Trypanosoma brucei glycoproteins contain novel giant poly-N-acetyllactosamine carbohydrate chains

Citation for published version:

Digital Object Identifier (DOI):
10.1074/jbc.M411061200

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
Journal of Biological Chemistry

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Trypanosoma brucei Glycoproteins Contain Novel Giant Poly-N-acetyllactosamine Carbohydrate Chains*

Received for publication, September 27, 2004, and in revised form, October 25, 2004
Published, JBC Papers in Press, October 27, 2004, DOI 10.1074/jbc.M411061200

Abdelmadjid Atrih‡, Julie M. Richardson§, Alan R. Prescott‡, and Michael A. J. Ferguson‡†

From the ‡Division of Biological Chemistry and Molecular Microbiology, the School of Life Sciences, University of Dundee, Dundee DD1 5EH, and the §School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, Scotland, United Kingdom

The flagellar pocket of the bloodstream form of the African sleeping sickness parasite Trypanosoma brucei contains material that binds the β-D-galactose-specific lectin ricin (Brickman, M. J., and Balber, A. E. (1990) J. Protozool. 37, 219–224). Glycoproteins were solubilized from bloodstream form T. brucei cells in 8 M urea and 3% SDS and purified by ricin affinity chromatography. Essentially all binding of ricin to these glycoproteins was abrogated by treatment with peptide N-glycosidase, showing that the ricin ligands are attached to glycoproteins via N-glycosidic linkages to asparagine residues. Glycans released by peptide N-glycosidase were resolved by Bio-Gel P-4 gel filtration into two fractions: a low molecular mass mannose-rich fraction and a high molecular mass galactose and N-acetylglucosamine-rich fraction. The latter fraction was further separated by high pH anion exchange chromatography and analyzed by gas chromatography mass spectrometry, one- and two-dimensional NMR, electrospray mass spectrometry, and methylation linkage analysis. The high molecular mass ricin-binding N-glycans are based on a conventional Manα1–3(Manα1–6)Manβ1–4GlcNAcβ1–4GlcNAc core structure and contain poly-N-acetyllactosamine chains. A significant proportion of these structures are extremely large and of unusual structure. They contain an average of 54 N-acetyllactosamine (Galβ1–4GlcNAc) repeats per glycan, linked mostly by -4GlcNAcβ1–6Galβ1–1-interrepeat linkages, with an average of one -4GlcNAcβ1–3(Galβ1–6Galβ1–1) branch point in every six repeats. These structures, which also bind tomato lectin, are twice the size reported for the largest mammalian poly-LacNAc-containing glycan. Despite the pivotal physiological role of the flagellar pocket in bloodstream form T. brucei, very little is known about its biochemical constituents. Although a small number of glycoproteins that reside in the flagellar pocket and lysosomal/endosomal system have been identified, very little is known about the fine chemical structures of their glycan moieties (16, 19–21). One known feature is the presence of electron-dense material in the flagellar pocket that binds ricin (18) and tomato lectin (19). The binding of tomato lectin suggests the presence of linear poly-N-acetyllactosamine (poly-LacNAc) oligosaccharides (19). In mammalian systems, poly-LacNAc-containing glycans that bind tomato lectin occur both on cell surface and lysosomal membrane glycoproteins (22–24) and consist of up to about 26 Galβ1–4GlcNAc units linked together principally by -4GlcNAcβ1–3Galβ1–1 linkages, occasional -4GlcNAcβ1–6Galβ1–1 linkages, and some -4GlcNAcβ1–6(4GlcNAcβ1–3Galβ1–1) branch points. Medium sized poly-LacNAc chains of this type (with up to 8 repeats) have been identified on certain type 2 VSGs of T. brucei (25).

African trypanosomes are tsetse fly‐transmitted parasitic protozoa responsible for sleeping sickness in man and nagana in livestock. In the mammalian host, bloodstream form Try-

1 The abbreviations used are: VSG, variant surface glycoprotein; bis-Tris, 2-[bis(2-hydroxyethyl)amino]-2-hydroxymethylpropane-1,3-diol; CHAPS, 3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonic acid; ES-MS, electrospray ionization-mass spectrometry; ES-MS/MS, electrospray ionization-tandem mass spectrometry; FTIC, rotating frame nuclear Overhauser spectroscopy; TOCSY, total correlation spectroscopy; VLPL, very large poly-N-acetyllactosamine.

This paper is available on line at http://www.jbc.org

Printed in U.S.A.
To begin to understand the physiological role of the flagellar pocket in bloodstream form T. brucei, we decided to examine the ricin-binding glycoproteins in this organism. We report a procedure for extracting glycoproteins using ricin coupled to agarose and describe the unusual size and structure of poly-LacNAc glycans released by peptide N-glycosidase-F (PNGase-F). We also show the localization of ricin ligands in the trypanosome. The unique sizes and unusual structure of the poly-LacNAc chains are discussed.

MATERIALS AND METHODS

Extraction of Ricin-binding Glycoproteins, SDS-PAGE, and Western Blotting—Bloodstream form T. brucei (strain 427, variant 117) were isolated from infected rats and purified over DEAE-cellulose (26). Parasites were subjected to hypotonic lysis to release cytosolic components as well as the majority of the VSG coat as soluble form VSG (26). The cell ghost pellets (1013 cells equivalents) were solubilized in 50 ml of 8 M urea, 3% SDS, 50 mM Tris-HCl, pH 6.8. The SDS/urea extract was diluted 50 times in buffer A (50 mM Tris-HCl, pH 6.8, 400 mM NaCl, and 0.8% Triton X-100, 0.1% 1-chloro-3-otolylamido-7-amine-2-heptanone, 1 µg/ml leupeptin, and 0.1% sodium azide) to allow affinity chromatography on ricin-agarose (Vector Laboratories). Ricin-coupled agarose (24-46 µg/mg of agarose) was added to the suspension and rotated gently overnight at 4 °C. Ricin-agarose was recovered by gentle centrifugation and packed into a 15 × 1-cm column. The column was washed with 5 volumes of buffer A, and bound material was eluted with 30 mg/ml lactose and 30 mg/ml Gal in 4-fold diluted buffer A. Aliquots of the eluted fractions were separated on NuPAGE bis-Tris 4–12% gradient gels (Invitrogen). After electrophoresis, glycoproteins were transferred onto nitrocellulose membrane (Hybond, Amersham Biosciences) at 45 mA for 1 h in a Hoefer SemiPhor semidry transfer unit. After blocking for 1 h in buffer B (Triton-buffered saline, pH 7.4, containing 0.05% Nonidet P-40, and 0.25% bovine serum albumin) at room temperature, membranes were incubated with horseradish peroxidase-conjugated ricin (diluted 1:10,000 in buffer B) for 1 h. The membrane was washed three times in buffer B and twice with PBS. Visualization was by enhanced chemiluminescence (Amersham Biosciences). Fractions containing ricin-binding glycoproteins were pooled, concentrated 5-fold using a centrifugal concentrator, and dialyzed against water to remove most of the lactose and Gal. The concentrated extract was stored at −20 °C before use. An aliquot of this concentrated extract was also separated on a NuPAGE bis-Tris 4–12% gradient gel and stained for carbohydrate by periodic acid-Schiff. After electrophoresis, the gel was rinsed with water and incubated with fixing solution (acetic acid/methanol/water; 10:35:25) for 20 min. The gel was washed three times (5 min each) with 0.2 M sodium acetate, 1% (v/v) periodic acid in 3% acetic acid for 30 min. The gel was washed three times (5 min each) with water and incubated for 1 h with Schiff's reagent (Sigma). Finally, the gel was incubated for 30 min with a reducing solution of 1% sodium metabisulfite and washed six times with water.

N-Glycan Release and Purification—To release N-glycans from proteins, the ricin-binding glycoproteins from 1 × 1011 cells in −1.5 ml were treated with 7,000 units of PNGase-F (New England BioLabs) overnight at 37 °C. The PNGase-F-treated fraction was made 50 mM with respect to potassium acetate and left overnight at 4 °C to precipitate SDS from the buffer. Triton X-100 was exhaustively extracted from the supernatant with toluene (typically 15–20 extractions with 3 volumes of toluene). Traces of solvent were removed by evaporation with nitrogen, and precipitated deglycosylated proteins at the water/toluene interface were discarded. The supernatant was dialyzed against a 1% (w/v) sodium acetate, 1% (v/v) periodic acid in 3% acetic acid for 30 min. The gel was washed three times (5 min each) with water and incubated for 1 h with Schiff's reagent (Sigma). Finally, the gel was incubated for 30 min with a reducing solution of 1% sodium metabisulfite and washed six times with water.

N-Glycan Release and Purification—To release N-glycans from proteins, the ricin-binding glycoproteins from 1 × 1011 cells in −1.5 ml were treated with 7,000 units of PNGase-F (New England BioLabs) overnight at 37 °C. The PNGase-F-treated fraction was made 50 mM with respect to potassium acetate and left overnight at 4 °C to precipitate SDS from the buffer. Triton X-100 was exhaustively extracted from the supernatant with toluene (typically 15–20 extractions with 3 volumes of toluene). Traces of solvent were removed by evaporation with nitrogen, and precipitated deglycosylated proteins at the water/toluene interface were discarded. The supernatant was dialyzed against a 1% (w/v) sodium acetate, 1% (v/v) periodic acid in 3% acetic acid for 30 min. The gel was washed three times (5 min each) with water and incubated for 1 h with Schiff's reagent (Sigma). Finally, the gel was incubated for 30 min with a reducing solution of 1% sodium metabisulfite and washed six times with water.

N-Glycan Release and Purification—To release N-glycans from proteins, the ricin-binding glycoproteins from 1 × 1011 cells in −1.5 ml were treated with 7,000 units of PNGase-F (New England BioLabs) overnight at 37 °C. The PNGase-F-treated fraction was made 50 mM with respect to potassium acetate and left overnight at 4 °C to precipitate SDS from the buffer. Triton X-100 was exhaustively extracted from the supernatant with toluene (typically 15–20 extractions with 3 volumes of toluene). Traces of solvent were removed by evaporation with nitrogen, and precipitated deglycosylated proteins at the water/toluene interface were discarded. The supernatant was dialyzed against a 1% (w/v) sodium acetate, 1% (v/v) periodic acid in 3% acetic acid for 30 min. The gel was washed three times (5 min each) with water and incubated for 1 h with Schiff's reagent (Sigma). Finally, the gel was incubated for 30 min with a reducing solution of 1% sodium metabisulfite and washed six times with water.

N-Glycan Release and Purification—To release N-glycans from proteins, the ricin-binding glycoproteins from 1 × 1011 cells in −1.5 ml were treated with 7,000 units of PNGase-F (New England BioLabs) overnight at 37 °C. The PNGase-F-treated fraction was made 50 mM with respect to potassium acetate and left overnight at 4 °C to precipitate SDS from the buffer. Triton X-100 was exhaustively extracted from the supernatant with toluene (typically 15–20 extractions with 3 volumes of toluene). Traces of solvent were removed by evaporation with nitrogen, and precipitated deglycosylated proteins at the water/toluene interface were discarded. The supernatant was dialyzed against a 1% (w/v) sodium acetate, 1% (v/v) periodic acid in 3% acetic acid for 30 min. The gel was washed three times (5 min each) with water and incubated for 1 h with Schiff's reagent (Sigma). Finally, the gel was incubated for 30 min with a reducing solution of 1% sodium metabisulfite and washed six times with water.

N-Glycan Release and Purification—To release N-glycans from proteins, the ricin-binding glycoproteins from 1 × 1011 cells in −1.5 ml were treated with 7,000 units of PNGase-F (New England BioLabs) overnight at 37 °C. The PNGase-F-treated fraction was made 50 mM with respect to potassium acetate and left overnight at 4 °C to precipitate SDS from the buffer. Triton X-100 was exhaustively extracted from the supernatant with toluene (typically 15–20 extractions with 3 volumes of toluene). Traces of solvent were removed by evaporation with nitrogen, and precipitated deglycosylated proteins at the water/toluene interface were discarded. The supernatant was dialyzed against a 1% (w/v) sodium acetate, 1% (v/v) periodic acid in 3% acetic acid for 30 min. The gel was washed three times (5 min each) with water and incubated for 1 h with Schiff's reagent (Sigma). Finally, the gel was incubated for 30 min with a reducing solution of 1% sodium metabisulfite and washed six times with water.

N-Glycan Release and Purification—To release N-glycans from proteins, the ricin-binding glycoproteins from 1 × 1011 cells in −1.5 ml were treated with 7,000 units of PNGase-F (New England BioLabs) overnight at 37 °C. The PNGase-F-treated fraction was made 50 mM with respect to potassium acetate and left overnight at 4 °C to precipitate SDS from the buffer. Triton X-100 was exhaustively extracted from the supernatant with toluene (typically 15–20 extractions with 3 volumes of toluene). Traces of solvent were removed by evaporation with nitrogen, and precipitated deglycosylated proteins at the water/toluene interface were discarded. The supernatant was dialyzed against a 1% (w/v) sodium acetate, 1% (v/v) periodic acid in 3% acetic acid for 30 min. The gel was washed three times (5 min each) with water and incubated for 1 h with Schiff's reagent (Sigma). Finally, the gel was incubated for 30 min with a reducing solution of 1% sodium metabisulfite and washed six times with water.
Giant Poly-LacNAc Glycans in Trypanosoma brucei

Results

Extraction of Ricin-binding Glycoproteins—To extract all types of membrane-associated glycoconjugates, osmotically lysed T. brucei cells were completely solubilized in 8 M urea and 3% SDS for 30 min before dilution of the extract and addition of ricin coupled to agarose. Rechromatography of the unbound fraction showed that the majority of the ricin-binding material was captured in the first round of chromatography (data not shown). The native glycoproteins eluted from the ricin-coupled agarose range in apparent molecular mass from 35 to more than 188 kDa (Fig. 1A, lane 1). Reduction with 1 M dithiothreitol resulted in the disappearance of bands over 188 kDa and the appearance of smaller molecular mass glycoproteins (Fig. 1A, lane 2), suggesting disulfide linkages between some of the constituent glycoproteins. PNGase-F digestion of the ricin-binding glycoproteins revealed that almost all of the ricin-binding glycoproteins were N-linked structures (Fig. 1B). The remaining ricin-binding band at about 50 kDa is most likely residual VSG, a proportion of which is revealed that almost all of the ricin-binding glycoproteins are proteins. PNGase-F digestion of the ricin-binding glycoproteins revealed that almost all of the ricin-binding glycoproteins were N-linked structures (Fig. 1B). The remaining ricin-binding band at about 50 kDa is most likely residual VSG, a proportion of which is

FIG. 1. Ricin blot analysis of glycoproteins from bloodstream form T. brucei. Glycoproteins were eluted from a ricin-agarose column using a mixture of galactose and lactose. After electrophoresis, glycoproteins were either transferred onto nitrocellulose membrane and probed with horseradish peroxidase-conjugated ricin (A and B) or stained for carbohydrate with periodic acid-Schiff (C). A: lane 1, native extract; lane 2, extract reduced with dithiothreitol. B: lane 1, reduced extract; lane 2, reduced extract after digestion with PNGase-F. C: reduced extract. The positions of molecular mass standards are indicated.

FIG. 2. Bio-Gel P-4 chromatogram of N-glycans obtained from ricin-binding glycoproteins. Glycans released from ricin-binding glycoproteins by the action of PNGase-F were purified from detergents and salts, as described under “Materials and Methods,” and separated on a Bio-Gel P-4 column. The monosaccharide compositions of the fractions were determined by GC-MS. The void volume total poly-LacNAc fraction is indicated with a bar.

Molecular Modeling—A model of 3′GlCNacβ1-3Galβ1-linked poly-LacNAc containing five LacNAc repeats was built in Insight (Accelrys). A series of 10 random geometries was then computed, and each was subjected to dynamic simulated annealing using Discover (Accelrys). Similarly, 10 random geometry models of 1-6Galβ1-3Galβ1-linked poly-LacNAc, also containing five LacNAc repeats, were generated and subjected to simulated annealing.

Structural Analysis of the VLPL Fraction—The VLPL fraction eluted from the Dionex HPAEC column was first subjected to monosaccharide compositional analysis by GC-MS. This fraction contains exclusively Man, Gal, and GlcNAc in the ratio 3:9:60. Methylation linkage analysis (Table I) revealed 2-O-substituted-Man and 3,6-disubstituted-Man and no other types of Man residue. Furthermore, one- and two-dimensional 1H NMR spectra of the same fraction after exchange into 2H2O (Fig. 4, A and B, Table II) revealed resonance values for αMan, βMan and βGlcNAc residues (indicated with an asterisk in Table II) similar to those reported for the conserved Man-GlcNAc core of many N-linked glycans (30). Taken together, these data suggest that all or most of the structures present are based on a conventional biantennary core structure.
The VLPL fraction was methylated, hydrolyzed, reduced, and acetylated to yield PMAA derivatives for analysis by GC-MS. Derivatives were identified by retention time and electron impact mass spectra and quantified by integration of the total ion current using molar response factors deduced from concurrent analysis of authentic standards (see "Materials and Methods").

The only discrepancy between the composition, methylation linkage analysis and NMR data relates to stoichiometry. The compositional and methylation linkage data suggested an average of 59 and 54 LacNAc repeats, respectively, assuming 3 Man residues/glycan. However, integration of NMR resonances suggested ~22 repeats/glycan (Table II). Compositional and methylation analyses of the soluble material recovered from the NMR experiment agreed with the latter figure. However, we noticed that after vortexing the average repeat number (according to composition analysis) increased to 45, suggesting that some of the larger glycans had not been in free solution.

We also realized that the process of rotary evaporation, used for exchange into 2H$_{2}$O, had also resulted in the selective loss of the larger oligosaccharides in the sample. Indeed, prolonged sonication of the vessel used to rotary evaporate the sample for NMR analysis with water recovered the larger oligosaccharides, as judged by compositional analysis and Dionex HPAEC (data not shown). We suggest that, like glycosaminoglycans, the larger oligosaccharides may have gel-like properties making their dissolution in water from a dried glass-like state particularly slow and dependent on sonication and giving them the tendency to come out of solution. To assess this point further, another VLPL preparation was exchanged into 2H$_{2}$O but this time using freeze-drying. NMR analysis showed qualitatively exactly the same resonances as before; however, integration this time suggested an average of 48 repeats/glycan. An independent estimate of 47 LacNAc repeats was obtained by dynamic light scattering, which predicted an average molecular mass of 18.1 kDa.

Thus, taking into account the LacNAc repeat estimates of 59 (GC-MS monosaccharide composition), 54 (GC-MS methylation linkage), 48 (NMR resonance integration), and 47 (dynamic light scattering), we suggest an average figure of around 54 LacNAc repeats/oligosaccharide in the VLPL fraction. Unfortunately, but unsurprisingly, molecular species of this size (i.e. around 20.5 kDa) were not identified when VLPL was analyzed by ES-MS or MALDI-MS either before or after permethylation. On the other hand, smaller resolved glycans (e.g. the numbered peaks in Fig. 3A) were successfully analyzed by ES-MS (Table III). For exam-
ple, an aliquot of peak 5 gave triply charged $[M + 3Na]^3+$ ions at m/z 1544, 1665, and 1787. These ions correspond to (LacNAc)$_{11}$Man$_3$GlcNAc$_2$, (LacNAc)$_{12}$Man$_3$GlcNAc$_2$, and (LacNAc)$_{13}$Man$_3$GlcNAc$_2$, respectively (Table III). Daughter ion spectra of these ions showed intense m/z 366 daughter ions, consistent with poly-LacNAc structures.

The methylation linkage analysis was carefully quantified by determining molar relative response factors for the relevant partially methylated alditol acetate derivatives using a set of authentic standards. Thus, the data in (Table I) show that there is on average one -4GlcNAc11–6(-4GlcNAc11–3)Gal1 and that there is a 10:1 ratio of -4GlcNAc11–6Gal1 to -4GlcNAc11–3Gal1 interrepeat linkages.

Tomato Lectin Chromatography—Because tomato lectin is known to bind material from the flagellar pocket, it was suggested that glycoproteins from the flagellar pocket might contain linear poly-LacNAc chains (19). We examined which subset of the ricin-binding total poly-LacNAc fraction eluted from the void volume of Bio-Gel P-4 binds to tomato lectin. GC-MS monosaccharide analysis revealed that 85% of the applied N-glycans were bound by the tomato lectin column and subsequently eluted with a mixture of tri-N-acetylchitotriose and tetra-N-acetylchitotetraose. A selective loss of Man content was noted, suggesting that some of the smaller structures might not be retained by tomato lectin. The Dionex HPAEC chromatogram of the whole poly-LacNAc fraction (Fig. 3A) was compared with that of the tomato lectin-bound N-glycans (Fig. 3B). There is an obvious disappearance of glycans with retention time lower than 15 min. Peak 4 (Fig. 3A and B, Table III), which contains sialic acid and is most likely derived from fetal calf serum glycoprotein, was also lacking in the tomato lectin Dionex HPAEC profile. Glycans typical of peaks 1, 2, and 4 (Table III and Fig. 3B) were detected in both the flow-through and the wash fraction by ES-MS (data not shown). Methylation linkage analysis of the tomato lectin-bound fraction revealed the presence of the same carbohydrate species present in the total fraction.

Subcellular Localization of Ricin-binding Glycoproteins—Sites of ricin binding were detected by fluorescence microscopy (Fig. 5A). Ricin binds the flagellar pocket, lysosomal/endosomal

TABLE II

<table>
<thead>
<tr>
<th>Label</th>
<th>aMan</th>
<th>a</th>
<th>bβGlcNAc</th>
<th>b*</th>
<th>cβGlcNAc (3-substituted)</th>
<th>dβGal (3-, 6-, 6-di-substituted)</th>
<th>eβGal (3,6-d-substituted)</th>
<th>fβGal (3,6-di-substituted)</th>
<th>gβMan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ND</td>
</tr>
<tr>
<td>a</td>
<td>αMan</td>
<td>5.15</td>
<td>3.87</td>
<td>3.96</td>
<td>4.02</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>b</td>
<td>βGlcNAc</td>
<td>4.71/4.70</td>
<td>3.82/3.79</td>
<td>3.59</td>
<td>3.71</td>
<td>3.67</td>
<td>3.74</td>
<td>3.83,3.95</td>
<td>1.91</td>
</tr>
<tr>
<td>c</td>
<td>αGlcNAc</td>
<td>4.63</td>
<td>3.77</td>
<td>3.60</td>
<td>3.72</td>
<td>3.57</td>
<td>3.66</td>
<td>3.69</td>
<td>3.68</td>
</tr>
<tr>
<td>d</td>
<td>βGal (3-substituted)</td>
<td>4.55</td>
<td>3.86</td>
<td>3.58</td>
<td>3.72</td>
<td>3.83</td>
<td>3.97</td>
<td>1.91</td>
<td>22</td>
</tr>
<tr>
<td>e</td>
<td>βGal (6-substituted)</td>
<td>4.47/4.48</td>
<td>3.55</td>
<td>3.67</td>
<td>3.93</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>βGal (3,6-di-substituted)</td>
<td>4.45</td>
<td>3.58</td>
<td>3.72</td>
<td>4.15</td>
<td>3.57</td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>βMan</td>
<td>ND</td>
<td>4.18</td>
<td>3.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a Labels correspond with those shown in Fig. 4B. b αMan, βGlcNAc core residues are marked with an asterisk. c Integral affected by overlap with tail of water peak. d Integral could not be measured accurately because of overlap with an impurity. e Not detected because of overlap with the water resonance.
Individual peak fractions from the HPAEC separation of the total poly-LacNAc fraction (see Fig. 3A) were adjusted to 50% acetonitrile, 1% formic acid and analyzed by nanospray positive ion ES-MS using a Q-ToF2 mass spectrometer. The proposed structures are consistent with the measured m/z values of the recorded double- and triple-charged ions.

Table III

<table>
<thead>
<tr>
<th>Peak no.</th>
<th>ES-MS analysis</th>
<th>Proposed structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>[M+2H]⁺²⁺ = 821.30</td>
<td>LacNAc₂Man₃GlcNAc₂</td>
</tr>
<tr>
<td>2</td>
<td>[M+2H]⁺²⁺ = 1186.43</td>
<td>LacNAc₂Man₃GlcNAc₂</td>
</tr>
<tr>
<td>3</td>
<td>[M+3Na]⁻¹ = 1056.71</td>
<td>LacNAc₂Man₃GlcNAc₂</td>
</tr>
<tr>
<td>4</td>
<td>[M+2H]⁺²⁺ = 966.84</td>
<td>NeuAc₃LacNAc₂Man₂GlcNAc₂</td>
</tr>
<tr>
<td>5</td>
<td>[M+3Na]⁻¹ = 1534.55</td>
<td>LacNAc₁₀Man₃GlcNAc₂</td>
</tr>
<tr>
<td></td>
<td>[M+3Na]⁻¹ = 1665.26</td>
<td>LacNAc₁₀Man₃GlcNAc₂</td>
</tr>
<tr>
<td></td>
<td>[M+3Na]⁻¹ = 1786.97</td>
<td>LacNAc₁₀Man₃GlcNAc₂</td>
</tr>
</tbody>
</table>

*Peak number refers to those shown in Fig. 3A.

This minor sialic acid-containing structure is thought to originate from fetal calf serum glycoproteins.

Discussion

The flagellar pocket of bloodstream form *T. brucei* is the only known site for endocytosis and secretion (4–6). Considerable demand is placed on the efficiency of the flagellar pocket to acquire nutrients, like serum transferrin, required by the cell to survive and propagate in the mammalian host. The flagellar pocket of *T. brucei* contains stage-specific glycoconjugates that bind ricin (18) and tomato lectin (19). In this work we exploited ricin affinity to purify a glycoprotein fraction that includes these molecules. Lectin fluorescence microscopy of fixed cells revealed that ricin-binding glycoproteins are not restricted to the flagellar pocket but are also prevalent throughout the endocytic compartments and the lysosomes. A detailed proteomic analysis of the ricin-binding glycoproteins revealed the presence of a Lectin/endoosomal p67, flagellar pocket acid phosphatase, traces of VSG, and several other known and unknown glycoproteins. Thus, although the fraction we prepared clearly contains flagellar pocket matrix material, it is not representative of this material alone. Nevertheless, analysis of this ricin-binding material has provided several new insights into the glycoarchitecture of bloodstream form *T. brucei*, as described below.

The approach of solubilizing cell ghosts with 8 M urea and 3% SDS allowed the complete extraction of high molecular mass glycoproteins that were not, in our hands, well extracted by detergents alone. This may explain why glycoproteins extracted in 1% CHAPS and purified by tomato lectin appear to have a more restricted molecular mass range (19). However, as reported for tomato lectin (19), the majority of the ricin-binding glycans of bloodstream form *T. brucei* glycoproteins are N-linked to asparagine residues. Some of the ricin-binding glycoproteins may form higher molecular mass complexes maintained by disulfide linkage, as judged by the effect of dithiothreitol reduction, but disulfide linkages do not appear to be extensive.

The VLPL poly-LacNAc N-linked glycans purified from bloodstream form *T. brucei* show several unusual features. First, their size is unique. With a mean LacNAc repeat number of about 54/glycan they are, to our knowledge, the largest poly-LacNAc structures yet reported. Previous reports for mammalian poly-LacNAc chains suggest a maximum of about 26 LacNAc repeats (22–24), and even N-linked keratan sulfate chains of articular cartilage appear to be limited to about 8

2 A. Atrih and M. A. J. Ferguson, unpublished data.

FIG. 5. Subcellular localization of ricin-binding glycoproteins in bloodstream form *T. brucei* by fluorescence microscopy. Fixed trypanosomes were stained with FITC-ricin (A) and FITC-ricin in the presence of the ricin-blocking sugars galactose and lactose (B). The fluorescence image is merged with a phase-contrast image.

FIG. 6. Molecular models of poly-LacNAc chains. A, the extended conformation of five repeats of -4GlcNAcβ1→3Galβ1-linked poly-LacNAc (i.e. Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAc) and (B) the more compact structure of five repeats of -4GlcNAcβ1→6Galβ1-linked poly-LacNAc (i.e. Galβ1→4GlcNAcβ1→6Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAc).
linear poly-LacNAc sequence makes them resistant to digestion with endo-β-galactosidase (33). This property has prevented us from degrading the *T. brucei* structures into component fractions. We undertook molecular modeling of the low energy conformers of -4GlcNAcβ1-3Galβ1- and -4GlcNAcβ1-6Galβ1-linked poly-LacNAc chains. We found that the former adopted a generally extended conformation whereas the latter adopted a more compact structure (Fig. 6). This is consistent with the observation that structures containing -4GlcNAcβ1-3Galβ1- linkages have a higher hydrodynamic volume than those containing -4GlcNAcβ1-6Galβ1- linkages (25). This distinct and compact shape may play a significant role in the physical properties of the VLPL glycans and the glycoproteins to which they are attached. The dominance of -4GlcNAcβ1-6Galβ1-linked poly-LacNAc suggests that the enzymatic machinery involved in biosynthesis of poly-LacNAc in *T. brucei* differs from that of the mammalian systems. Indeed, BLAST searches in the *T. brucei* data base for homologs of the mammalian enzymes that initiate and participate in poly-LacNAc synthesis did not return obvious candidates. Thus, the poly-LacNAc biosynthetic machinery in *T. brucei* may represent a potential therapeutic target. It is conceivable that the essentiality of galactose metabolism to bloodstream form *T. brucei* (34) may be linked to an absolute requirement for the synthesis of giant poly-LacNAc chains by the parasite.

Third, despite their size, the *T. brucei* poly-LacNAc N-linked glycans are compositionally very simple. They are neutral (non-sialylated, nonsulfated) molecules that contain only Man, Gal, and GlcNAc; fucose, a common component of complex N-linked glycans, is noticeably absent.

Fourth, the poly-LacNAc structures of the VLPL fraction are distinct from the smaller (≤ 8 LacNAc repeats) N-linked glycans found attached to certain type-2 VSGs (25). The latter contain mostly branched poly-LacNAc chains (with some linear but predominantly -4GlcNAcβ1-3Galβ1-linked repeats) and can, like the complex biantennary glycans of type-3 VSGs, terminate in Galα1-3Galβ1- (25). Interestingly, despite an average of 9 branch points/VLPL glycan, which predicts an average of 11 nonreducing β-galactose termini/glycan, there is no evidence for Galα1-3Galβ1- termini in these structures. This may be immunologically relevant because normal human serum contains a substantial amount of antibody directed against the Galα1-3Galβ1- epitope (35). Thus, whereas the Galα1-3Galβ1-containing VSG glycans are buried in the VSG coat and cannot be reached by circulating antibodies (36), at least some of the VLPL fraction is exposed to host serum in the flagellar pocket. Another possible reason for differences in the VLPL and VSG poly-LacNAc structures may be to do with intracellular sorting. Nolan et al. (19) have postulated that poly-LacNAc chains in bloodstream form *T. brucei* may play a role as sorting signals in the endocytic pathway. It is possible that the size and/or the ratio of 6-O-substituted Gal to 3-O-substituted Gal in poly-LacNAc glycans may be a crucial factor for recognition by putative lectin-like receptor(s). This might allow these receptors to differentiate between their true cargo and the ubiquitous VSG that coats the entire flagellar pocket.

Lastly, although tomato lectin is known to bind with high affinity to glycopeptides containing three or more linear LacNAc repeats via -4GlcNAcβ1-3Galβ1- inter-LacNAc linkages (32, 37), our results suggest that structures with 3 or more linear LacNAc repeats with -4GlcNAcβ1-6Galβ1- inter-LacNAc linkages are also bound by the lectin. Previously, such structures were not available to test this specificity.

Acknowledgments—We thank Irene Hallyburton (Post-Genomics and Molecular Interactions Centre) for performing the light scattering studies and Angela Mehler and Lucia Guthier for advice and assistance.

REFERENCES

