicability of FD-based eigenvalue detection with

Bartlett’s power spectral estimator. The considered scenario consists of a sensing node equipped

with multiple antennas and diversity combining with EGC. Two classes of the eigenvalue detector

are investigated, which are MED and the MME detector. The results confirmed that the analytical

models for the performance measures are accurate, and generally MED performs better than

the MME detector in FD, even when taking noise uncertainty into account. Furthermore, the

performance of MME can be controlled by the size of the sensing frame and the corresponding

number of sensing sub-slots. On the other hand, it is shown that the PDF associated with the

decision statistic of the MME detector exhibits a heavy right tail. Therefore, although this detector

is immune to noise uncertainty, it always tends to balance between the probabilities of false

alarm and missed detection such that the receiver operating characteristics lies on the line of

no-discrimination.

4The noise uncertainty factor of a receiver is from 1 to 2 dB [27].
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APPENDIX A

PDF OF THE RATIO OF THE MAXIMUM AND MINIMUM EIGENVALUES ASSUMING H0

In order to obtain the PDF of the ratio of the maximum and the minimum eigenvalues, let us

start with the joint PDF given by (55). With the aid of [28, Sec. 1.3] and [29, Sec. 6.455], the

bivariate Mellin transform of the joint PDF is obtained as

G(s1, s2)= M
{
f
(
z(1), z(K)

)
; s1, s2

}
=

K!

(K − 2)!

K−2∑
i=0

Ki+K−1∑
c=0

K−i−2∑
r=0

{
1

i!

1

c!

1

r!

Γ(K − 1)Γ(K(i+ 1))

Γ(K(i+ 1)− c)Γ(K − i− r − 1)

×K2(−1)K−2−i−r Γ(s1 + s2)(
K(r + 1) + (c+ 1)

)s1+s2

×2F1

(
s2, s1 + s2; s2 + 1;

K(r + 1)

K(r + 1) + (c+ 1)

)}
, (87)

where 2F1(.; .; .) is the Gaussian hypergeometric function. In this case, the strip of analyticity

(SOA) that is associated with the previous equation is the strip that is defined by the conditions

ℜ[s1] > 0,

ℜ[s2] > 0,

(p+1)Nσ2
w

mBK
> 0,

mBK
Nσ2

w

(
p+ 1 + (r + 1)K

)
≥ 0,

ℜ[s1 + s2] < 1 or mBK
Nσ2

w

(
p+ 1 + (r + 1)K

)
> 0.

(88)

By applying [24, Theorem 4.8.2], the PDF of the ratio of z(K) and z(1) can be obtained by the

inverse Mellin integral that is given by

f(z)=
1

2πj

∫ σ+j∞

σ−j∞
z−sM

{
f
(
z(1), z(K)

)
; s, 2− s

}
ds, (89)

where σ ∈ R lies within the associated strip of analyticity, and we obtain the integral given by

f(z) =
K!

(K − 2)!

K−2∑
i=0

Ki+K−1∑
c=0

K−i−2∑
r=0

×

{
1

i!

1

r!

1

c!

Γ(K − 1)Γ(K(i+ 1))

Γ(K(i+ 1)− c)Γ(K − i− r − 1)

(−1)K−r−i+c

(K(r + 1) + (c+ 1))2

×K2

2πj

∫ σ+j∞

σ−j∞
z−sβ(2− s, 1) 2F1

(
1, 2; 3− s;

K(r + 1)

K(r + 1) + (c+ 1)

)
ds

}
, (90)
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where β(·, ·) denotes the beta function (the Euler integral of the first kind). By taking advantage

of the relation

M−1 {G(2− s); z} =
1

z2
M−1

{
G(s);

1

z

}
,

and making use of [30, Sec. 7.5,(16)] we get

f(z)=
K!

(K − 2)!

K−2∑
i=0

Ki+K−1∑
c=0

K−i−2∑
r=0

1

i!

1

c!

1

r!

×

{
Γ(K − 1)Γ(K(i+ 1))K2(−1)K−2−i−r

Γ(K(i+ 1)− c)Γ(K − i− r − 1)
0F1

(
2;

(1− z−1)K(r + 1)

K(r + 1) + (c+ 1)

)}
, (91)

which directly leads to the expression for the PDF given by (49).
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Fig. 1. Complementary receiver operating characteristic curves for MED with various cases of number of antenna branches N .

(M = 16, K = 2, σ2
s = −3dB, σ2

w = 0dB, σ2
h = 0dB, |µh|2 = 13)
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h = 0dB, |µh|2 = 4).
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Fig. 3. Illustration of the Heavy tailed properties of the PDF of TMME
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Fig. 4. Receiver operating characteristic curves for the maximum-minimum eigenvalue detector
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Fig. 6. Impact of noise uncertainty over Rayleigh fading
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Fig. 7. Impact of noise uncertainty over Rician fading (E[|µ2
h|2] = 4.5)
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