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Abstract. The ground and low-lying states of the unbound nucleus 
10

Li were populated by the 
9
Li + 

2
H → 10

Li + 
1
H reaction at 11 AMeV incident energy at the ISAC II facility (TRIUMF). 

In  the  experimental setup, the  outgoing  9
Li  at  forward  angles  and  the  recoil  protons  at 

backward angles were detected and identified. This setup allows to study the 
10

Li emitted in the 

crucial region at forward angles in the centre of mass.

1. Introduction 

The study of the unbound system 
10

Li is of great interest since the knowledge of its structure is a 

crucial ingredient in the description of the two-neutron halo nucleus 
11

Li [1, 2]. Structure calculations 

for the weakly bound system 
11

Li = 
9
Li +2n either in the cluster model or in approaches based on the 

independent particle model require in fact the interaction between one neutron and the 
9
Li core as an 

important input quantity. This can be deduced directly from the binding energy and states of 
10

Li. 

Despite the significant amount of experimental information gathered during the last years, the 

properties of the 
10

Li continuum remain unclear, to the extent that even the energy and the spin-parity 

of the ground state are still controversial [4-9].  

In the case of N = 7 isotones, the energy and ordering of the 2s1/2, 1p1/2 and 1d5/2 orbitals can be 

represented as in Fig. 1, according to the excitation energy of the known single particle states. In the 

case of 
15

O, 
14

N, 
13

C and 
12

B ground states, it is well known that the main component of the 1d5/2 shell 

lies above the 2s1/2, which is in turn above the 1p1/2. In the 
11

Be (Z = 4) ground state a shell inversion 

between 2s1/2 and 1p1/2 is known to appear [9,11]. If this anomaly is maintained also in the 
10

Li (Z = 3) 

case, the lowest energy state in 
10

Li is expected to have a dominant configuration with one neutron in 

the 2s1/2. On the other hand, if one supposes that the presence of shell inversion in 
11

Be is related to the 

2α cluster structure of Be isotopes, such a structure is not possible for 
10

Li and the configuration of the 
10

Li ground state is expected to be a 
9
Li core + one neutron in the 1p1/2.   
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Figure 1. Relative energy of the 1d5/2 (green), 2s1/2 (blue) and 1p1/2 (red) shells for the 

N = 7 isotones in the region of 
10

Li.  

 

Transfer reactions are essential tools to probe selected components of the nuclear wave functions. 

Thanks to that they have been used in the past and are still crucial for nuclear spectroscopy purposes. 

With the advent of radioactive beam facilities, the new opportunity to explore nuclear phenomena far 

from the stability valley has driven a renewed interest to transfer reactions, to be studied in inverse 

kinematics. On one hand there is a specific attention to understand how the transfer mechanism is 

influenced by the reduction of the binding energy of the projectile [3,4]. On the other hand, the 

measured spectra could reveal unexpected features due to nucleon correlations which are beyond the 

mean field description of nuclear structure [5]. Examples of such phenomena have been recently found 

in light neutron rich nuclei such as the Li isotopes.  

 

2. Past attempts to study the d(
9
Li,p)

10
Li reaction 

Recently 
10

Li has been the subject of different theoretical and challenging experimental studies [6-8], 

including two attempts to explore the resonant energy spectrum by the d(
9
Li,p)

10
Li transfer reaction at 

2.35 AMeV incident energy at REX-ISOLDE and at 20 AMeV at NSCL-MSU, respectively. 

In the experiment at 2.35 AMeV of Ref. [6], the energy spectrum of 
10

Li was measured up to about 

1 MeV excitation energy in an angular range between 100° and 140° in the centre of mass. Due to the 

low beam intensity of about 5 × 10
4
 pps, a relatively thick target of deuterated polyethylene CD2 (660 

μg/cm
2
 thick) was used in order to maximize the yield, which slightly exceeded 100 events in total. 

The recoiling protons were detected by large area telescopes of position sensitive silicon detectors 

located between 18° and 80° in the laboratory. At backward laboratory angles, the energy of the 

protons was too low to be detected, thus excluding in the collected data the crucial region 

corresponding to forward angles in the centre of mass. Despite the low statistics and the not optimal 

angular range explored, an excitation energy resolution of about 300 keV (FWHM) was obtained and 

the authors could draw some conclusions about the role of the s1/2 and p1/2 neutron orbitals in 
10

Li 

around the neutron emission threshold. 

In the NSCL-MSU experiment [7], a similar experimental technique was used but at higher 

incident energy (20 AMeV). The beam intensity was even lower than in the REX-ISOLDE experiment 

(~ 7 × 10
3
 pps) and the emittance considerably worse. The CD2 target was about 2 mg/cm

2
 thick. The 

recoiling protons were measured at backward angles by a series of large area silicon detectors in 
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coincidence with the 
9
Li detected by the S800 spectrometer at forward angles. The obtained energy 

resolution was about 700 keV and the reconstructed 
10

Li spectra were measured up to about 4.5 MeV 

excitation energy. However, due to the poor statistics (less than 100 counts in total) and energy 

resolution, not much was added to our understanding of 
10

Li states. 

In a recent theoretical study of the 
10

Li low energy resonances [4], a state dependent treatment of 

the pairing interaction, beyond the usual BCS approximation, has proven to be necessary to reproduce 

the energy spectra measured in the REX-ISOLDE experiment. In addition it was shown that, despite 

the complications due to the resonant structure of the final states, the cross sections can be accurately 

described within the DWBA.  

Nevertheless, due to the limitations of the existing data, many of the details predicted by the theory 

were not tested. For example only a measurement of the angular distribution at forward angles in the 

centre of mass would disentangle contributions from s, p and d orbitals in different portions of the 

energy spectrum. Also the behaviour of the observed s1/2 and p1/2 orbitals should be better addressed, 

since in both cases the coupling with the p3/2 proton generates a doublet of 
10

Li states, namely 1
-
, 2

-
 for 

the s1/2 and 1
+
, 2

+
 for the p1/2, while experimentally there is no indication of such doublets. In addition, 

according to the theory, p3/2 and d5/2 orbitals should generate resonances above 1 MeV, but these have 

not been observed experimentally, since the MSU data are difficult to be reliably interpreted.  

To summarize, many of the key points regarding the 
10

Li spectrum are still very uncertain, 

especially from an experimental point of view. As a consequence the description of the 
11

Li halo 

nucleus is quite deficient, since the binding energy strongly depends on the same n - 
9
Li interaction 

responsible for the 
10

Li structure. 

 

3. The experiment 

We studied the d(
9
Li,p)

10
Li reaction at 11 AMeV incident energy at the TRIUMF laboratory. At this 

energy the recoiling protons can be detected at backward laboratory angles, thus allowing the 

exploration of the crucial region at forward angles in the centre of mass.  

A 
9
Li beam, produced by the ISAC-II facility with an average current of 10

6
 pps, impinged on a 

CD2 target, 126 μg/cm
2
 thick, evaporated at the INFN-LNS laboratory (Catania). The target thickness 

was chosen to improve the energy resolution maintaining an acceptable count rate. The recoiling 

protons were detected at backward angles 127° < θLEDA < 152° by the LEDA array of silicon strip 

detectors [12], thus allowing the study of the 
10

Li emitted at forward angles. Protons were detected in 

coincidence with the 
9
Li fragments produced from the break-up of the corresponding 

10
Li. 

9
Li 

fragments were detected and identified by a ΔE-E telescope of annular Double Sided Silicon Detectors 

located downstream the target. Fig. 2 shows an example of ΔE-E identification plot where the 
9
Li 

locus is well identified and contoured by a solid line. 
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Figure 2. Energy loss (ΔE) measured by the first stage of the S2 telescope of 

annular silicon detectors as a function of the residual energy (Eresid). The 

graphical contour indicates the 
9
Li events. 

 

An additional benefit of placing the proton detectors at backward scattering angles is that no 

background is expected from other reaction channels. In Fig. 3 the calculated kinematics of the 

outgoing deuteron from for the 
9
Li + d elastic and inelastic scattering are shown. Since there may be 

also a small proton contamination in the CD2 target, the 
9
Li + proton scattering reactions are also 

shown in Fig. 3. In all these cases, the kinematics of the reaction does not allow to produce a light 

nucleus at backward scattering angles, where the LEDA detector was located. 

 
 

Figure 3. Energy of the emitted protons as a function of the scattering 

angle in the laboratory frame for the 
9
Li(d,p)

10
Li in inverse kinematic at 

100 MeV (solid curve), in comparison with the kinematics of the lighter 

recoiling nuclei from competing reaction channels. The angular range 

covered by the LEDA detectors is 127° < θLEDA < 152°. 
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The 
10

Li excitation energy was reconstructed with significant statistics allowing to explore its level 

structure. Fig. 4 shows the excitation energy spectrum obtained up to 2.5 MeV in the angular region 

8.3°< θCM < 16.2°. The centroid (E0 = 0.6 MeV) and full width at half maximum (Γ = 0.6 MeV) of the 

unbound ground state were deduced and also the presence of a structure at higher excitation energy at 

around 1.5 MeV is visible. The sharp fall down of the tail of the first peak toward zero excitation 

energy shows that there is no evidence in the present data of the existence of a s1/2 low lying virtual 

state as supposed by [6].  

The highly segmented detection system also allowed to measure the angular distributions of the 

observed resonances at forward angles. The analysis of the angular distribution, which is still in 

progress, would give some indication about the controversial question of the spin-parity of the 
10

Li 

unbound ground state.  

 
Figure 4. 

10
Li reconstructed excitation energy from the d(

9
Li,p)

10
Li 

reaction at 11 AMeV. 
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