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Abstract: We provide an interpretation of the structure functions of a thermal medium
such as the quark-gluon plasma in terms of the scattering of an incoming electron on
the medium via the exchange of a spacelike photon. We then focus on the deep-inelastic
scattering (DIS) regime, and formulate the corresponding moment sum rules obeyed by the
structure functions. Accordingly, these moments are given by the thermal expectation value
of twist-two operators, which is computable from first principles in lattice QCD for the first
few moments. We also show how lattice QCD calculations can be used to probe how large
the photon virtuality needs to be in order for the Bjorken scaling of structure functions to
set in. Finally, we provide the parton-model interpretation of the structure functions in
the Bjorken limit and test its consistency. As in DIS on the proton, the kinematic variable
x is proportional to the longitudinal momentum carried by the partons, however x ranges
from zero to infinity. Choosing the parton momentum parametrization to be xTu where u
is the fluid four-velocity and T its temperature in the rest frame, the parton distribution
function for a plasma of non-interacting quarks is proportional to x log

(
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)
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1 Introduction

Strong-interaction matter at high temperature is investigated extensively in high-energy
heavy-ion collisions [1, 2]. The time-evolution of the matter produced in these collisions has
been described successfully using relativistic hydrodynamics [3, 4]. Although the reaction
occurs extremely rapidly, the system appears to reach an approximate local thermal equi-
librium. The typical temperatures achieved are around 300MeV. The value of the shear
viscosity to entropy density ratio (around 0.20 [5]) extracted from comparing observed soft
particle spectra with the outcome of the hydrodynamics calculations is the lowest of all
known forms of matter, indicating that the produced matter behaves like an excellent fluid.

The high-temperature phase of QCD is known as the quark-gluon plasma (QGP). At
extremely high temperatures, due to asymptotic freedom, one indeed expects the ther-
modynamic and transport properties of the medium to be dominated by quasiparticles
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carrying the quantum numbers of either quarks or gluons. Whether such a simple picture
applies even approximately at the temperatures reached in heavy-ion collisions is question-
able in view of the phenomenological findings described above. If one then accepts the
picture of a strongly correlated fluid for the QGP at T = 300MeV, a new question arises.
Probed on short enough distance and time scales, surely this fluid must exhibit quark and
gluon scatterers; this property is guaranteed by asymptotic freedom and is analogous to the
statement that quarks and gluons can be ‘seen’ inside the proton when probed in deep in-
elastic scattering. How then do the fluid properties of the QGP emerge from these effective
degrees of freedom seen on short time scales? This question provides part of the motivation
behind the present work. It has recently been addressed [6] by invoking the large-angle
scattering of jets or parts thereof on the QGP in a heavy-ion collision. Here we invoke the
idealised situation of a light lepton scattering on the QGP via the exchange of a spacelike
photon, and ask the question in reverse: starting from the fluid in thermal equilibrium, at
what resolution scale do the quarks become ‘visible’? Although it appears unlikely that
such scattering could be identified in a heavy-ion collision, the interaction of a lepton with
the QGP is conceptually simpler, and it turns out that it can be probed in lattice QCD via
fixed-virtuality dispersion relations. At large photon virtuality Q2, the cross-section per
unit volume can be understood in the framework of deep inelastic scattering (DIS). The
structure functions of the medium then depend only logarithmically on Q2, and a parton
distribution function of the QGP can be defined.

There is a further motivation for studying the structure functions of the QGP. The
latter are connected via a Kubo-Martin-Schwinger relation to the spectral functions through
which the thermal production rate of photons and dileptons are usually expressed. These
rates are of central importance for understanding the corresponding spectra measured in
heavy-ion collisions [1, 7]. As far as the photon emissivity is concerned, it has recently
been shown that it can be probed in lattice QCD at fixed, vanishing virtuality Q2 = 0 [8].
Probing the dilepton rate, however, is only possible via a dispersion relation at fixed spatial
momentum q of the lepton pair; see for instance references [9–14]. In these calculations,
the Euclidean correlator probes both the spacelike regime of the spectral function and the
timelike regime, since it is represented as an integral over all positive real frequencies q0.
For that reason, it turns out that understanding the behaviour of the spectral functions
in the DIS regime can be helpful in probing the low-mass dilepton production rate with
a large spatial momentum relative to the plasma in lattice QCD. We will return to this
point at the end of section 2.

We note that certain aspects of DIS on non-Abelian plasmas have been addressed pre-
viously in the references [15, 16]. In the first one, DIS on an N = 4 super Yang-Mills plasma
is investigated using the AdS/CFT correspondence, and the possibility of interpreting the
corresponding structure functions in terms of partons is discussed in detail. The impact-
parameter representation plays an important role in the analysis. The second reference
proposes to evaluate the thermal expectation value of a particular twist-two operator in
QCD, and more concretely in quenched QCD, in order to judge whether its size is more
typical of a weak-coupling or a strong-coupling ‘scenario’. Its relation to the medium’s
structure functions via a moment sum rule is used to infer a partonic interpretation of

– 2 –



J
H
E
P
0
3
(
2
0
2
1
)
0
3
5

these two scenarios. With respect to these references, our analysis differs by its emphasis
on full QCD and by technical aspects; in particular the range of the Bjorken-x variable is
different, the fixed-virtuality dispersion relations are new and the connection to the spectral
functions discussed in the context of photon and dilepton production plays a major role.
This paper also has common aspects with the work of ref. [17], which studies the nucleon
structure functions on the lattice via fixed-virtuality dispersion relations. A difference
with the nucleon structure functions and, more generally, with zero-temperature structure
functions, is that in the thermal case one cannot simply take derivatives of Euclidean cor-
relators with respect to the variable q0 without confronting a numerically ill-posed analytic
continuation problem. This difference stems from the fact that the thermal correlator can
be computed only at the discrete Matsubara frequencies, q0 = i2πTn, n ∈ Z.

The rest of this paper is structured as follows. Section 2 presents the derivation of the
cross-section per unit volume for a lepton scattering on a thermal medium in terms of its
structure functions, and provides their connection to the spectral functions. The Bjorken
limit corresponding to deep-inelastic scattering is formulated and the structure functions
for a plasma of non-interacting quarks are given in that limit. In section 3, the moment sum
rules are presented for the medium structure functions, allowing the first few moments to be
computed non-perturbatively in lattice QCD. Particular attention is devoted to the n = 2
sum rule, corresponding to the momentum sum rule in the parton model. Opportunities for
lattice QCD studies of the medium structure functions for spacelike momenta are presented
in section 4. Finally, the parton-model interpretation of the structure functions in the DIS
limit is discussed in section 5. We summarize and conclude in section 6. A number of
technical aspects are collected in appendix, in particular the derivation of the moment
sum rules and the explicit verification of the first two sum rules for the plasma of non-
interacting quarks.

2 Lepton scattering on a thermal medium and structure functions of the
latter

In this section, we recall some of the basic aspects of the inelastic scattering of a lepton
on hadronic matter. Our notation is largely taken from the lecture notes [18]. Let k be
the initial momentum of the lepton, and k′ its final momentum. We also use E and E′

respectively to denote the zeroth components of these vectors. The momentum transferred
to the medium is thus q = k − k′, and we use Q2 = −q2 ≥ 0 to denote the spacelike
virtuality of the exchanged photon. The lepton mass is neglected throughout.

2.1 Inelastic cross section and hadronic tensor

First, recall the expression for the inclusive differential cross section for lepton-proton
scattering,

dσ =
∑
X

∫
d3k′

(2π)32E′
(2π)4δ4(k + p− k′ − pX)

(2E)(2M)
e4

Q4 (2.1)

×〈p, λ|jµ(0)|X〉 〈X|jν(0)|p, λ〉 `µν ,

`µν =
∑
s′
l

〈k, sl|j`µ(0)|k′, s′l〉 〈k′, s′l|j`ν(0)|k, sl〉 , (2.2)
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Figure 1. Left: Scattering of a lepton on quark-gluon plasma at global thermal equilibrium moving
with a four-velocity u in the one-photon exchange approximation. The picture shows the interaction
occurring with a cubic fluid cell, producing an unobserved QCD final-state X. Right: interpretation
of the process in the deep-inelastic scattering limit as an elastic parton-lepton collision.

where M is the proton mass and the proton-state normalisation is 〈p′λ′|pλ〉 = 2Ep(2π)3

δ(p− p′)δλλ′ . The leptonic tensor `µν is easily computed, and its expression can be found
in [18]. With

jµ(x) =
∑

f=u,d,s,...
Qf ψ̄f (x)γµψf (x), (2.3)

the electromagnetic current carried by the quarks,1 one definition of the hadronic tensor
is given by

Wµν
> (p, q)λ′λ = 1

4π

∫
d4x eiq·x 〈p, λ′|jµ(x) jν(0)|p, λ〉 (2.4)

= 1
4π
∑
X

(2π)4δ4(q + p− pX) 〈p, λ′|jµ(0)|X〉 〈X|jν(0)|p, λ〉,

which allows one to substitute the sum over final states X by Wµν
> (p, q). In fact, the

hadronic tensor Wµν(p, q) is usually defined by replacing the product of currents by their
commutator. The tensors Wµν

> and Wµν are equal for the kinematics accessible in ep

scattering. One then obtains for the differential cross section

d2σ

dE′dΩ = e4

8π2Q4

(
E′

ME

)
`µν

1
2
∑
λ

Wµν(p, q)λλ. (2.5)

The derivation of the cross-section for a lepton scattering on thermal hadronic matter
is very similar to the case of scattering on a proton. See the left panel of figure 1 illustrating
the process. If L3 is the volume of the thermal system in its rest frame, the differential
cross section reads

d2σ

dE′dΩ = e4 L3

8π2Q4

(
E′

E

)
`µνW

µν
> (u, q), (2.6)

1The physical values of the quark charges are Qu = 2
3 , Qd = Qs = − 1

3 , . . . .
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where the hadronic tensor is given by

Wµν
> (u, q) = 1

4π Z
∑
n

e−βEn
∫
d4x eiq·x 〈n|jµ(x) jν(0)|n〉, (2.7)

Z =
∑
n e
−βEn being the canonical partition function. While the temperature dependence

ofWµν
> is not indicated explicitly, the argument uµ represents the four-velocity of the fluid.

The state |n〉 is unit-normalized. In inelastic scattering on the proton, q0 = E − E′ ≥ 0,
since the energy of the final hadronic state can only be larger than the proton mass; in
scattering on the plasma, it is possible for the electron to gain energy (q0 < 0), although
this is suppressed as e−β|q0|. Here, due to our normalisation of the |n〉 states, the (2M)−1

factor appearing in eq. (2.1) should not be included; instead a factor L3 should be included.
We recall that for a thermal state, the typical energy of a contributing state |n〉 is of order
volume, while its spatial momentum is of order L3/2 in the canonical ensemble (see e.g. [19]).
Therefore, working in the thermodynamic limit and in the rest frame of the fluid, a typical
state |n〉 can be treated as if it were at rest.

Through the Kubo-Martin-Schwinger relation, Wµν
> can be rewritten in terms of the

spectral function ρµν , which is defined as the Fourier transform of the commutator of
the two currents, analogously to Wµν in the proton case (see eq. (A.9) for the explicit
definition). Using eq. (38) of ref. [20],2

Wµν
> (u, q) = 1

4π
(
1− e−βq0) ρµν(q0, q) (fluid rest frame). (2.8)

It is worth pointing out here that in the DIS regime defined below, since q0 is extremely
large, the structure function only differs from the spectral function by the purely con-
ventional factor of 4π. One may parametrize the tensor Wµν

> in a way similar to the
proton case,

Wµν
> (u,q) =F1

(
u·q,Q2

)(
−gµν+ qµqν

q2

)
+mT

u·q
F2
(
u·q,Q2

)(
uµ−(u·q) q

µ

q2

)(
uν−(u·q)q

ν

q2

)
.

(2.9)

Here mT is some thermal energy scale; we will later choose to set mT = T . The contraction
of Wµν

> with the symmetric part of the leptonic tensor

`{µν} = 2(kµk′ν + kνk′µ − gµν(k · k′)) (2.10)

yields
`{µν}W

µν
> = 4mT (u · k)

y

(
xy2F1 + (1− y)F2

)
, (2.11)

where
x = Q2

2mT (u · q) , y = u · q
u · k

≤ 1 . (2.12)

2Our present convention for the normalization of the spectral function is that no factor (of 1/(4π) or
other) appears in front of the Fourier transform of the current commutator, which makes the spectral
function defined here a factor (2π) larger than in the convention used in [20].
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The last inequality comes from the requirement that the lepton cannot lose more than its
initial energy E. We note that the definition of x is analogous to the definition of Bjorken-x
in DIS on the proton. One qualitative difference between scattering on the proton and on
the fluid is that in the latter case, the value x = 1 does not have any special significance,
while for the proton it corresponds to elastic scattering. Thus the multiplicative normal-
ization of x has no particular meaning, which is reflected in the freedom of choosing the
precise value of mT . For convenience, we may introduce

ρ1,2
(
q0, Q2

)
= 4π

(
1− e−βq0)

F1,2
(
q0, Q2

)
, (fluid rest frame) (2.13)

so that the cross-section may finally be written in terms of the spectral functions,

d2σ

L3dE′dΩ = 2α2E′mT

πQ4y
(
1− e−βq0) (xy2ρ1

(
q0, Q2

)
+ (1− y) ρ2(q0, Q2)

)
, (fluid rest frame).

(2.14)

One easily verifies that ρ1/q
0 and ρ2 are even, non-negative functions of q0 at fixed |q| [20],

and hence at fixed Q2 ≥ 0. Therefore the cross-section (2.14) is guaranteed to be positive
for all values of y ≤ 1. We recall that the DIS limit corresponds to Q2 → +∞ with
the variable x fixed. In this limit, due to the asymptotic freedom property of QCD,
the structure functions F1,2 and the corresponding spectral functions ρ1,2 are expected to
depend mainly on x, and only logarithmically on Q2. In the parton-model interpretation
of the process, the lepton scattering cross section arises from the incoherent sum of lepton-
parton scatterings; see the right panel of figure 1. Given that in QCD these partons are
massless spin-1/2 particles, this picture implies the Callan-Gross relation, F2 = 2xF1,
which receives corrections logarithmically suppressed in Q2.

We set mT = T from here on until section 5, in which the role of this thermal energy
scale is discussed within the parton model.

2.2 Structure functions of the non-interacting plasma

Working in the rest frame of the medium, we note that spectral functions are usually
calculated as a function of q0 (also often notated ω) and q. We remark that if one chooses
|q| and x as independent variables, the frequency variable takes the form

q0 =
√

q2 + T 2x2 − Tx
|q|→∞
' |q| − Tx. (2.15)

The DIS regime can be reached by sending |q| → ∞ at fixed x, since Q2 = 2T |q|x+O(T 2).
Thermal QGP spectral functions at leading order in perturbation theory are given for

instance in [21]. Taking the leading-order expression of ρ1, which is equal to ρ11 in the
fluid rest frame for qµ = (q0, 0, 0, q3), one finds, for Nc colors of massless quarks,

lim
Q2→∞

F1
(
x,Q2

)
=

(∑
f Q2

f

)
NcT

2

4π2 x log
(
1 + e−x/2

)
. (2.16)

One also finds that −1
2W

µ
>µ has the same limit. It follows that

lim
Q2→∞

(F2 − 2xF1) = 0, (2.17)
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Figure 2. The structure function F1(x,Q2) of the free plasma for different values of Q2, together
with the Bjorken limit eq. (2.16). Here we have set Nc = 3 and

∑
f Q2

f = 1.

which is the Callan-Gross relation. Thus the leading-order calculation of the spectral
functions confirms that the Q2 dependence disappears in the Bjorken limit, and that the
Callan-Gross relation is satisfied.

The graph of expression (2.16) is displayed in figure 2. It is positive and normalizable
as a function of x. The approach of F1 to the expression in eq. (2.16) is also illustrated the
figure. Clearly, F1 approaches its limit sooner at small x than at large x. It is not before
Q/T = 10 that F1 qualitatively acquires its asymptotic shape.

We now briefly return to a remark made in the introduction. As noted around
eq. (2.15), the DIS regime can be reached by setting q0 = |q| − xT for a fixed value of the
Bjorken variable x, and sending |q| → ∞. Thus, in a dispersive representation at large
and fixed |q|, the Euclidean correlator receives a contribution from the spectral function in
the DIS regime. More precisely, if Q2

0 denotes the virtuality beyond which the DIS regime
applies for x of order unity, the range of frequencies corresponding to the DIS regime is

|q| − πT . q0 ≤ |q| − Q2
0

2|q| . (2.18)

Therefore, understanding the behaviour of the spectral functions in the DIS regime is
helpful for probing the low-mass dilepton production rate with a large spatial momen-
tum relative to the plasma using lattice QCD correlators in conjunction with a fixed-|q|
dispersion relation.
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3 Sum rules

A standard tool to analyze the structure functions in the DIS regime is the operator-product
expansion (OPE). Here we review the OPE analysis to formulate the moment sum rules
of the structure functions. We set Nc = 3 in this section, as appropriate for QCD.

The time-ordered operator-product of two electromagnetic current admits the asymp-
totic expansion

tµν(q) ≡ i

∫
d4x eiq·x T{jµ(x)jν(0)}

Q→∞∼
∑

n=2,4,...

∑
f,j

cf ;µνµ1...µn(q)Mfj(Q, µ̃)
[
Oµ1...µn
nj

]
µ̃
,

(3.1)

where µ̃ is a reference energy scale at which the local operators on the right-hand side are
renormalized. The twist-two fermionic operator with flavor f is

Oµ1...µn
nf = 1

2

(
i

2

)n−1
S{ψ̄fγµ1←→D µ2 . . .

←→
D µnψf} , (3.2)

and the gluonic one reads

Oµ1...µn
ng = −1

2

(
i

2

)n−2
S{Fµ1α←→D µ2 . . .

←→
D µn−1Fµnα} . (3.3)

Here ←→D = −→D −←−D and S acts as 1/n! times the sum over permutations of the n Lorentz
indices and the subtraction of trace terms, such that contracting any pair of indices yields
zero. The coefficients cf ;µνµ1...µn(q) are given by

cf ;µνµ1...µn(q) = 2Q2
f

(
−gµν + qµqν

q2
)
2n qµ1 . . . qµn

(Q2)n +

2Q2
f

(
gµµ1 −

qµqµ1

q2
)(
gνµ2 −

qνqµ2

q2
)
2n qµ3 . . . qµn

(Q2)n−1

(3.4)

andMfj(Q, µ̃) are the coefficients of the operator mixing. To leading order in perturbation
theory, MLO

fj = δfj , and to next-to-leading order

MNLO
fj (Q, µ̃) =

( log
(
Q2/Λ2)

log(µ̃2/Λ2)

)a(n)/2b0

fj

. (3.5)

In this expression, Λ is the energy at which the one-loop renormalized coupling diverges,
b0 = 11 − 2

3nf the first coefficient of the expansion of the beta function in powers of
the gauge coupling g and γ

(n)
ij = − g2

(4π)2a
(n)
ij is the anomalous-dimension matrix for the

twist-two operators of dimension n+ 2. The index j runs over {f, g}.
The strategy we follow to obtain moment sum rules for the structure functions from the

OPE is to first relate the time-ordered product to the corresponding retarded commutator
of currents; and secondly to use the fixed-virtuality dispersive representation of the retarded
correlator. Details of the derivation are given in appendix A. The result is∫ ∞

0
dx xn−1

[
F1
(
x,Q2

)]
leading-twist

=
∑
f,j

Q2
f

2 Mfj(Q, µ̃)〈Onj〉 , n = 2, 4, . . . , (3.6)
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where
〈Oµ1...µn

nj 〉 = Tn[uµ1 . . . uµn − traces]〈Onj〉 . (3.7)

Apart from the upper integration limit being infinity rather than unity, which makes it
necessary to isolate the leading-twist part of the structure function prior to computing
its moments, the form of the moment sum rule (3.6) is the same as in standard DIS.
In appendix B, we verify these moment sum rules at leading order in the case of non-
interacting quarks by separately computing the left- and right-hand side. Given that 〈O2j〉
is proportional to the enthalpy, that the total momentum of the fluid is generically given
by the product of its enthalpy with its four-velocity, and that F1 has a parton-model
interpretation as being proportional to the parton distribution with a known prefactor
(eq. (5.10) below), the n = 2 sum rule expresses in this case the (common sense) fact that
the quarks carry the entire momentum of the fluid. Next, we formulate specifically the
n = 2 sum rule for Wilson coefficients at next-to-leading order (NLO) accuracy, which is
appropriate for QCD and significantly modifies the OPE prediction for the n = 2 moment
of the structure function F1.

3.1 The n = 2 sum rule to NLO

We now formulate the lowest moment sum rule at NLO accuracy in the Wilson coefficients.
We follow the notation of ref. [22]. The twist-two fermionic local operator renormalized at
a scale Q2 is, at NLO,[

Oµν2f

]
Q

= 1
2

1
16/3 + nf

Tµνtraceless

+ 1
nf (16/3 + nf )

(
log

(
Q2/Λ2)

log (µ̃2/Λ2)

)− 4
3( 16

3 +nf)/2b0 16
3
∑
f ′

Oµν2f ′ − nfO
µν
2g


µ̃

+
(

log
(
Q2/Λ2)

log (µ̃2/Λ2)

)−32/9b0
Oµν2f −

1
nf

∑
f ′

Oµν2f ′


µ̃

,

(3.8)

where nf is the number of fermion flavors, and Tµνtraceless = 2
(∑

f O
µν
2f +Oµν2g

)
is the traceless

part of the energy-momentum tensor. In the absence of a flavor-non-singlet chemical poten-
tial, the in-medium expectation value of the last term vanishes by SU(nf ) flavor symmetry.
As a consequence, the moment sum rule to next-to-leading order in αs is∫ ∞

0
dx x

[
F1
(
x,Q2

)]
leading-twist

=
∑
f

Q2
f

2

1
2

1
16/3 + nf

〈T 〉

+ 1
nf (16/3 + nf )

(
log

(
Q2/Λ2)

log (µ̃2/Λ2)

)− 4
3( 16

3 +nf)/2b0 16
3
∑
f ′

〈O2f ′〉 − nf 〈O2g〉

 ,

(3.9)

where

〈Oµν2j 〉 = T 2
[
uµuν − 1

4g
µν
]
〈O2j〉 ,

〈Tµνtraceless〉 = T 2
[
uµuν − 1

4g
µν
]
〈T 〉 .

(3.10)
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Given the energy-momentum tensor of a relativistic fluid at thermal equilibrium

Tµν = (e+ p)uµuν − pgµν , (3.11)

we find
〈T 〉 = e+ p

T 2 , (3.12)

where e is the energy density and p the pressure, their sum corresponding to the enthalpy
density. In the extreme Q→∞ limit, we have

lim
Q2→∞

∫ ∞
0

dx x
[
F1
(
x,Q2

)]
leading-twist

=

∑
f

Q2
f

 1
16/3 + nf

e+ p

4T 2 . (3.13)

Thus the asymptotic n = 2 moment of the structure function F1 is uniquely determined
by the enthalpy density of the medium. By invoking the interpretation of F1 in terms of a
parton distribution function (see eq. (5.10) below), and recalling that the total momentum
density carried by the fluid is (e+p)u, eq. (3.13) also shows that the asymptotic momentum
fraction carried by one out of nf flavors of quarks is 1/(nf+16/3), while the gluons carry the
fraction (16/3)/(nf +16/3). These fractions are exactly the same as in conventional DIS on
the nucleon. In that context, these momentum fractions only apply at extremely large Q2.
For nf = 3, the asymptotic gluon momentum fraction is 0.64. This number is substantially
larger than the enthalpy fraction contributed by the gluons in the high-temperature limit,
which is about 0.34. This difference reflects the fact that the non-interacting structure
function F1 satisfies the n = 2 sum rule with leading-order Wilson coefficients, and not
the NLO sum rule (3.13) appropriate for QCD. Thus the n = 2 moment of the structure
function F1 in the DIS limit is unstable against ‘turning on’ interactions between quarks,
and cannot be expanded in powers of g2(T ). We return to this point in the conclusion.

4 Tests of the onset of Bjorken scaling from Euclidean correlation
functions

An interesting question is how large the photon virtuality has to be in order for the structure
functions at fixed x to become Q2-independent. It is tempting to address this question by
computing both sides of a moment sum rule, however the x-moments of the spectral func-
tions correspond to derivatives of Euclidean correlators at vanishing Matsubara frequency,
and these derivatives are only accessible via a numerically ill-posed analytic continuation.
We therefore propose tests that do not require a numerical analytic continuation.

In the rest frame of the plasma, the spectral function components are related to the
longitudinal and transverse spectral functions σL and σT , as defined in ref. [8], as well as
to the spectral functions ρ1 and ρ2 introduced in the DIS context according to

1
2

(
δij − qiqj

q2

)
ρij (u, q) = −σT

(
q0, Q2

)
= ρ1

(
q0, Q2

)
,

ρ00 (u, q) = q2

Q2σ
L
(
q0, Q2

)
= − q2

Q2 ρ1
(
q0, Q2

)
+ T |q|4

q0Q4 ρ2
(
q0, Q2

)
,

qiqj

q2 ρij (u, q) =
(
q0)2
Q2 σL

(
q0, Q2

)
= −

(
q0)2
Q2 ρ1

(
q0, Q2

)
+ Tq0q2

Q4 ρ2
(
q0, Q2

)
.

(4.1)
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The two longitudinal and transverse components of the retarded polarisation tensor are
denoted as GLR(q0, q2) and GTR(q0, q2); see eq. (A.7) for their explicit definition. The
imaginary part, for q0 approaching the real axis from above, yields the corresponding
spectral function. At a spacelike or lightlike point Q2 ≥ 0, the relation to the spectral
functions σL,T reads

2 ImGL,TR

(
q0, q2

)
= σL,T

(
q0, Q2

)
, Q2 = q2 −

(
q0
)2
. (4.2)

For imaginary q0 = iωn, with ωn = 2nπT > 0 the n-th Matsubara frequency, the
retarded correlator coincides with the Euclidean correlator [20],

GL,TR

(
iωn, q

2
)

= GL,TE

(
ωn, q

2
)
≡ HL,T

E

(
ωn;Q2

)
, Q2 = q2 + ω2

n. (4.3)

For a given spacelike virtuality Q2, the Euclidean correlators can be obtained in lattice
QCD as a function of Matsubara frequency by computing

HT
E (ωn;Q2) =

∫
d4x e

√
ω2
n−Q2q̂·x+iωnx0

(1
2 (δik − q̂iq̂k) 〈ji (x) jk (0)〉

)
, (4.4)

HL
E

(
ωn;Q2

)
=
∫
d4x e

√
ω2
n−Q2q̂·x+iωnx0 (〈j0 (x) j0 (0)〉+ q̂iq̂k〈ji (x) jk(0)〉) . (4.5)

On the right-hand side of these equations, q̂ is the unit vector representing the direction of
the spatial momentum, and we are using Euclidean notation, implying a sign change in the
two-point functions of the spatial current relative to its Minkowski-space correspondent.
We have anticipated the fact that in order to probe DIS kinematics (Q2 = O(Tq0)), the
spatial momentum in the Euclidean correlator needs to become imaginary and close in
magnitude to ωn. Thus the weight function of the coordinate-space correlator is a real
exponential, as for the case of vanishing virtuality [8]. The dispersion relation (4.6) below
however also applies to the case where one or more of the spatial momenta are real, as
long a the virtuality is kept fixed. We also remark that eqs. (4.4)–(4.5) could be averaged
analytically over the direction of q̂ using Legendre polynomials, along the lines of [23]. This
could prove numerically advantageous in calculations performed on lattices with a large
spatial volume.

The fixed-virtuality dispersion relation [8]

HL,T
E

(
ωn;Q2

)
−HL,T

E

(
ωr;Q2

)
=
∫ ∞

0

dω
π
ω σL,T

(
ω,Q2

) [ 1
ω2 + ω2

n

− 1
ω2 + ω2

r

]
(4.6)

follows. The subtraction of HL,T
E (ωr;Q2) is needed to ensure the convergence of the dis-

persive integral.3 We can rewrite eq. (4.6) as an integral over the variable x = Q2/(2Tω)
as follows

HL,T
E

(
ωn;Q2

)
−HL,T

E

(
ωr;Q2

)
=
∫ ∞

0

dx
π
x σ̂L,T

(
x,Q2

) a2
r − a2

n

(1 + a2
nx

2) (1 + a2
rx

2) , (4.7)

3The forward Compton scattering amplitudes of the proton require analogous subtractions. We also
remark that, in the lattice regularization of QCD, an additional subtraction is in general needed on the
right-hand side of eq. (4.6) due to an ultraviolet divergence; see [8] for one such suitable subtraction.
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where an ≡ 2Tωn/Q2 and for convenience we have defined spectral functions that take
as arguments the Bjorken variables, σ̂L,T (x,Q2) = σL,T (Q2/(2Tx), Q2). The Euclidean
correlators HL

E and HT
E can be computed directly in lattice QCD. Thus eq. (4.7) can

be used to probe the Q2 evolution of the spectral functions σ̂L,T . For this purpose, the
kinematic variables an and ar should be kept fixed as Q2 → ∞. In particular, the extent
to which the spectral functions become Q2-independent at fixed x can be probed via the
corresponding Euclidean correlators, albeit a global test involving a weighted integral over
x. The typical x-values contributing are of order unity, provided an and ar are chosen
of that order.

The spectral function σ̂T coincides up to its sign with ρ1, while using x = Q2/(2Tq0),
it follows from eqs. (4.1) that

qiqj

q2 ρij(u,q)−ρ00(u,q) =−σL
(
q0,Q2

)
=
(
ρ1
(
q0,Q2

)
− ρ2

(
q0,Q2)
2x

)
− 2xT 2

Q2 ρ2
(
q0,Q2

)
.

(4.8)

Thus the longitudinal spectral function σL, which can be probed in lattice QCD via
eq. (4.7), measures the size of the correction to the Callan-Gross relation (5.8), up to
a term suppressed by the factor 1/Q2 in the Bjorken limit. Since in QCD the Callan-Gross
relation is asymptotically violated by terms of order αs(Q2) [18], where αs = g2(Q2)/(4π)
is the running coupling, the power-suppressed term is parametrically irrelevant. Thus, in
the Bjorken limit, one expects HL

E to be suppressed (logarithmically in Q2) as compared
to HT

E . It is interesting at this point to note that the longitudinal channel HL
E vanishes

for Q2 = 0, while HT
E probes the real-photon emissivity. Thus, while the Bjorken limit is

very far from lightlike kinematics in the sense that Q2 � T 2, a similar suppression of the
longitudinal relative to the transverse channel is expected.

In figure 3, left panel, we illustrate the approach of −σ̂T and (σ̂L−σ̂T ) to their common
Bjorken limit in the free theory. We observe that in both cases the departure from the
limit value increases with x, and that −σ̂T approaches this limit faster. The right panel
allows one to judge the size of the breaking of the Callan-Gross relation as a function of x
in relation to the magnitude of ρ1.

As noted below eq. (4.7), by computing the correlators on the left-hand side of the
equation on the lattice for increasing values of the virtuality Q2, one could observe the
approach to Bjorken scaling. In figure 4, we show as an example the corresponding analysis
performed in the free theory. By using the spectral functions given in ref. [21], we integrate
numerically the right-hand-side of eq. (4.7). In order to keep an and ar fixed and O(1)
as we increase Q2, we set ωn = ωr/2 = Q2/(2T ), a choice that corresponds to an = 1
and ar = 2. Figure 4 displays the difference of Euclidean correlators for two choices of
polarization which, due to the Callan-Gross relation, converge to the same value in the
Bjorken limit. The figure illustrates again that the convergence is faster for the transverse
channel HT

E than for the difference (HL
E −HT

E ). One can also read off from the figure how
suppressed HL

E is in comparison to HT
E .
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Figure 3. Left: approach to the Bjorken limit of the transverse as well as transverse-minus-
longitudinal spectral function, in the case of a plasma of free fermions. The free spectral functions
from [21] have been used. Right: breaking of the Callan-Gross relation ρ2 = 2xρ1 at finite Q2 in
the free theory. The functions ρ1 and ρ2 have been computed from the free spectral functions using
eq. (4.1). In both panels, Nc = 3 and

∑
f Q2

f = 1 has been chosen.

1 2 3 4 5
n

10 20 30 40 50 60
(Q/T)2

0.08

0.09

0.10

0.11

0.12
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0.14

0.15

H
L,

T
E

(
n;

Q
2 )

/T
2

H
L,

T
E

(
r;Q

2 )
/T

2

-T 
L-T 
Bjorken limit

Figure 4. Fixed-virtuality correlation functions (4.7) in the free theory, as functions of Q2. As
we increase ωn, we set Q2 = 2Tωn and ωr = 2ωn, i.e. an = 1 and ar = 2 are kept constant.
Two choices of polarization are shown, that converge to the same value in the Bjorken limit. The
difference between these two polarizations measures the breaking of the Callan-Gross relation at
the correlator level, up to a 1/Q2 suppressed term (see eq. (4.8)).
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5 Parton model

In this section, we review the partonic interpretation of the structure functions of the
thermal medium. The steps follow closely the textbook treatment of unpolarized DIS on
the nucleon, a small but significant difference being the parametrization of the parton
momentum; see eq. (5.2) below.

Consider the elastic electron-parton collision via one-photon exchange; see the right
panel of figure 1. The parton is assumed to be a Dirac particle and to carry an electric
charge equal toQf times the electron charge. It has initial momentum pξ, while the electron
has initial momentum k. The differential cross-section reads (see e.g. ref. [22], eq. (14.3))

dσ

dt̂
= 2πα2

ŝ2 Q2
f

ŝ2 +
(
ŝ+ t̂

)2

t̂2
, (5.1)

where ŝ and t̂ are the Mandelstam variables of the electron-parton system. The variable
t̂ = q2 = −Q2 is the virtuality of the photon and coincides with the Mandelstam variable
t of the electron-fluid-cell collision. On the other hand, ŝ = (pξ + k)2 ≈ 2pξ · k is specific
to the electron-parton collision.

In a frame in which the fluid cell has a large γ factor, we express the fact that pξ is to
a good approximation collinear with the fluid velocity u,

pξ = ξ mT u. (5.2)

Let ff (ξ) dξ represent the number of partons of type f in the fluid cell carrying momentum
ξ mT u. One does not distinguish between quarks and antiquarks, e.g. for the up quark
fu(ξ) = u↑(ξ) + u↓(ξ) + ū↑(ξ) + ū↓(ξ). One expects this number to be of order the volume
of the cell. Translating the electron-parton cross-section into an electron-fluid-cell cross-
section, we obtain (see [22], eq. (14.8))

dσ

dQ2 =
∑
f

Q2
f ff (ξ)dξ 2πα2

Q4

1 +
(

1− Q2

2ξmT (u · k)

)2
 . (5.3)

Recalling the definition (eq. (2.12)) of the two dimensionless kinematic variables x and y,
eq. (5.3) becomes

dσ

dQ2 =
∑
f

Q2
f ff (ξ)dξ 2πα2

Q4

[
1 +

(
1− xy

ξ

)2]
. (5.4)

We found eq. (2.14) for d2σ
dE′dΩ in the fluid rest frame in terms of its spectral functions.

Using the conversion4 (see [18], eq. (2.7))

mT (u · q)
E′

d2σ

dE′dΩ = Q2

y

d2σ

dxdQ2dφ
, (5.5)

4First, show that d2σ
dE′dΩ = d2σ

dxdydφ
· E′

mT (u·q) by showing that
∣∣∣ ∂(x,y)
∂(E′,cos θ)

∣∣∣ = E′

mT (u·q) ; for that, the relations

x = 2EE′(1−cos θ)
2mT (E−E′) and y = E−E′

E
are useful. Second, show that d2σ

dxdydφ
= d2σ

dxdQ2dφ
Q2

y
by showing that

∂(x,Q2)
∂(x,y) = Q2

y
. For that, the relation Q2 = 2xyEmT is useful.
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the cross-section (2.14) becomes

d2σ

L3dQ2dx
= 2mT

x

α2

Q4 (1− e−βq0) [xy2ρ1
(
u · q,Q2

)
+ (1− y)ρ2

(
u · q,Q2

)]
. (5.6)

Note that eq. (5.6) corresponds to the cross-section for scattering on the full thermal
system, which occupies a volume L3 in its rest-frame. In this section, we are considering
the lepton scattering on a particular subvolume of the full system. Since the cross-section
scales with the volume, we now reinterpret the factor L3 as being the rest-frame volume of
that particular fluid cell.

The cross-section (5.6) is in a form to which the parton-model calculation can easily
be matched. By analogy with DIS on the proton, we anticipate that ξ is proportional to
x. Noting that the cross-section has the form of a quadratic polynomial in y, the terms in
the square bracket proportional to −y and 1 are equal in eq. (5.6), and they are also equal
in eq. (5.4) precisely when

x/ξ = 1 . (5.7)

Continuing from here, matching the ratio of the term proportional to y2 to the term
proportional to 1 between eqs. (5.6) and (5.4) yields

ρ2
(
u · q,Q2

)
= 2xρ1(u · q,Q2). (5.8)

This is the Callan-Gross relation. Matching the absolute normalization of the cross-sections
for y = 1, one obtains ∑

f

Q2
fff (ξ) = L3mT

π

ρ1
(
u · q,Q2)

1− e−βq0 . (5.9)

Recalling the KMS relation (2.13) between spectral and structure functions, the choice
mT = T allows us to rewrite

F1
(
u · q,Q2

)
= 1

4L3T

∑
f

Q2
f ff (x). (5.10)

In words, 4F1 · dx is the Q2
f -weighted number of partons carrying a momentum xT times

the fluid four-velocity uµ per unit transverse area in a slab of fluid which in its rest frame
has thickness 1/T in the longitudinal direction. This makes the choice mT = T natural.

The interpretation of the structure function as a parton distribution function is con-
firmed by the following observation. The first moment

∫∞
0 dxf(x) xTuk should yield the

spatial momentum of the fluid cell carried by quarks and antiquarks. The quantity playing
the role of momentum density in ideal hydrodynamics is (e+p)uk, therefore we would expect
to find (e+ p)L3uk for the first moment in the case of free quarks. The connection (5.10)
of the parton distribution function f to the structure function F1 together with the n = 2
moment sum rule obeyed by F1 (eq. (3.6)), which is derived from the operator-product
expansion, independently confirm this expectation; see the remark below eq. (B.4).
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6 Conclusions and outlook

In this paper we have provided a physics interpretation of the two thermal spectral functions
characterizing the electric-current correlator in the spacelike regime. They are related via
the KMS relation to the structure functions which describe the total cross-section for a
light lepton scattering on the thermal medium. What makes this observation interesting is
that a lot is known about the physics of DIS, in particular, we have shown that the same
moment sum rules apply to the thermal QCD medium as to the nucleon. Therefore, the first
few moments of the structure functions in the DIS limit can be computed in lattice QCD
via the expectation value of local twist-two operators. Furthermore, Euclidean correlation
functions can be computed in lattice QCD probing the transverse and the longitudinal
spectral function at a fixed spacelike virtuality Q2, thus allowing the onset of the DIS
regime to be probed. This approach offers a rare opportunity to answer the question,
“On what length scales do the quarks and gluons in the quark-gluon plasma start to
become ‘visible’?” in a theoretically clean way. Importantly, none of these lattice-QCD
based studies requires addressing the numerically ill-posed problem of resolving the x-
dependence of the structure functions from the Euclidean correlators. On the other hand,
the DIS kinematic regime is numerically challenging to reach, since it involves using an
imaginary spatial momentum close in magnitude to the Matsubara frequency, requiring
one to achieve excellent control over non-static screening correlators at long distances. For
that purpose, a dedicated study of the corresponding non-static correlation lengths [24] is
a good preparatory step.

It is well-known from the OPE analysis of standard DIS on the nucleon that the non-
trivial one-loop anomalous dimensions of the twist-two operators and their mixing lead
to a modified prediction of the infinite-Q2 limit of the structure functions, as compared
to a leading-order analysis. The same observation applies to the structure functions of
the thermal medium. As we have verified explicitly for the first two non-trivial moments,
the moment sum rules (3.6) using leading-order Wilson coefficients are consistent with
the structure functions of thermal, non-interacting quarks. There is no analogue of this
calculation in standard DIS, because a nucleon would simply not exist in the absence of the
SU(3)color gauge field, whereas a plasma of non-interacting quarks makes perfect sense. In
QCD however, even at a very high temperature where one might have expected interactions
to play a subleading role, the infinite-Q2 limit of the structure functions differs from that
of non-interacting quarks by an amount that is not suppressed by the strong coupling
constant. Indeed, the Q2 →∞ asymptotic momentum fractions carried by the quarks and
the gluons according to the OPE with NLO Wilson coefficients is the same as in DIS on the
nucleon — see the discussion below eq. (3.13), whereas explicitly taking the n = 2 moment
of the leading-order spectral function (2.16) leads to a different result. Thus it is clear that
the structure functions of free quarks in the DIS regime are unstable against ‘turning on’
their interactions. Clearly, this issue deserves further investigation, which could be carried
out with the help of the next-to-leading results [25, 26] for the vector spectral functions.
We also conclude from these remarks that the content of the moment sum rules is far
from trivial, and could be used to test future weak-coupling calculations of the thermal
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spectral functions, including the sophisticated resummations performed in this context; see
references [27–29] for the case of vanishing virtuality. In particular, calculations of thermal
spectral functions in the DIS regime can benefit from the existing three-loop results for the
splitting functions and anomalous dimensions of the twist-two operators [30].
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A Derivation of the moment sum rules

In this appendix we provide a derivation of eq. (3.6).

A.1 OPE prediction for the invariant amplitudes of the time-ordered
correlator

Let GµνT (q) be the thermal expectation value of the Fourier-transformed, time-ordered
product of electromagnetic currents,

GµνT (q) = i

∫
d4x eiq·x〈T{jµ(x)jν(0)}〉 = 〈tµν(q)〉. (A.1)

In the limit Q2 = −q2 → ∞, the OPE of tµν(q) given in eq. (3.1) holds. Recalling
the definition (3.7) of the reduced thermal expectation values 〈Onj〉 in terms of their
corresponding twist-two operator,

〈Oµ1...µn
nj 〉 = Tn[uµ1 . . . uµn − traces]〈Onj〉 , (A.2)

we have

GµνT (q) Q→∞∼
∑

n=2,4,...

∑
f,j

2Q2
fMfj(Q, µ̃)

[(
−gµν + qµqν

q2

)(2T (u · q)
Q2

)n
〈Onj〉

+
(
uµ − (u · q) q

µ

q2

)(
uν − (u · q) q

ν

q2

)
(2T )n (u · q)n−2

(Q2)n−1 〈Onj〉
]
.

(A.3)

We consider the decomposition of the time-ordered correlation function GµνT in invariant
amplitudes,

GµνT (q) = F̃1
(
u·q,Q2

)(
−gµν+ qµqν

q2

)
+F̃2

(
u·q,Q2

) T

u·q

(
uµ−(u·q) q

µ

q2

)(
uν−(u·q) q

ν

q2

)
,

(A.4)
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and find the following expansions for the invariant amplitudes,

F̃1
(
u · q,Q2

)
Q→∞∼

∑
n=2,4,...

∑
f,j

2Q2
f Mfj (Q, µ̃)

(2T (u · q)
Q2

)n
〈Onj〉 (A.5)

F̃2
(
u · q,Q2

)
Q→∞∼

∑
n=2,4,...

∑
f,j

4Q2
f Mfj (Q, µ̃)

(2T (u · q)
Q2

)n−1
〈Onj〉 . (A.6)

A.2 Dispersive integral for the retarded correlator

In the rest frame of the plasma, we introduce the retarded and advanced correlators, as
well as the spectral function,

GµνR (q) = i

∫
d4x eiq·x θ

(
x0
)
〈[jµ(x), jν(0)]〉 (A.7)

GµνA (q) = −i
∫

d4x eiq·x θ
(
−x0

)
〈[jµ(x), jν(0)]〉 (A.8)

ρµν(q) =
∫

d4x eiq·x 〈[jµ(x), jν(0)]〉 = −i (GµνR (q)−GµνA (q)) (A.9)

We also introduce functions that exhibit the virtuality dependence explicitly,

Hµν
R,A

(
q0, Q2; q̂

)
≡ GµνR,A

(
q0, q =

√
(q0)2 +Q2 q̂

)
, (A.10)

where q̂ ≡ q/|q| is a unit vector. We now assume that, at fixed Q2, Hµν
R is analytic for

Im q0 > 0 and HA for Im q0 < 0, as was shown in [8] in the lightlike case Q2 = 0. Note
that the same property holds in the case of DIS on the nucleon [22]. We define

Hµν(q0, Q2; q̂) ≡

H
µν
R

(
q0, Q2; q̂

)
Im q0 > 0

Hµν
A

(
q0, Q2; q̂

)
Im q0 < 0

. (A.11)

We now integrate along the contour C in the complex-q0 plane consisting of a large half-
circle in the upper plane with its diameter running along the real axis from left to right,
and a second half-circle in the lower plane with its diameter running along the real axis
from right to left; see figure 1 in ref. [8]. We obtain

1
2πi

∮
C

Hµν
(
q̃0, Q2; q̂

)
(q̃0 − q0)m dq̃0 = 1

(m− 1)!

[
dm−1

d (q̃0)m−1 H
µν
(
q̃0, Q2; q̂

)]
q̃0=q0

= 1
2π

∫ ∞
−∞

ρµν
(
q̃0, Q2; q̂

)
(q̃0 − q0)m dq̃0 , m = 1, 2, . . . .

(A.12)

Here ρµν(q0, Q2; q̂) ≡ ρµν(q0, q =
√

(q0)2 +Q2 q̂) is the fixed-virtuality spectral function.
Setting q0 = iε, we obtain

1
(m− 1)!

[
dm−1

d (q̃0)m−1 H
µν
R

(
q̃0, Q2; q̂

)]
q̃0=iε

= 1
2π

∫ ∞
−∞

ρµν
(
q̃0, Q2; q̂

)
(q̃0 − iε)m dq̃0 . (A.13)
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A.3 Relation between the retarded and the time-ordered correlator

The relation of Wµν
> to the time-ordered correlator can be worked out starting from

the identity
T {jµ(x) jν(0)} = θ(x0) [jµ(x), jν(0)] + jν(0)jµ(x). (A.14)

Second, using translational invariance, we have∫
d4x eiq·x 〈n|jν(0) jµ(x)|n〉 =

∫
d4x e−iq·x 〈n|jν(x) jµ(0)|n〉. (A.15)

Therefore

i

∫
d4x eiq·x 〈n|T {jν(0) jµ(x)} |n〉 = i

∫
d4x eiq·x θ

(
x0
)
〈n| [jµ (x) , jν (0)] |n〉 (A.16)

+ i

∫
d4x e−iq·x 〈n|jν (x) jµ (0) |n〉.

Recalling the definitions

GµνT (q) = 1
Z

∑
n

e−βEn i

∫
d4x eiq·x 〈n|T {jν(0) jµ(x)} |n〉, (A.17)

GµνR (q) = 1
Z

∑
n

e−βEn i

∫
d4x eiq·x θ

(
x0
)
〈n|[jµ(x), jν(0)]|n〉, (A.18)

we have the identity
GµνT (q) = GµνR (q) + i

ρνµ(−q)
1− eβq0 . (A.19)

However, for µ = ν, the spectral function ρνµ is real, therefore

Re(GµνT (q)) = Re(GµνR (q)) (µ = ν, q0 ∈ R). (A.20)

A.4 The sum rules

It follows from eq. (A.20) that

Re
(
G11
R (q)

)
= Re

(
G11
T (q)

)
q0 ∈ R , (A.21)

and the equality also holds for q0 = iε. In the rest frame of the fluid, and choosing the
orientation q = (q0, 0, 0,

√
(q0)2 +Q2), we find that

Re
(
H11
R

(
q0, Q2; ẑ

))
= Re

(
F̃1(q0, Q2)

)
, (A.22)

and eq. (A.13) reads in this case

1
(m− 1)!

[
dm−1

d (q̃0)m−1 Re
(
F̃1
(
q̃0, Q2

))]
q̃0=iε

= 1
2π

∫ ∞
−∞

ρ1
(
q̃0, Q2)

(q̃0 − iε)m dq̃0 , (A.23)

where the functions ρ1,2 are defined via a decomposition of the spectral function ρµν anal-
ogous to eq. (A.4), see eqs. (2.13) and (2.9). In the limit Q → ∞, we can insert the
expansion of eq. (A.5). Due to the fact that in the limit ε→ 0

1
(m− 1)!

[
dm−1

d (q0)m−1

(
2Tq0

Q2

)n]
q0=iε

=
(2T
Q2

)n
δn,m−1 , (A.24)
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we find(2T
Q2

)n∑
f,j

2Q2
jMfj (Q,µ̃)〈Onj〉=

1
π

∫ ∞
0

ρ1
(
q̃0,Q2

) (
q̃0)n+1(

(q̃0)2+ε2
)n+1 dq̃0 , n= 2,4, . . . .

(A.25)
To rewrite the right-hand-side we have used the fact that ρ1(q0, Q2) is odd in its first
argument and that n+ 1 is always an odd number in this context. We now remark that if
we first truncate ρ1 to its leading-twist contribution, the parameter ε, which plays the role
of an infrared regulator, can be set to zero. This expectation is mathematically confirmed
by the free-quark thermal spectral function; and once only the leading-twist part is kept,
partons with x � 1 are expected to be exponentially rare on physical grounds, so that
(ρ1)leading-twist should fall off exponentially in x. Proceeding in this way and changing the
integration variable to x = Q2/(2Tq0), we obtain the moment sum rule

1
2π

∫ ∞
0

dx xn−1
[
ρ1
(
x,Q2

)]
leading-twist

=
∑
f,j

Q2
fMfj (Q, µ̃) 〈Onj〉 , n = 2, 4, . . . . (A.26)

Taking into account the relation (2.13), and considering that e−βq0 is zero in the Bjorken
limit, eq. (3.6) is recovered from the sum rule eq. (A.26). We remark that having to isolate
the leading-twist part of the spectral function in the dispersion integral distinguishes the
thermal system from the case of the proton, for which this operation is not necessary. This
difference is related to the physical range of the variable x being unbounded from above in
the thermal case.

B Verifying leading-twist predictions for the structure functions of the
plasma of non-interacting massless Dirac fermions

In this appendix, we explicitly verify the validity of the moment sum rules for non-
interacting quarks using the leading-order Wilson coefficients, i.e. eq. (3.6) withMfj

.= δfj .
We note that the Euclidean-notation operator which coincides with Oµ1...µn

nf defined in
eq. (3.2) when all indices are temporal is

Oµ1...µn
E,nf = 1

2

(−1
2

)n−1
S
{
ψ̄fγ

µ1←→D µ2 . . .
←→
D µnψf

}
, (B.1)

since ∂
∂x0 = i ∂

∂xE
0
.

B.1 The case n = 2

The twist-two, dimension-four operator reads

Oµ1µ2
E,2f = −1

4

(
ψ̄fγ

{µ1←→D µ2}ψf −
1
4g

µ1µ2ψ̄f
←→
D/ ψf

)
. (B.2)

Now
〈O00

2f 〉rest frame = −6T 4Nc

π2

∞∑
n=1

(−1)n

n4 = 7π2T 4Nc

120 . (B.3)
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Since 〈Oµ1µ2
2f 〉 = T 2[uµ1uµ2 − 1

4g
µ1µ2 ]〈O2f 〉, we have for the r.h.s. of eq. (3.6)

1
2〈O2f 〉 = 2

3T 2 〈O
00
2f 〉rest frame = 7π2T 2Nc

180 . (B.4)

Using eq. (2.16), one finds that the l.h.s. of eq. (3.6) agrees with eq. (B.4). We remark that
the last member of eq. (B.4) is equal to 1

4T 2 times the enthalpy density of Nc massless Dirac
fermions. This observation, given the interpretation (5.10) of the structure function F1 in
terms of a parton distribution function, confirms that the non-interacting quarks carry the
entire momentum L3(e+ p)u of the fluid.

B.2 The case n = 4

At tree-level, it suffices to write four permutations for the principal term (not containing
the metric),

Oµ1µ2µ3µ4
E,4f = −1

2
6

4! · 8

(
ψ̄fγ

µ1←→D µ2←→D µ3←→D µ4ψf + 3 perms (B.5)

−1
4
[
gµ1µ2ψ̄f

←→
D/
←→
D µ3←→D µ4ψf + perms

]
−1

8
[
gµ2µ3ψ̄fγ

µ1←→D 2Dµ4ψf + perms
]

+ 1
12 ψ̄f

←→
D/
←→
D 2ψf

[
gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3

])
.

The coefficients of the trace terms have been determined in such a way that contracting
any two indices of the expression annihilates it.

The thermal expectation value of the zero-components is given by

〈O0000
4j 〉 = −1

2 〈ψ̄fγ
0(D0)3ψf 〉Tvacuum = −120T 6Nc

π2

∞∑
n=1

(−1)n

n6 = 31π4T 6Nc

252 . (B.6)

The reduced matrix element is determined by

〈Oµ1µ2µ3µ4
4j 〉 = T 4

(
uµ1uµ2uµ3uµ4 − 1

8
[
gµ1µ2uµ3uµ4 + gµ1µ3uµ2uµ4 + . . .

]
+ 1

48
[
gµ1µ2gµ3µ4 + gµ1µ3gµ2µ4 + gµ1µ4gµ2µ3

])
〈O4j〉. (B.7)

Thus
1
2〈O4j〉 = 16

5T 4 〈O
0000
4j 〉 = 62π4T 2Nc

315 . (B.8)

One finds that this matches the l.h.s. of eq. (3.6) for n = 4.
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