Liaison and pronunciation learning in end-to-end text-to-speech in French

Citation for published version:

Digital Object Identifier (DOI):
10.21437/SSW.2021-34

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proc. 11th ISCA Speech Synthesis Workshop (SSW 11)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Liaison and Pronunciation Learning in End-to-End Text-to-Speech in French

Jason Taylor1, Sébastien Le Maguer2, Korin Richmond1

1 The Centre for Speech Technology Research, The University of Edinburgh.
2Sigmedia Lab, ADAPT Centre, School of Engineering, Trinity College Dublin, Ireland

\texttt{jason.taylor@ed.ac.uk, lemagues@tcd.ie, korin@cstr.com}

Abstract

Sequence-to-sequence (S2S) TTS models like Tacotron have grapheme-only inputs when trained fully end-to-end. Grapheme inputs map to phone sounds depending on context, which traditionally is handled by extensive preprocessing in the TTS front-end. However, French orthography does not provide a clear one-to-one mapping between graphemes and sounds, and in English, which similarly has rather non-phonetic orthography, pronunciations are a significant cause of error in S2S-TTS with grapheme-inputs. In this paper, we test implicit pronunciation knowledge where graphemes do not map directly to phones. Implicit pronunciation knowledge learnt in S2S-TTS is similar to a standalone grapheme-to-phoneme (G2P) model, which makes explicit phone predictions at the sequential level. We find grapheme-input S2S-TTS makes implicit pronunciation errors similar to explicit G2P models - notably for foreign names. In a traditional front-end pipeline, there are also post-lexical rules which modify G2P output at the sequential level. In French, post-lexical rules require a deep knowledge of linguistic structure in a process called Liaison. Without explicit rules, we find S2S-TTS with grapheme-inputs over-inserts Liaison sounds, leading to a significant preference for a phone-based equivalent. By testing with linguistically-motivated stimuli, we observe differences that would otherwise go undetected.

Index Terms: Text-to-Speech, Phoneme, Liaison, Enchaînement

1. Introduction

Neural text encoders enable text-to-speech synthesis from raw text-audio pairs without extensive text normalisation and/or linguistic preprocessing such as lexicon and G2P model lookups. Traditionally these initial steps, formulated in the front-end, ensured correct pronunciations and provided useful information for modules further down the text-to-speech pipeline. With the rise of end-to-end (E2E) TTS with Tacotron \cite{1} and subsequent text encoders \cite{2,3}, the extent and need for a front-end for TTS is in question.

In \cite{4}, implicit pronunciation knowledge learned in a grapheme-based Tacotron was framed as a G2P model trained on the text from training datasets in English such as LJ \cite{5} and VCTK \cite{6}. Implicit G2P models were poorer than lexicon-based G2P models, being unable to pronounce place names and foreign names - especially those with non-phonetic orthography in English.

French also has non-phonetic orthography. In \cite{7}, the use of graphemes and phones were analysed as input features. The authors visualised embedded grapheme-input with t-SNE, observing single graphemes in context can map to multiple phone sounds. The authors sampled 50 sentences from the SIWI dataset in a MUSHRA comparing graph and phone input. Listeners were also asked to rate the pronunciation of the samples on a scale from 1-5 in a MOS-style test. Grapheme and phone-input performed with no-significant difference in these tests. In addition, tongue twisters were tested to measure pronunciation learning abilities, also with no significant difference found. The authors noted that both grapheme and phone-input based systems produced errors in the pronunciation of Liaison, but did not formally test this difficulty.

In this paper, we compare grapheme and phone input for French E2E-TTS using linguistically motivated stimuli. We first target stimuli to test the implicit G2P model and disallowed cases of Liaison. Under Liaison, phones may be inserted between word boundaries (mes amis, mon amour). The post-lexical rules governing Liaison derive from linguistic information such as part-of-speech (POS) tags and semantic roles (subject, object, etc). We think phonetic control of Liaison is handled more reliably when using phones as a representation.

We proceed to add syllable boundaries to input to test another supra-segmental process in French known as Enchaînement. In French, syllables span word-boundaries so that consonants are not left at the end of syllables (eg, mon cher ami - mon cher ami). We test using stimuli containing examples of Enchaînement.

Overall, we find there are definite differences in pronunciations between grapheme- and phone-inputs in French, and these differences are revealed when using linguistically targeted stimuli.

2. Previous Work

2.1. Linguistic Features in Tacotron

The TTS front-end consists of a pipeline of processes to normalise input text and generate a linguistic specification for use by neural encoders, duration/prosody models, and vocoders. E2E TTS is an approach that aims to simplify the traditional modular TTS pipeline. The first Tacotron paper demonstrated high quality E2E-TTS was possible with grapheme-input, although the authors noted pronunciation errors were common and performance was enhanced with a front-end \cite{1}.

Some pronunciation issues derive from text normalisation. For instance the string ‘3’ may be ordinal or cardinal, or abbreviations such as stock-ticker symbols can have ambiguous pronunciations. Traditionally, such errors have been averted using rule-based verbalisers. While the general performance of RNN-based verbalisers is accurate, some errors are irrecoverable and unacceptable for deployed systems \cite{8}. RNN-based errors require an FST filter, a core problem presented in the Kaggle-hosted Text Normalisation Challenge \cite{9}, where the hosts noted the high degree of manual rule-writing for the top performing systems \cite{10}. There is a recent drive to verbalisation that shares a unified representation across ASR and TTS \cite{11} enabling swift rollout of FST filters to low resource languages using a template-based questionnaire \cite{12}.
Relatedly, pronunciation errors may also derive from a lack of deeper linguistic knowledge learned implicitly from text-audio pairs in the dataset. Increasingly, research demonstrates augmenting E2E-TTS with linguistic features improves quality in English, such as with phones [13] or with morphemes [14]. Pronunciation correction is also possible when mixing input representations between graphemes, phones and syllables [15, 16]. For non-alphabetic languages such as Japanese and Chinese, phones are preferred to characters to avoid large character sets. In these languages, the implicit pronunciation model does not learn pitch or other prosodic information meaningfully. Contextual linguistic features such as the mora [17] and pitch accents [18] are helpful, although such contextual features must be compact to be beneficial [19]. Such features were used in [20] with simplified alignments.

Recently in English the field has also used linguistic features to improve prosody: using syllabic stress [21], semantic and syntactic features [22, 23] and pre-trained language model embeddings [24, 25]. Clockwork RNNs were also used to hierarchically encode linguistic features at varying levels in [26], a hierarchical encoder having previously helped in DNN-based TTS [27, 28].

2.2. French Pronunciation

Recently, grapheme and phone inputs were tested in a French Tacotron model [7], with the authors finding no significant difference between the two inputs in a MUSHRA listening test. They chose samples from a random test set, however, which can mask subtle but important differences between systems. It was proposed in [29] for instance that listening test samples should instead be chosen containing large differences in acoustic mismatch. Tongue twisters were also tested in [7], with no significant difference found between grapheme and phone inputs. While the rapid repetition of certain articulations are difficult for humans to pronounce, we posit the grapheme-to-sound relations contained in tongue twisters are usually unambiguous and thus not an appropriate way to test implicit pronunciation learning. Instead, we target test stimuli to evaluate particular G2P and post-lexical challenges for E2E-TTS in French: G2P error words, Liaison and Enchaînement.

With grapheme-input, the text-encoder learns pronunciations implicitly while learning acoustic features. In TTS, data driven G2P models are typically trained with more than 100,000 entries from a pronunciation lexicon. While G2P conversion is regular in French, the training data is restricted in vocabulary covering fewer words than in a lexicon and G2P relations of foreign words. Figure 1 shows that the full size of the SIWI and CSS10 French datasets have limited word coverage. In [4], the authors demonstrated explicit G2P models trained on words in TTS training data underperformed G2P models trained on a full lexicon in English. They also showed G2P error words were mispronounced by grapheme-input E2E-TTS. Likewise here, we test the pronunciation of grapheme- and phone-input models using stimuli containing words with inaccurate G2P conversion.

We also test Liaison which is a process where linking sounds are inserted between words. Traditionally, it occurs during the “post lexical” module of a TTS front-end, after an initial phone string has been obtained from a lexicon lookup or G2P model. The plural possessive ‘mes’ before a following consonant has no pronunciation corresponding to the ‘s’ grapheme: mes chats - [me . sh]. But before a following vowel, the ‘s’ grapheme corresponds to the pronunciation [z]: mes amis - [me . az . am]. The rules governing Liaison operate at a deep linguistic level which are difficult to model. For instance, Liaison is disallowed after a singular noun. While data modelling of Liaison has been tested with decision trees [30] and templates [31], the process is complicated further because its use is often stylistic and optional [32], consequently hand-written rules are often used for TTS. [7] notes that grapheme-input Tacotron does insert Liaison sounds but does not learn when to use it appropriately. Their phone-input model also made Liaison errors, but their front-end used a low-accuracy rule-based G2P system and did not use post-lexical Liaison rules. We re-evaluate grapheme and phone-based Liaison using a test set of disallowed Liaisons.

Enchaînement occurs when the final sound of one word transfers to the first syllable of the next word. For instance, in mon cher ami the final rhotic of the word ‘cher’ is the onset to the syllable of the next word ami - [mø . a . mi]. A multi-task G2P with syllabic boundaries included in output was shown to improve G2P performance in 14 languages [33], although French was not included in their reported results. As noted above, contextual phone information has been helpful in mora-based languages such as Japanese.

3. Methods

3.1. Tacotron Model

The Tacotron model we use for our experiments here [34], has a pre-net and CBHG module to encode a series of one-hot input characters into a single representation. Unlike previous DNN-based systems, a sequential text encoder and attention mechanism align input text to audio directly, enabling grapheme-based input. We used Location Sensitive Attention (LSA) to reduce instability in output speech as recommended in [2]. Each Tacotron was trained for 350k training steps. We use a WaveRNN vocoder based on [35], trained using Tacotron’s predicted outputs up to 2000k steps, and synthesised samples in batch-mode. We used a sampling rate of 16kHz.
3.2. Data

3.3. Front-End

For our phone-based systems, we used the French front-end from MaryTTS [36], with its default lexicon and G2P model. The lexicon is based on the database Lexique [37] and each word has been phonetized as well as syllabified using LIA PHON [38] whose Phone-Error-Rate is 1.3%. However, in contrast to LIA PHON, MaryTTS doesn’t provide post-lexical rule-based phonetization such as Liaison. Therefore, we manually wrote Liaison post-lexical rules based upon the guide available in [39]. Since POS tagging was a core input attribute we used the Stanford POS tagger [40] to ensure as high accuracy as possible.

3.4. Experiments

We ran AB preference tests on 10 sentences held-out from the CSS10 dataset between: i) graphemes (G) and phones (P) as input; and ii) phones (P) and phones enriched with syllable boundaries (S). The general AB tests complement the targeted AB test results.

To test the implicit knowledge of French pronunciation in the grapheme-based Tacotron, we applied the method used in [4] to test implicit pronunciation learning of grapheme-based Tacotron in English: train a G2P model using the TTS training data, identify and synthesise G2P error words with the Tacotron model. We used OpenNMT [41] for G2P modelling. We placed 10 problematic words in carrier sentences and synthesised them using the G and Liaison P systems.

To test Liaison, we hand-crafted a test set of 10 sentences, each containing disallowed Liaisons. As noted in [7], disallowed cases of Liaison are problematic for Tacotron - for example where an s is inserted after an aspirated-h as in les haricots. We submitted the G and Liaison P systems to a forced choice test for preference

To test Enchaînement, we hand-crafted a test set of 10 sentences, each containing cases where the word-final consonant becomes the onset of the following word-initial syllable. We did augment the G model here as syllable strings could only be derived from phone-based systems. We synthesised samples from the Liaison phone-input model (containing word boundaries) and the Enchaînement phone-input systems for an AB preference test.

We built the AB preference tests in Qualtrics. Due to social distancing policies, we held our listening test online using the Prolific platform. We used 30 participants. Participants were native French speakers and had no known hearing difficulties. We did not allow participants to take the test on their mobile phones - forcing them to use a desktop. For the general and targeted preference tests the accompanying question on each screen was: Which clip has better pronunciation? (Quel clip a la meilleure prononciation?)

3.5. Results

3.6. CSS10 Test Stimuli

The results from the general AB listening test are shown in Figure 2. No significant differences were found between the G and P systems, nor between the P and S systems.

We encourage the reader to listen to samples using this link: http://homepages.inf.ed.ac.uk/s1649890/fren/

Figure 2: Results from preference tests using CSS10 stimuli. No significant differences were observed between grapheme-input (G), phone-input (P) and phones enriched with syllable boundaries (S). The significance level at p = 0.05 is shown by the black dotted line at x=57.

3.7. Targeted stimuli

The results from the targeted AB listening test are shown in Figure 4.

3.7.1. Words of inaccurate G2P

The phone-input models had accurate phone labels for this targeted preference test. Listeners significantly preferred the phone-based model over the grapheme-based model. Some incorrect pronunciations by system G are shown in Figure 3.

The words contain unusual G2P relations in French missing from the TTS training data. Representation mixing [16, 15] may correct pronunciations provided the reader has a large enough pronunciation lexicon to label a sufficient quantity of training data.

3.7.2. Liaison stimuli

Listeners significantly preferred the phone-based system. The French language has a highly active normative body called the Academy (l’Académie Française) who maintain a strict standard form of the language prohibiting insertion of Liaison sounds in certain contexts, such as before the aspirated h in combinations like les haricots or les hérissons. While speakers do not strictly obey all rules, the prescribed norm of correct pronunciation remains, and incorrect Liaison insertion was perceived by listeners.

<table>
<thead>
<tr>
<th>Word</th>
<th>G (Incorrect)</th>
<th>P (Correct)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miguel de Cervantes</td>
<td>[digel da srawatz]</td>
<td>[migel da srawatz]</td>
</tr>
<tr>
<td>Les Coopers</td>
<td>[te skopo]</td>
<td>[le kype]</td>
</tr>
<tr>
<td>Monica Lewinsky</td>
<td>[pwanka lewinski]</td>
<td>[monika lywinski]</td>
</tr>
<tr>
<td>Rio de Janeiro</td>
<td>[trio da yanero]</td>
<td>[sio da yanero]</td>
</tr>
<tr>
<td>McLaren</td>
<td>[klao]</td>
<td>[maklaaren]</td>
</tr>
</tbody>
</table>

Figure 3: IPA transcriptions of words of inaccurate G2P included in preference test. Mispronunciation of names by the G model are highlighted in bold.
Liaison Enchaînement

3.7.3. Enchaînement stimuli

No significant differences were observed between G and P, but there was a preference for S over P. With syllable boundaries replacing word-boundaries, prosodic breaks occurred between syllables and less so at word boundaries.

4. Discussion

To compare grapheme and phone inputs, consider that phone inputs result from a pipeline of complex processes in the frontend. The final quality of phone labels depends on processes such as the pronunciation lexicon, the G2P model and post-lexical rules. Error propagation from these processes may contribute to phone-label inaccuracies, as was noted in [7] where Liaison errors were observed in the phone-based system. However, phones are preferred where graphemes do not offer the same level of control. Thus, we highlight the importance of linguistically motivated stimuli to observe the differences in pronunciation of G2P error words and Liaison for phones and graphemes.

5. Conclusion

We investigated pronunciation learning with a Tacotron model’s text-encoder when using grapheme inputs in French. Grapheme inputs from raw or minimally normalised text reduce preprocessing required to build TTS voices. However, graphemes are not accurate phonetic labels so the text encoder learns an implicit, data-driven G2P model. Previous work had found implicit G2P models to be weaker than explicit data-driven G2P models trained on pronunciation lexica. The paucity of Tacotron’s implicit G2P model was observed when synthesising problematic words identified by dedicated G2P models.

We used AB preference tests to compare listener opinions on pronunciation. Using sentences from the speaker dataset we find no significant differences between grapheme or phone-input. When we use sentences containing G2P “error words” we find the grapheme-based system makes mispronunciations and the phone-based model is preferred.

Liaison is a post-lexical insertion of consonant sounds that obeys complex rules. The rules governing correct Liaison insertion are complex and require deep linguistic labels. Knowledge about the etymology of a word may also be required in the case of disallowed Liaisons before the aspirated ‘h’. Whilst speakers do not always obey strict Liaison rules, correct Liaisons from a phone-based model were preferred to Liaison over-insertion by the grapheme-based model.

We proceeded to test whether pronunciation of enchaînement was improved by substituting word boundaries for syllable boundaries. We found that in sentences with word-boundaries there were pauses at word boundaries where enchaînement should occur. Listeners significantly preferred syllable boundaries in these sentences.

Overall, we find linguistically-motivated stimuli reveal differences in pronunciation learning between graphemes and phones which are not revealed when considering averaged scores from a held-out sample of TTS training data.

6. Acknowledgements

This work was supported by an ESRC doctoral training grant provided via the SGSSS.

7. References
