An Invertron-Like Linear Plasmid Mediates Intracellular Survival and Virulence in Bovine Isolates of Rhodococcus equi.

Citation for published version:
https://doi.org/10.1128/IAI.00376-15

Digital Object Identifier (DOI):
10.1128/IAI.00376-15

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Infection and Immunity

Publisher Rights Statement:
This is the author's final manuscript as accepted for publication

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
An invertron-like linear plasmid mediates intracellular survival and virulence in bovine isolates of *Rhodococcus equi*

Ana Valero-Rello a, Alexia Hapeshi a, Elisa Anastasi b, Sonsiray Alvarez b, Mariela Scortti a,b, Wim G. Meijer c, Iain MacArthur b, Jose A. Vazquez-Boland a,b,d *

Microbial Pathogenesis Unit, School of Biomedical Sciences and Centre for Immunity, Infection and Evolution, University of Edinburgh, UK a; Division of Infection & Immunity, Roslin Institute, University of Edinburgh, UK b; School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland c; Grupo de Patogenómica Bacteriana, Facultad de Veterinaria, Universidad de León, León, Spain d

Running title: *R. equi* bovine-associated virulence plasmid pVAPN

* Corresponding author at: The Roslin Institute, Easter Bush, Edinburgh EH25 9RG, Scotland, UK. Tel.: +44(0)131 651 3619; Fax: +44(0)131 651 9105. E-mail address: v.boland@ed.ac.uk
ABSTRACT

We report a novel host-associated virulence plasmid in *Rhodococcus equi*, pVAPN, carried by bovine isolates of this facultative intracellular pathogenic actinomycete. Surprisingly, pVAPN is a 120-kb invertron-like linear replicon unrelated to the circular virulence plasmid associated with equine (pVAPA) and porcine (pVAPB variant) *R. equi* isolates. pVAPN is similar to the linear plasmid pNSL1 from *Rhodococcus* sp. NS1 and harbors six new *vap* multigene family members (*vapN* to *vapS*) in a *vap* pathogenicity locus acquired via en-bloc mobilization from a direct predecessor of the equine pVAPA. Loss of pVAPN rendered *R. equi* avirulent in macrophages and mice. Mating experiments using an *in vivo* transconjugant selection strategy demonstrated that pVAPN transfer is sufficient to confer virulence to a plasmid-cured *R. equi* recipient. Phylogenetic analyses distributed the *vap* multigene family complement from pVAPN, pVAPA and pVAPB in seven monophyletic clades, each containing plasmid type-specific allelic variants of a precursor *vap* gene carried by the nearest *vap* island ancestor. Deletion of *vapN*, the predicted “bovine-type” allelic counterpart of *vapA* essential for virulence in pVAPA, abrogated pVAPN-mediated intramacrophage proliferation and virulence in mice. Our findings support a model in which *R. equi* virulence is conferred by host-adapted plasmids. Their central role is mediating intracellular proliferation in macrophages, promoted by a key *vap* determinant present in the common ancestor of the plasmid-specific *vap* islands, with host tropism as a secondary trait selected during co-evolution of individual virulence plasmids with specific animal species.
Rhodococcus equi is a gram-positive aerobic coccobacillus of the *Actinomycetales* associated with chronic or subacute pyogenic infections (1, 2). A normal soil inhabitant, the bacterium uses manure as a growth substrate, multiplies in the herbivore’s large intestine and is ubiquitous in the farm environment. Transmission occurs via contaminated dust particles, mostly through airborne exposure (3, 4). *R. equi* is the causative agent of a major infectious disease of the horse that affects young foals worldwide. The infection is characterized by multifocal purulent bronchopneumonia, often accompanied by ulcerative or abcessating lesions in the intestine (1, 5). While most well known as an equine pathogen, *R. equi* also infects other animal species (1, 6-8). In abattoir surveys, *R. equi* is frequently recovered from porcine submaxillary lymph nodes with granulomatous lesions as well as from apparently healthy pigs (9-11). In cattle, it is typically isolated from caseating abscesses in respiratory lymph nodes resembling bovine tuberculosis (TB) lesions (12). *R. equi* is also recognized as an opportunistic pathogen in humans, where it causes severe TB-like purulent cavitary pneumonia, bacteremia and extrapulmonary localized infections (8, 13, 14).

R. equi pathogenesis depends on the capacity of the bacterium to survive and replicate within host macrophages (15-18). In equine isolates, this ability is conferred by a conjugative circular plasmid of 80 kb (19-21) that promotes intravacuolar survival by interfering with phagosome maturation (22). These properties are mediated by the *vap* pathogenicity island (PAI) (23), a horizontal gene transfer (HGT) locus (24). A hallmark of the *vap* PAI is the presence of a multigene family encoding homologous virulence-associated proteins (Vap) (20, 24, 25). One of them, VapA, a 19 kDa secreted protein, is essential for virulence. A single *vapA* gene deletion causes strong attenuation comparable to that caused by loss of the plasmid, with both an inability to proliferate in macrophages and to survive *in vivo* in mice (26, 27).

Emerging evidence suggests that the virulence plasmid may also play a key role in *R. equi* host tropism. Early studies showed that VapA-encoding virulence plasmids were typical
of equine strains (28, 29), while a second plasmid type encoding VapB, a VapA variant (24),
was common among non-equine (pig and human) isolates (10, 30-33). Recently, the existence
of a third type of *R. equi* virulence plasmid was identified in bovine and human isolates
initially deemed to be “plasmidless” because negative for the *vapA* and *vapB* gene markers,
but which tested positive for a *traA* plasmid conjugal transfer gene marker (34). Molecular
epidemiological analysis of a global collection of *R. equi* isolates established that the *vapA*+,
vapB+ and novel *vapAB*– plasmid types were each associated with a specific non-human host,
i.e. equine, porcine and bovine, respectively (34). Using a unified nomenclature these
plasmids were designated, respectively, pVAPA, pVAPB and pVAPN (for “noA-noB”
virulence plasmid) (1, 24). In contrast to their unique animal species specificity, the three
host-adapted plasmid types were commonly detected in human isolates. Besides pointing to a
zoonotic origin of the infection, this lack of plasmid type selectivity was consistent with
humans being an opportunistic, non-adapted host for *R. equi* (34).

Sequencing of the pVAPA and pVAPB virulence plasmids revealed they are
essentially the same circular replicon (24). The analyzed plasmids, pVAPA1037 and
pVAPB1593 (numerical suffix indicating the source strain according to recently suggested
harmonized nomenclature for *R. equi* virulence plasmids) (24), shared a virtually identical
backbone encoding replication/partitioning and conjugal transfer functions. In contrast, the
vap PAI was more divergent, differing both in size and *vap* gene complement, i.e. ≈21 kb and
nine *vap* genes for pVAPA (*vapA, -C, -D, -E, -G and -H* and the pseudogenes *vapF, -I* and -*X*)
vs ≈15 kb and six *vap* genes for pVAPB (*vapB, -J, -K1, -K2, -L and -*M*) (24). In addition to
major Vap polypeptide sequence diversification, *vap* multigene family re-arrangements
(duplications and translocations) and insertion/deletions affecting adjacent genes accounted
for the PAI differences. This suggested that the *vap* PAIs were evolving at a faster rate than
the conserved housekeeping backbone, consistent with diversifying selection and a possible
role in host-specific adaptation (24).
Here, we report the genomic analysis and characterization of pVAPN, the bovine-type *R. equi* virulence plasmid.

MATERIALS AND METHODS

Strains, culture conditions and reagents. *R. equi* PAM1571 is a prototypic *traA*/vapAB*–* bovine strain (34) isolated from a heifer’s mediastinal lymph node with pyogranulomatous lesions (kindly provided by F. Quigley, Central Veterinary Research Laboratory, Ireland) (12). Its plasmid-cured derivative PAM1571– was obtained by subjecting the wild-type bacteria to an electroporation pulse of 12.5 kV/cm, 1000 Ω and 25 μF (GenePulser Xcell, BioRad) followed by six cycles of plating and single-colony subculturing in liquid medium at 37 ºC (27). These two strains are henceforth designated 1571 and 1571–, respectively. *R. equi* PAM2012 is another *traA*/vapAB*–* bovine strain, isolated in Germany from a case of lymphadenitis in cattle (kindly provided by C. Lämmler, Veterinary Faculty, University of Giessen) (35). *R. equi* 103S is the reference genome strain, a low passage clone of equine clinical isolate 103+ used in different laboratories worldwide (24). Its isogenic 103SΔvapA and plasmid-cured 103S– derivatives have been described elsewhere (27). The presence of the virulence plasmid was routinely checked in all strains by PCR using suitable oligonucleotide primer combinations (Table S1). *R. equi* was grown in brain-heart infusion (BHI, Difco-BD) or Luria-Bertani (LB, Sigma) media at 30 ºC unless stated otherwise. The cloning host strain *Escherichia coli* DH5α was grown at 37 ºC in LB. Media were supplemented with 1.5% agar (w/v) and/or antibiotics as appropriate. Fluid cultures were incubated with shaking (200 rpm). Chemicals and primers were purchased from Sigma-Aldrich unless stated otherwise.

DNA techniques. Total DNA extraction and purification from *R. equi*, PCR techniques, DNA fragment purification and electrophoresis, recombinant DNA techniques, and plasmid purification and electroporation, were performed as previously described (27, 34, 36). For pulsed-field DNA electrophoresis (PFGE), plugs were formed by embedding *R. equi*
cells from 1-ml 24-h BHI culture aliquots in melted 1% agarose in TE buffer. Plugs were incubated in lysozyme solution (10 mM Tris-HCl pH 8.0, 50 mM NaCl, 1 mg/ml lysozyme) at 37°C for 2 h, washed in 20 mM Tris-HCl pH 8.0, 50 mM EDTA and incubated in proteinase K solution (10 mM TrisHCl pH 8.0, 100 mM EDTA, 0.2 g/ml sucrose, 1 mg/ml proteinase K) at 50 °C overnight. Plugs were then loaded into 1% Pulsed Field Certified™ agarose gel (BioRad) prepared with 0.5× Tris-borate-EDTA buffer (TBE). DNA was separated in a CHEF-DR(R) II Pulsed Field Electrophoresis System (BioRad) at 5 V/cm² voltage, switch time ramping from 20 to 30 s, and 23 h run time at 14°C. Southern blotting was performed by transferring resolved DNA fragments to a positively-charged nylon membrane after treatment of the PFGE gels with 0.25 M HCl for 30 min followed by denaturing solution (1.5 M NaCl, 0.4 M NaOH) for 20 min (twice) and neutralizing solution (1.5 M NaCl, 0.5 M TrisCl₂ pH 7.0) for 20 min (twice). Membranes were hybridized using a specific vapN-vapQ PCR fragment (Table S1) labelled with digoxigenin (DIG High Prime DNA Labeling and Detection Kit, Roche).

pVAPN sequencing and phylogenetic analyses. pVAPN1571 was electroeluted from preparative PFGE gels using a Model 422 apparatus and (BioRad) and pair-end (2× 36-bp) sequenced in an Illumina (Solexa) II Genome Analyzer at Edinburgh Genomics facility. To complete the plasmid assembly, the host strain 1571 was paired-end (2× 100-bp) sequenced from a 500 bp PCR-free library using an Illumina HiSeq 2000 Sequencing System at Beijing Genomics Institute. pVAPN2012 was entirely sequenced using the latter approach. Reads were assessed for quality using FASTQC, then trimmed for adaptors using SCYTHE and for low quality reads using SICKLE. De novo assembly was performed using SPADES followed by manual verification by PCR mapping and Sanger re-sequencing of specific regions. The 5’ end telomeric sequence of pVAPN was experimentally confirmed as previously described (37) using the suicide vector pSelAct (38) and the vector-encoded apramycin resistance for selecting positive clones. The pVAPN sequence was manually curated and annotated in
ARTEMIS using the software and databases listed in Table S2. For phylogenetic analyses, orthologs were identified by reciprocal TBLASTX analysis with 30% identity over >60% of the protein sequence as minimum similarity score. Paralogous genes predicted based on the topology of Neighbor joining trees and pseudogenes (except vap pseudogenes) were avoided. Translated products from each ortholog cluster were MUSCLE-aligned (except otherwise stated) and back-translated in MEGA5, and best evolutionary model for nucleotide substitution was selected according to AIC criterion in jMODELTEST. For Multilocus Sequence Alignment (MLSA), gene alignments were concatenated with SEAVIEW. Maximum Likelihood (ML) trees were constructed in PHYML. See Table S2 for bioinformatics and phylogenetic analysis software references/urls.

Construction of vapN deletion mutant. The vapN gene was in-frame deleted from pVAPN by double homologous recombination (36) using 5-fluorocytosine counter-selection (38). Briefly, oligonucleotide primer pairs Nmutant_a (EcoRI)/Nmutant_b1 (XmaI) and Nmutant_c1 (XmaI)/Nmutant_d (SpeI) (Table S1) were used to PCR-amplify two DNA fragments of 908 and 910 bp carrying the last three 5’-terminal and four 3’-terminal codons of vapN plus adjacent upstream and downstream regions, respectively. The PCR products were joined via the XmaI site introduced by the Nmutant_b1 and Nmutant_c1 primers, the ligation product inserted into the pSelAct vector (38) using the external SpeI and EcoRI sites introduced by the primers Nmutant_a and Nmutant_d, and the resulting plasmid electroporated into 1571. Allele exchange was monitored by PCR mapping using suitable primers (Table S1) and the in-frame deletion confirmed by DNA sequencing on both strands.

Mating experiments. Transfer of the virulence plasmid between *R. equi* bacteria was investigated using a mating protocol essentially as previously described (39). Overnight BHI cultures of donor and recipient *R. equi* were harvested by centrifugation, resuspended in phosphate-buffered saline (PBS) to a cell density of $\approx 10^7$ CFU, mixed $\approx 1:1$ and spotted in a $\approx 5 \mu l$ drop onto BHI agar. The recipient 103S− bacteria carried a chromosomal rifampicin
resistance (Rmp^R) marker. 103S-Rmp^R bacteria were isolated by selection of spontaneous
resistant mutants on increasing concentrations of rifampicin, from 25 to 100 µg/ml, and
stabilization by repeated subculturing in the presence of the highest concentration of the
antibiotic. After incubating the mating mixture at 30 °C for 72 h, bacteria were collected in 1
ml of PBS, serially diluted, and plated onto BHI agar without and with supplementation with
100 µg/ml rifampicin. At this rifampicin concentration, no Rmp^R colonies were detected in
the only-donor control plates. Transconjugants were identified among Rmp^R colonies by
simultaneous PCR detection of virulence plasmid-specific markers and of recipient’s
chromosomal gene markers (103S strain-specific sequences identified from genome
comparisons) using ad hoc oligonucleotide primers (Table S1).

Macrophage cultures and infection assay. Low-passage murine J774A.1
macrophages and human monocyte-like THP-1 cells were obtained from ATCC and cultured
at 37 °C under 5 % CO₂ in Dulbecco’s minimal essential medium supplemented with 10% de-
complemented fetal bovine serum, 2 mM glutamine and 1 mM pyruvate (DMEM). THP-1
cells were initially grown in suspension in RPMI-1640 medium with the same supplements.
Cells were seeded on 24-well plates at a density of ≈2×10⁵ cells/well and incubated overnight
in DMEM, for THP-1 monocytes in the presence of 50 ng/ml phorbol 12-myristate 13-acetate
(PMA) to allow differentiation into macrophages. Infection assays were performed on ≈80%
confluent macrophage monolayers as previously described (40). Intracellular proliferation
data were normalized to the initial counts at \(t = 0 \) using an “Intracellular Growth Coefficient”
according to the formula:

\[
\text{IGC} = \frac{\text{IB}_n - \text{IB}_0}{\text{IB}_0},
\]

where \(\text{IB}_n \) and \(\text{IB}_0 \) are the intracellular
bacterial numbers at \(t = n \) and \(t = 0 \), respectively (40, 41).

Mouse infections. Experiments were performed at the Animal Facility of the School
of Biological Sciences of the University of Edinburgh using in-house-bred six- to eight-week-
old BALB/c mice. Mouse intranasal and intravenous infections and the lung competitive
virulence assay were performed as previously described (27). The relative proportion of the
competing bacteria was calculated by analyzing at least 40 random colonies from the plated organ homogenate by PCR using suitable oligonucleotide primers (Table S1). Competitive index values were calculated using the formula C.I. = (test/reference log CFU ratio at $t = n$) / (input test/reference log CFU ratio in inoculum) (27). Mouse experiments were approved by the University of Edinburgh’s Ethical Review Committee and were covered by a Project License granted by the UK Home Office under the Animals (Scientific Procedures) Act 1986.

Statistics. Intracellular proliferation and uptake data were compared using two-way and one-way ANOVA, respectively, followed by Šidák post-hoc multiple comparison tests. One-sample Student’s t tests were used to determine if C.I. values differed significantly from 1 (i.e. the expected C.I. value if the ratio of the competing strains remains the same respect to $t = 0$). Statistical analyses were performed using Prism 6.0 software (GraphPad, San Diego, CA).

RESULTS AND DISCUSSION

Identification and sequencing of pVAPN. Attempts to isolate the novel $traA^+$/vapAB$^-$ plasmid type (34) from 1571 and other bovine isolates using the procedure for *R. equi* circular virulence plasmid extraction (34) were unsuccessful. However, PFGE analysis of undigested genomic DNA revealed a distinct band in the range of \approx100 Kb in all bovine strains from our collection ($n = 22$). This band was not detected in *R. equi* strains carrying a circular virulence plasmid e.g. 103S harboring pVAPA (Fig. 1). Similarity searches of exploratory low-coverage whole-genome 454 pyrosequencing assemblies from 1571 with the pVAPA reference sequence from *R. equi* 103S (40) identified contigs harboring vap PAI-homologous genes. Southern blotting using a probe from this novel vap PAI identified the \approx100 Kb PFGE band as the putative pVAPN virulence plasmid (Fig. 1). Most (95%) tested $traA^+$/vapAB$^-$ bovine isolates (34) were positive for pVAPN by PCR using a plasmid-specific vap PAI marker (vapN, the counterpart of the equine vapA and porcine vapB, see below). The \approx100-
Kb band from strain 1571 was isolated from PFGE gels and shotgun sequenced. The pVAPN1571 genome sequence was completed as described in Materials & Methods. pVAPN1571 is 119,931 bp long and contains 148 open reading frames (ORFs), of which 10 are pseudogenes (Fig. 2). The average G+C content is 66.2 %, similar to that of *R. equi* genomic DNA (68.7%) (40). pVAPN1571 is predicted to be a linear replicon based on its PFGE migration pattern (42), presence of a *traB* conjugal translocase determinant (see below), phylogenetic relatedness with other *Rhodococcus* linear plasmids (Fig. 3A), and presence of telomeric invertron-like terminal inverted repeats (TIR) with multiple palindromic secondary structures (Fig. 4) (43-45). pVAPN's TIR sequences are 569 bp-long and 99% identical. The nucleotide sequence of a second example of pVAPN plasmid, from a bovine isolate from Germany (PAM2012), was virtually identical to that of pVAPN except for the presence of two additional ORFs before the left telomeric sequence (Fig. S1). The pVAPN1571 and pVAPN2012 genome sequences have been deposited in GenBank under Accession Nos. KF439868 and KP851975, respectively.

Comparative analysis and functional overview. *Rhodococcus* species characteristically possess large plasmids, circular or linear if >100 Kb in size (46). They consist of a vertically evolving backbone, encoding plasmid maintenance and conjugal transfer functions, and a horizontally acquired variable region (VR) providing specific niche-adaptive properties to the host bacterium (24, 37, 44, 45, 47). The housekeeping backbone of pVAPN is unrelated to that of the circular pVAPA/B (equine/porcine type) *R. equi* virulence plasmids. pVAPN instead is closely related to the linear plasmid pNSL1 from *Rhodococcus* sp. NS1 (48) in terms of genetic structure and synteny (Fig. 2). pNSL1 is of a similar size (117, 252 bp) and perfectly colinear with pVAPN. No significant overall similarity was detected with other sequenced linear plasmids from the genus *Rhodococcus* in pairwise alignments (Fig. S3). However, a phylogenetic multilocus sequence analysis (MLSA) of gene orthologs from the housekeeping backbones of a representation of rhodococcal linear and
circular plasmids placed pVAPN within a monophyletic clade together with the linear replicons, indicating they all share a common origin (Fig. 3A).

Conjugation genes. pVAPN encodes a MOBf (TrwC)-family conjugal relaxase (49) homologous to TraA from pVAPA/B (24). Detection of its coding sequence (pVAPN_0650) by PCR using conserved traA target sequences from pVAPA/B allowed the discovery of the traA/vapAB bovine pVAPN plasmid in a first instance (34). Relaxases play a key role in the conjugation of circular plasmids, nicking the supercoiled dsDNA and leading the nascent DNA strand into the recipient cell in conjunction with a type IV secretion system (T4SS), which forms the transport channel (50, 51). Indeed, deletion of traA has been shown to prevent the transfer of the equine pVAPA circular virulence plasmid (39). Interestingly, however, the pVAPN traA relaxase gene is corrupted (5’ terminal deletion affecting the first 75 codons including gene start and part of TrwC relaxase domain, frameshifts in the 3’ terminal region) and probably non-functional. This traA pseudogene is located outside the pVAPN conjugation module at the left boundary of the vap PAI. It is immediately contiguous to three ORFs encoding phage excisionase, Rep and CopG (regulator of plasmid copy number) homologs, also present in the pVAPA/B backbone (24). These three ORFs and adjacent pVAPN vap PAI are identified as HGT by the ALIEN_HUNTER program, which detects putative horizontally acquired genetic material based on local compositional bias (52) (Fig. 2). This suggests that the traA pseudogene-phage excisionase-rep-copG genes (absent from pNSL1) are remnants of a lateral gene exchange –probably the same that mobilized the vap PAI locus– between the circular virulence plasmid and pVAPN.

Despite traA being a pseudogene and a relaxase-associated T4SS apparatus being absent, pVAPN is transferable by mating (see below). This is probably mediated by pVAPN_0320 encoding a TraB plasmid translocase, also present in pNSL1. TraB translocases are evolutionarily related to the septal FtsK/SpoIIE-family proteins involved in chromosome segregation (51) and have been recently shown to mediate a novel relaxase-
/T4SS-independent mechanism of conjugation in *Streptomyces* linear replicons (53). They all share a similar structural arrangement, with an AAA+ motor ATPase domain with characteristic Walker A and B boxes, a transmembrane domain and a C-terminal DNA-binding winged helix-turn-helix motif (53). In translocase-mediated conjugation, TraB binds to the plasmid’s dsDNA and forms a transmembrane DNA-conducting hexameric channel through which the plasmid is transferred to the recipient bacterium in an ATP-dependent manner. The pVAPN (and pNSL1) conjugation module also comprises (i) an additional AAA+ ATPase with sequence similarity to the conjugative coupling factor TraD (pVAPN_0360); (ii) a homolog of a Soj/ParA-family ATPase (pVAPN_0300), involved in chromosomal and plasmid DNA segregation (54) and recruitment of conjugative DNA to the transfer channel (55); (iii) a putative M23 endopeptidase family/lysozyme-like lytic murein transglycosylase/cell wall hydrolase (pVAPN_0390), probably involved in conjugation channel formation (of which a homolog is also present in the circular pVAPA/B virulence plasmids and related *R. erythropolis* pREC1) (Fig. 2); and (iv) a number of putative membrane-associated proteins. In addition, pVAPN_0550, at the other side of an interposed plasmid replication/partitioning (*rep-parA*) module, encodes a putative cutinase. A cutinase gene is also present at the boundary of this replication/partitioning module and the conjugation module in the circular pVAPA/B and pREC1 replicons (Fig. 2). Bacterial cutinase-like proteins, common among mycolic-acid containing actinomycetes (40, 56), have esterase/lipolytic activity (56-58). In mycolata-infecting phages they form part of the LysB lipolytic enzyme complement, thought to aid in the breakdown of the lipid-rich envelope during phage penetration or lytic egress (59). Recently, a cutinase from *R. fascians* pFiD188 linear virulence plasmid has been shown to be required for efficient conjugation, probably by facilitating the penetration of the DNA translocation complex in the rhodococcal cell envelope (45).
Replication/partitioning. The pVAPN self-replication determinant includes a module encoding a Rep protein (pVAPN_0480), which probably directs the bidirectional replication of the plasmid towards the telomeres, and the plasmid partitioning protein/ATPase ParA (pVAPN_0500). A 26-bp semi-palindromic sequence (5’-AAAACCCCAAGGTGGGGGTGGG- TTTT) similar to that determined as the origin of replication of the pNSL1 plasmid (48) was identified at the same position upstream from the rep gene in pVAPN (Fig. 2). The rep-parA module is detected as HGT genetic material in pNSL1 and is conserved in the circular plasmids pVAPA/B and R. erythropolis pREC1 (in the latter also identified as HGT). In pVAPN, it is flanked on the right by a phage excisionase gene (pVAPN_0520) which is conserved in pNSL1 and, interestingly, also in the circular replicons despite these deriving from a different ancestor (Fig. 2). This lends additional support to the earlier suggestion that the rep-parA determinant forms part of an “exchangeable” gene cassette subjected to HGT between different rhodococcal plasmids (24).

This replication/partitioning region appears to serve as an insertion platform for HGT DNA (24), as suggested by the fact that the VR is either immediately adjacent (pVAPA/B circular plasmids) or interrupts it (pVAPN, pNSL1 and the larger circular pREC1) (Fig. 2). Interestingly, in contrast to the circular pVAPA/B plasmids (and pREC1), pVAPN (and related pNSL1) does not encode the ParB component of the ParAB replicon segregation system (60). The lack of a parB gene appears to be a hallmark of the smaller (≤400 Kb) rhodococcal linear extrachromosomal replicons, as exemplified by pREL1 or pBD2 from R. erythropolis (44), pRHL2 and pRHL3 from R. jostii (37) or pFiD188 from R. fascians (45).

Plasticity region (VR). The colinearity with pNSL1 is abruptly interrupted at the level of the traA pseudogene, marking the start of the VR. pVAPN’s VR is interrupted by an island of homology with ORFs from the right end of pNSL1’s backbone, suggesting it has been formed by two independent DNA acquisition events (Fig. 2). The left VR section comprises the pVAPA/B-homologous phage excisionase-rep-copG sequence module (see above) plus
the *vap* PAI; the right section encodes rhodococcal/actinobacterial conserved hypothetical proteins and a number of products with various predicted functions (Fig. 2). The complete left VR section with the *vap* PAI is identified as HGT (Fig. 2), suggesting it is a more recent acquisition. **vap PAI.** pVAPN’s *vap* PAI genetic structure is similar to that of pVAPA/B (Fig. 5). It is 15.1 Kb in length and contains 21 ORFs including: (i) a complement of six *vap* genes (*vapN*, -O, -P, -Q pseudogene, -R and -S) encoding polypeptides differing by 20 to 81% in amino acid sequence identity with pVAPA/B’s Vaps (Table S3); (ii) a *vir* locus encoding the two key *vap* PAI transcriptional regulators, VirR (LysR-type) and VirS (orphan two-component response regulator) (61, 62), a major facilitator superfamily (MFS) transporter IcgA (63), plus VapP and a conserved protein of unknown function; and (iii) several additional non-*vap* genes (Fig. 5). Four of the latter are conserved as functional genes in the three virulence plasmids, indicating they are core components of the PAI: pVAPN_0700 (pVAPA/B_0420), encoding a hypothetical protein with similarity to a CopG-family transcriptional regulator (here designated *cgf*), is the probable first gene of the *vap* PAI instead of the downstream *lsr2* initially considered (24); pVAPN_0720 (pVAPA/B_0440), encoding a putative nucleoid-associated protein similar to Lsr2, which in mycobacteria is involved in a number of virulence-related functions (64-66); pVAPN_0760 (pVAPA/B_0470), encoding an S-adenosylmethionine (SAM)-dependent methyltransferase with a potential regulatory role via protein, nucleic acid or lipid methylation; and pVAPN_870 (pVAPA/B_0570), aka *vap*-coregulated *vcgB* gene in pVAPA, encoding a hypothetical protein conserved in pathogenic mycobacteria (67) (Fig. 5). At the right end, the putative transposon invertase/resolvase *inva* gene found in pVAPA/B and in the VR of the related rhodococcal circular pREC1 plasmid (24), is replaced in pVAPN by *tniA*-like transposase/integrase and *tniQ*-like transposase helper protein pseudogenes (Fig 5).
vap PAI evolution. A phylogenetic analysis of the *vap* multigene family was performed to trace the evolutionary history of the *R. equi* vap PAI. Maximum Likelihood (ML) trees grouped the *vap* genes into several well-supported terminal clades (Figs. 3B, S4A). *vap* family members were not clustered by plasmid; instead, *vap* sequences from different virulence plasmids were grouped under each of the nodes, suggesting they are allelic variants of a vertically evolving *vap* precursor gene. Three of the clades contained *vap* sequences from only one or two of the plasmid types, suggesting loss of *vap* alleles. In addition, in two cases the clades included more than one *vap* sequence from the same PAI, consistent with instances of *vap* gene duplication (Figs. 3B, S4A). To help pinpointing the gene duplication and loss events underlying the evolution of the *R. equi* vap family, the *vap* gene tree and a “species” tree of the three PAIs based on their conserved non-*vap* genes (Fig. S4B) were compared using NOTUNG phylogenetic reconciliation software (68) (Fig. S5). The phylogenetic data were then interpreted in combination with a detailed comparative analysis of the genetic structure of the PAIs (Fig. 5).

The above analyses inferred that the lowest common ancestor (LCA) of the three *vap* PAIs probably comprised seven precursor *vap* genes, designated 1 to 7. These gave rise to the contemporary plasmid type-specific allelic variants as schematized in Fig. 3B (see also Figs. S4A, S5 for additional details). The seven LCA *vap* gene precursors probably originated by successive duplication events from a primordial *vap* gene (Figs. 6, S5), probably acquired by HGT from another organism. Indeed, while being *R. equi-*specific among the actinomycetes, Vap homologs are found in other bacteria from different phyla or even fungi (Fig. S4A).

The presence in pVAPN, adjacent to the PAI, of an orphan, corrupted copy of *traA* plus other sequences from the pVAPA/B housekeeping backbone (phage excisionase-*rep-copG* HGT sequence module) (Figs. 2, 5) suggests that the *vapN* PAI was mobilized to the linear replicon from an ancestor of the circular pVAPA/B and not *vice versa*. An identical gene translocation as that observed for the allelic variants *vapG* (pVAPA) and *vapO* (pVAPN) is
unlikely to have occurred twice independently, indicating that the vapN PAI probably
originated from a direct precursor of pVAPA after diversification from pVAPB. This
interpretation is supported by a phylogenetic analysis performed with the non-vap genes of
the PAI (Fig. S4B). It also accounts for the presence in the vapN PAI of pVAPA’s vapI/E and
vapC/F putative allelic variants vapR and vapS, which are absent in pVAPB (Figs. 5, S5). The
vapA PAI deriving from pVAPN is less plausible because it implies the occurrence, after the
mobilization of the PAI, of a second, independent horizontal transfer/recombination event
conveying the traA-phage excisionase-rep-copG module from pVAPA/B to pVAPN. The
probable evolutionary history of the vap PAI in the three host-adapted \(R. \) \(\text{equi} \) virulence
plasmids is schematized in Fig. 6.

\textbf{pVAPN and its vapN gene are essential for intracellular proliferation in \(\text{macrophages} \).} To determine the role of pVAPN in virulence, we obtained an isogenic
plasmid-cured derivative of 1571 (1571\(^{−}\)) and examined its behavior in \textit{in vitro} infection
assays in mouse J774A.1 and human THP-1 macrophages. Studies with the equine plasmid
previously showed that VapA is essential for \(R. \) \(\text{equi} \) virulence (26, 27), in contrast to other
pVAPA-encoded Vap products (i.e. VapC, -D, -E, -F (26), -G (23) or -H [A. Hapeshi et al.,
unpublished]), which are dispensable or accessory. Since our data above suggest that vapN is
pVAPN’s ortholog/allelic variant of vapA, an isogenic unmarked in-frame vapN deletion
mutant was also constructed and tested. A plasmidless derivative and a vapA deletion mutant
of equine isolate 103S (strains 103S\(^{−}\) and 103S\(\Delta\)vapA, respectively) (27) were used as
controls.

Fig. 7A shows that both 1571\(^{−}\) and 1571\(\Delta\)vapN had lost the ability to proliferate in
J774A.1 and THP-1 cells. The effects were essentially identical to those observed for 103S\(^{−}\)
and 103S\(\Delta\)vapA, respectively (Fig. 7B). These results demonstrate that the bovine plasmid
pVAPN is, like the equine pVAPA, necessary for facilitating \(R. \) \(\text{equi} \) parasitization of host
macrophages. They also show that vapN appears to perform an essential function in
Pathogenesis, similar to vapA in the equine plasmid (26). Uptake of 1571\(^-\) and 1571\(\Delta vapoN\) remained unaffected and the same was observed for 103S\(^-\) and 103S\(\Delta vapoA\) (Fig. S6), indicating that the effect of the two plasmids and their cognate VapoN and VapoA products is specifically related to intracellular survival and/or replication.

Role of pVapoN and vapN in virulence in vivo. The 1571 strain and its plasmidless derivative 1571\(^-\) were also tested in mice using a competitive lung infection model (27). Immunocompetent BALB/c mice were infected via the intranasal route with a \(\approx 1:1\) mix of the test bacteria and *R.* *equi* burdens determined by plate counting over a four-day period, in which we previously determined *R.* *equi* numbers remain stable in the lung (27). The relative proportions of the two strains were then determined for each time point by PCR and the corresponding competitive indexes (C.I.) calculated (see Materials & Methods).

Plasmidless 1571\(^-\) bacteria were cleared from the lungs at a much faster rate than the 1571 parent strain (Fig. 8A). Except for \(t = 0\), when similar numbers of 1571 and 1571\(^-\) were recovered, the C.I. was significantly lower than 1 at all time points (Table 1). By day 3 most (96.3 \%) of the bacteria were plasmid-positive whilst, at day 4, the 1571\(^-\) strain was not detected despite total CFU numbers remaining stable in the lungs, indicating that the plasmid-cured bacteria were strongly outcompeted (Fig. 8A). This pattern mirrored the results observed when the same experiment was performed with *R.* *equi* 103S and its plasmidless derivative 103S\(^-\) (27). These data demonstrate that the bovine-type pVapoN plasmid, like the equine pVapoA, confers to *R.* *equi* the ability to survive *in vivo* in an animal host.

We next analysed the role of VapoN in pVapoN-promoted virulence in mice. Since, according to the macrophage data, the lack of VapoN was likely to cause strong attenuation *in vivo*, we compared the competitive ability of 1571\(\Delta vapoN\) against the non-virulent derivative 1571\(^-\) (27). This approach takes advantage of the greater sensitivity of competitive tests in assessing small differences in virulence (69, 70) and, to ascertain the relative importance of
VapN and other pVAPN products in *R. equi* virulence, is potentially more informative than a comparison with the fully virulent parent strain.

While the 1571− strain was readily displaced by the plasmid-positive 1571, sizable numbers of both ΔvapN and 1571− were recovered at all time points (Fig. 8B). This is similar to the behaviour of 103SΔvapA and 103S− using the same experimental conditions (27), demonstrating that loss of VapN is sufficient to cause a reduction in virulence comparable to that in the absence of its coding pVAPN plasmid. Nevertheless, the C.I. data showed partial outcompetition of plasmid-cured 1571− by ΔvapN, particularly during the two first time points (Table 1). No such differences were observed in our previous 103SΔvapA vs 103S− comparison (27). This indicates that pVAPN products other than VapN are also potentially important for *R. equi* survival in mice, and that some differences might exist in the contribution to virulence of VapN and VapA in their respective backgrounds.

Collectively, our data support the notion that VapN and VapA are allelic variants of a same vap gene with a key role in *R. equi* virulence, presumably because essential for supporting rhodococcal intramacrophage proliferation.

pVAPN transferability by mating. We finally tested whether pVAPN is transferable by mating, as predicted from the sequence data. Experiments were carried out with the 1571 strain as donor and a rifampicin-resistant (RmpR) plasmidless 103S− (103S−RmpR) as recipient. The two strains belong to different *R. equi* chromosomal genogroups (E. Anastasi et al., manuscript in preparation). As a control, conjugation tests with pVAPA from 103S, for which transfer frequencies in the range of 10−2 have been previously reported (39), were performed using the same recipient. Transconjugants were determined by screening a total of 900 random RmpR (100 μg/ml) colonies using suitable recipient- and virulence plasmid-specific PCR markers. Transfer of pVAPA to 103S− was observed at a frequency of 1.25×10−2 but could not be detected for pVAPN. We reasoned that the linear pVAPN could be transferable at a lower frequency, unworkable for the PCR-based screening method used. To circumvent
this, a transconjugant selection strategy was devised based on the ability of the virulence plasmid to promote *R. equi* survival *in vivo*. BALB/c mice were infected intravenously (i.v.) with ≈4×10⁸ CFU of a mating mix of 1571 and 103S-RmpR, followed by plating of spleen and liver homogenates onto rifampicin plates at days 0, 3, and 5 after infection. Based on previous i.v. infection data in mice (27), this time course was expected to lead to progressive elimination of plasmid-negative *R. equi* and concomitant increase of the plasmid-positive population. The recovered pVAPN-positive/RmpR bacteria were confirmed as transconjugants by PCR using suitable strain-specific gene markers and determination of strain-specific DNA sequences (see Table S1 and Materials & Methods).

Fig. 9A demonstrates a steady enrichment of pVAPN-positive transconjugants, from 0.5% at day 0 to 34.5% at day 3 and 80.3% at day 5. These data show that pVAPN is transferable between different *R. equi* strains. The positive selection in mice of 103S–pVAPN transconjugants indicates that the bovine plasmid promotes *R. equi* virulence irrespective of the strain hosting it. Experiments in J774A.1 cells demonstrated that acquisition of pVAPN is sufficient to confer to *R. equi* the capacity for intracellular survival in macrophages (Fig. 9B).

Conclusions. Our previous work established that the equine-type pVAPA and porcine-type pVAPB plasmids are the same circular replicon in which the HGT-acquired vap PAI evolved divergently, presumably by host-driven selection (24). Our new data show that the bovine pVAPN plasmid was originated by horizontal mobilization of the vap PAI to a linear invertron-like replicon. The pVAPN vap locus, like pVAPA/B’s, is an HGT island and is flanked by DNA mobility genes, consistent with a recent lateral acquisition, probably involving a phage or a transposon.

Both the circular pVAPA/B (24) and linear pVAPN backbones share a common origin with other extrachromosomal conjugative replicons found in environmental rhodococci. Rhodococcal plasmids play a key role in facilitating adaptation to different habitats and environments via plasticity regions rich in HGT material. In the environmental biodegradative
rhodococci, these plasticity regions typically encode catabolic, detoxification or secondary
metabolic determinants while in the pathogenic species (R. equi and R. fascians) they are
virulence related (1, 46, 71). In the phytopathogen R. fascians, virulence is conferred by a
linear conjugative plasmid (45) without obvious similarity to pVAPN, illustrating that
multiple extrachromosomal elements serve as platforms for the expression and dynamic
exchange of niche-adaptive traits in the genus Rhodococcus.

Our findings suggest the following hypothetical scenario for the evolution of virulence
in R. equi (Fig. 6). First, acquisition of an ancestral vap PAI by a circular conjugative plasmid
endowed a “pre-R. equi” obligate saprotroph with intracellular survival capability in
macrophages, promoting its conversion into a facultative parasite. During co-evolution with
animal hosts, porcine- and equine-specific tropism evolved as a secondary trait of the PAI in
the circular plasmid (Fig. 6B), involving gene duplication and sequence diversification within
the vap multigene family (Fig. 6A). Finally, acquisition of the vap PAI by a linear plasmid,
presumably from a direct precursor of the equine pVAPA (Fig. 6B), gave rise to the bovine-
adapted pVAPN in which another set of specific vap genes evolved (Fig. 6A).

Our analyses with pVAPN confirm the notion that the primary function of the R. equi
virulence plasmids is to support intracellular proliferation in macrophages. This primordial
function is clearly dissociable from host tropism, since epidemiological or experimental
evidence indicates that R. equi plasmids promote virulence in accidental (non-adapted) animal
hosts, such as humans or mice, regardless of their species-specific type. Our data indicate that
a specific vap gene, which was present in the nearest common ancestor of the contemporary
PAIs and evolved into the allelic variants vapA in pVAPA and vapN in pVAPN (and possibly
vapB in the porcine pVAPB), is critical for intracellular survival in macrophages.

Why bovine host tropism evolved in a linear replicon and not by further host-driven
diversification of the PAI in the circular pVAP replicon remains unclear. Since pVAPA and
pVAPB share a virtually identical circular backbone, equine- and porcine-specific infectivity
most likely resides in their divergent vap PAI. Whether determinants outside the vap PAI in
the unrelated pVAPN backbone contribute adaptive features which optimize the interaction of
R. equi with the bovine host requires further investigation.

The findings in this study establish *R. equi* as a novel paradigm of multihost-adapted
pathogen. The pVAPN plasmid here reported, together with the previously characterized
equine- and porcine-associated plasmids, provide a unique model system to gain a better
understanding of the bacterial mechanisms of intramacrophage survival and host tropism.

ACKNOWLEDGEMENTS

We thank F. Quigley and C. Lämmler for providing the bovine isolates the pVAPN plasmid
was sequenced from, M. Letek for his early contributions to the *R. equi* genome program, J.
Navas for initial help with mating experiments, P. Iglesias for technical assistance, and U.
Fogarty and colleagues at the Irish Equine Centre for their support. We also thank Edinburgh
Genomics (http://genomics.ed.ac.uk/) for pVAP1571 plasmid DNA sequencing and
preliminary read assembly.

This work was supported by the Horserace Betting Levy Board (grants vet/prj/712 and
753 to JV-B) and partially by the Research Stimulus Fund (grant RSF 06 379 to JV-B and
WM) and core BBSRC funding from the Roslin Institute. AV-R was supported by an EU
Marie-Curie postdoctoral fellowship, AH and EA by BBSRC-funded PhD studentships from
the Centre for Infectious Diseases of the University of Edinburgh (UoE), and IM by a Charles
Darwin international scholarship from UoE.

activation is dispensable for vacuole escape but required for efficient spread and

26
Table 1. Competitive indexes (C.I.) of Fig. 8 experiments. Mean values ±SEM. A C.I. equal to 1 is the theoretical value of two strains with the same competitive ability. Data significance was calculated by comparing the experimental C.I. value at each time point against the theoretical value 1 (one sample Student’s t test).

<table>
<thead>
<tr>
<th>Competing strains</th>
<th>C.I. (P value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>day 0</td>
</tr>
<tr>
<td>1571− / 1571</td>
<td>1.54±0.20 (0.0763)</td>
</tr>
<tr>
<td>∆vapN / 1571−</td>
<td>0.88±0.13 (0.4761)</td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

FIG 1. Detection of pVAPN by PFGE. (A) Genomic DNA of bovine isolate 1571 and equine isolate 103S; three and two independent lysates per strain are shown. Relevant positions of the lambda PFGE marker (New England Biolabs) are indicated. pVAPN is observable as a distinct PFGE band of ≈100 Kb in the bovine isolate. (B) Southern blot analysis of bovine isolates PAM nos. 1571, 1533 and 1554 (strain 103S used as negative control). Left, relevant sections of PFGE gel; right, membrane hybridized with a pVAPN-specific DNA probe (600 bp fragment encompassing the 3’ region of vapN and 5’ region of vapQ). Arrow indicates the pVAPN band.

FIG 2. Plasmid genome alignments. Linear pVAPN, circular pVAPA and pVAPB, and respective closest homologs from non-pathogenic rhodococcal species (pNSL1 from *Rhodococcus* sp. NS1 (48) and pREC1 from *R. erythropolis* (44)). Built with EASYFIG (http://easyfig.sourceforge.net/). The circular plasmids (pVAPA, pVAPB, pREC1) were linearized starting from the first conserved gene of the housekeeping backbone. Regions with significant similarity between plasmids are connected by gray stripes (tblastx, 0.1 e-value threshold); grayscale indicates percent similarity. ORFs are color coded according to predicted function: hypothetical protein (gray), conjugation or DNA replication/recombination/metabolism (red), DNA mobility genes (magenta), transcriptional regulators (blue), secreted proteins (dark green), membrane proteins (pale green), metabolic functions (yellow), *vap* family gene (black); pseudogenes (brown). Other features indicated: green and pale red bars below the genes, conjugation and replication/partitioning functional modules, respectively; dotted underline, HGT regions identified by ALIEN HUNTER (52); triangle, putative origin of replication. Relevant gene products are labelled with abbreviations.
FIG 3. Maximum Likelihood (ML) trees of (A) *Rhodococcus* plasmid backbones and (B) *R. equi* *vap* multigene family. HKY+G evolutionary model. (A) Based on concatenated alignment of orthologs from a selection of rhodococcal extrachromosomal replicons (total 7,802 nucleotides); genes used indicated by dots in Fig. 2. Values >50 for 100 bootstrap replicates are indicated. Symbols: triangles, linear plasmids; circles, circular plasmids. (B) *vap* family members derived from each of the predicted seven precursor *vap* genes in the lowest common ancestor (LCA) of the extant pVAPA, pVAPB and pVAPN PAIs are encircled within gray balloons.

FIG 4. pVAPN telomeric sequences. (A) ClustalΩ alignment of the left- and right-end 200 terminal nucleotides. Identical nucleotides are shaded (dark and light blue, purines and pyrimidines, respectively). Inverted repeats are indicated above the sequence. In red, four conserved palindromic sequences with the central motif GCTNCGC identified in the binding site of telomere-associated proteins involved in *Streptomyces* linear plasmid replication (73). Several of the GCTNCGC palindromic sequences are normally present in the telomeres of rhodococcal linear plasmids (43-45) (Fig. S2). (B) Secondary structures potentially formed by the palindromic sequences in pVAPN telomeres, as numbered in (A). Determined with MFOLD. Free energy: left, ΔG = -33.84 kcal/mol; right, ΔG = -37.95 kcal/mol.

FIG 5. Genetic structure of the *vap* PAIs from pVAPN (15.1 Kb), pVAPA (21.5 Kb) and pVAPB (15.9 Kb). Genes are color-coded according to functional category: *vap* family (black), DNA conjugation/partitioning (red), DNA mobility/recombination (magenta), transcriptional regulators (blue), other regulators (cyan), membrane proteins (green), metabolic reactions (yellow). Orthologs are in the same color shade and linked by gray bands. ORFs encoding hypothetical proteins are represented in light blue-gray, in white if outside the PAI. White arrowheads point to the first and last genes of the consensus PAI. The *traA*
pseudogene/phage excisionase-\textit{rep-copG} HGT cluster from the pVAPA backbone is boxed. The figure also schematizes the probable evolutionary relationships of the \textit{vap} multigene family as inferred from the phylogenetic analyses (Figs. 3B, S4, S5) and PAI genetic structure; the model minimizes the number of \textit{vap} gene loss events. Solid lines/arrow connect \textit{vap} genes belonging to the same monophyletic group (thus likely representing allelic variants of a nearest common \textit{vap} gene ancestor). Curved lines/arrow indicate \textit{vap} gene duplications within a PAI. Crosses denote \textit{vap} genes lost, asterisks indicate pseudogenes. Two alternative evolutionary paths are shown for \textit{vapA-B-K1/2-N} (see legend to Fig. S5 for additional details). The black dots indicate the non-\textit{vap} genes used for the MLSA analysis in Fig. S4B.

\textbf{FIG 6.} Hypothetical reconstruction of \textit{vap} PAI evolution. (A) Model of \textit{vap} multigene family evolution. Lines indicate the evolutionary path of the \textit{vap} genes between ancestral PAI lineages L0 to L0”, nearest common ancestor (LCA) and extant PAIs. Pre-pVAPA designates the hypothetical direct precursor of the current pVAPA PAI. Gene birth-duplication events are indicated by red squares, loss events by crosses, pseudogenes by asterisks and white rimming. (B) Fate of \textit{vap} PAI in \textit{R. equi} virulence plasmid evolution. (a) Acquisition by rhodococcal circular replicon of \textit{vap} PAI ancestor conferring ability to colonize macrophages; (b) Mobilization of \textit{vap} PAI from pre-pVAPA plasmid to rhodococcal linear replicon; (c) evolution of species-specificity.

\textbf{FIG 7.} Intracellular proliferation experiments in murine (J774A.1) and human (THP-1) macrophages. Data expressed as normalized Intracellular Growth Coefficient (IGC; see Materials & Methods). Means of three duplicate experiments ±SEM. Statistical significance analyzed by 2-way ANOVA; \textit{P} values of Šidák post-hoc multiple comparisons at each time point are shown if \(\leq 0.05\). (A) Plasmidless derivative and in-frame \(\Delta\textit{vapN}\) mutant of bovine
isolate 1571. Two-way ANOVA P values: $J774A.1 = 0.0007$, THP-1 = 0.0160. (B) Plasmidless derivative and in-frame $\Delta vpaA$ mutant of equine isolate 103S. Two-way ANOVA P values: $J774A.1 = 0.0112$, THP-1 < 0.0001.

FIG 8. Competitive virulence assay in mouse lung. BALB/c mice ($n = 4$ per time point) were infected intranasally with a $\approx 1:1$ mixture of the test bacteria and the competing populations monitored 60 min after infection ($t = 0$) and then daily on four consecutive days. Bar height denotes total lung CFU and the light and dark grey areas within bars indicates the proportion of the competing bacteria. Corresponding competitive index (C.I.) are shown in Table 1. (A) Competition between wild-type bovine isolate 1571 and isogenic plasmidless derivative 1571$^{-}$; infection dose: 3.7×10^7 CFU/mouse (2.3×10^7 and 1.4×10^7, respectively). (B) Competition between the avirulent 1571$^{-}$ strain and in-frame 1571$\Delta vpaN$ deletion mutant. Infection dose: 7.8×10^7 CFU/mouse (3.2×10^7 and 4.6×10^7, respectively).

FIG 9. Transfer of pVAPN by mating confers virulence to a plasmid-negative $R. equi$ recipient strain. (A) In vivo selection of pVAPN transconjugants in mice. Note the progressive enrichment of the recipient 103S$^{-}\text{RmpR}$ strain upon acquisition of the pVAPN plasmid. $t = 0$, 60 min after infection. (B) Intracellular proliferation in J774A.1 macrophages. Acquisition of pVAPN (and the control pVAPA) plasmid promotes intracellular proliferation to the recipient 103S$^{-}\text{RmpR}$ strain. Data expressed as normalized Intracellular Growth Coefficient (IGC; see Materials & Methods). Mean of three duplicate experiments \pmSEM; P values (2-way ANOVA, Šidák post-hoc multiple comparison) are indicated.
Fig. 3
Fig. 4
Fig. 7

A

- **J774.1**
 - IGC measured over time (0, 24, 48 hours).
 - Data points and error bars indicate changes in IGC across time.
 - Significant differences marked (<.0001, <.0004).

- **THP-1**
 - Similar measurement and trend as J774.1.

B

- **J774.1**
 - Additional data points and error bars for further analysis.
 - Additional data points and error bars for different timepoints.
 - Significant differences marked (.0002, <.0001).

- **THP-1**
 - Further analysis of IGC trends.

Legend:
- **1571**
- **1571−**
- **ΔvapN**
- **103S**
- **103S−**
- **ΔvapA**
Fig. 8
Fig. 9

A

- **% recipients**
 - 0 days: 99.46%
 - 3 days: 65.52%
 - 5 days: 19.68%

- **% transconjugants**
 - 0 days: 34.48%
 - 3 days: 80.32%

B

- **IGC**
 - Transconj. pVAPA: 20 (p < 0.0001)
 - Transconj. pVAPN: 15 (p < 0.0056)
 - 103S−RmpR: 0

Improvements
- Transconj. pVAPA has the highest IGC value (20) compared to Transconj. pVAPN (15) and 103S−RmpR (0).
- The IGC values for transconjugants increase significantly over time.

Significance
- Transconj. pVAPA shows significant improvement with p values less than 0.0001 and 0.0056.
- 103S−RmpR remains stable with no significant change.