
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Benchmarking the Accuracy of Algorithms for Memory-
Constrained Image Classification

Citation for published version:
Müksch, S, Olausson, T, Wilhelm, J & Andreadis, P 2021, Benchmarking the Accuracy of Algorithms for
Memory-Constrained Image Classification. in 2020 IEEE/ACM Symposium on Edge Computing (SEC).
Institute of Electrical and Electronics Engineers (IEEE), pp. 400-404, Fifth ACM/IEEE Symposium on Edge
Computing, San Jose, California, United States, 11/11/20. https://doi.org/10.1109/SEC50012.2020.00059

Digital Object Identifier (DOI):
10.1109/SEC50012.2020.00059

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2020 IEEE/ACM Symposium on Edge Computing (SEC)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 18. Oct. 2021

https://doi.org/10.1109/SEC50012.2020.00059
https://doi.org/10.1109/SEC50012.2020.00059
https://www.research.ed.ac.uk/en/publications/2149f347-23cd-4fff-878a-6eb7b5fb5100


Benchmarking the Accuracy of Algorithms for
Memory-Constrained Image Classification

Sebastian Müksch∗
sebastian.mueksch@gmail.com

Theo Olausson∗
tolausso@inf.ed.ac.uk

John Wilhelm∗

jwilhelm@inf.ed.ac.uk
Pavlos Andreadis

pavlos.andreadis@ed.ac.uk

School of Informatics, University of Edinburgh, UK

Abstract—Convolutional Neural Networks, or CNNs, are the
state of the art for image classification, but typically come at
the cost of a large memory footprint. This limits their usefulness
in edge computing applications, where memory is often a scarce
resource. Recently, there has been significant progress in the field
of image classification on such memory-constrained devices, with
novel contributions like the ProtoNN, Bonsai and FastGRNN
algorithms. These have been shown to reach up to 98.2%
accuracy on optical character recognition using MNIST-10, with
a memory footprint as little as 6KB. However, their potential on
more complex multi-class and multi-channel image classification
has yet to be determined. In this paper, we compare CNNs
with ProtoNN, Bonsai and FastGRNN when applied to 3-channel
image classification using CIFAR-10. For our analysis, we use the
existing Direct Convolution algorithm to implement the CNNs
memory-optimally and propose new methods of adjusting the
FastGRNN model to work with multi-channel images. We extend
the evaluation of each algorithm to a memory size budget of 8KB,
16KB, 32KB, 64KB and 128KB to show quantitatively that Direct
Convolution CNNs perform best for all chosen budgets, with a
top performance of 65.7% accuracy at a memory footprint of
58.23KB.

I. INTRODUCTION

Applying image classification in the real world is a task
which comes with several innate challenges: occlusion, intra-
class variability, varying lighting conditions and many more.
Significant progress has been made towards solving this open
problem via deep learning, in particular in the form of Convo-
lutional Neural Networks, or CNNs [12]. However, prominent
models to have achieved state-of-the-art performance tend
to be very large (e.g. [16]). This limits the feasibility of
applying CNNs to carry out image classification on memory-
constrained devices. One alternative is to offload the inference
to a data centre but this brings several challenges of its own,
in particular with respect to reliability, its affect on the overall
system cost [18] and a potential worsening of battery life
and latency [15]. The rise of 5G connectivity could mitigate
some of these concerns by offering greater reliability and
stability of communication. However, several interesting areas
of application may still simply be incompatible with offloading
due to matters of privacy [17] (affecting e.g. surveillance
cameras) or the previously mentioned impact on latency and
battery life.

To circumvent the issues associated with offloading, one
may instead carry out inference directly on the edge by using

∗ Co-First Author.

models with a small enough memory footprint. The quest to
construct powerful models with tiny memory footprints has
sparked diverse streams of research targeting equally diverse
applications. As far as image classification goes, experimental
results have thus far been centred around the MNIST data set
[14]. However, in the present day the usefulness of this data
set is limited: recent works are starting to reach saturating
levels of performance (i.e. above 99% test set accuracy of
models fitting within 2KB of memory [8]), and the single-
channel nature of the data set may bias the state of the art
towards methods which may not generalise well when the
input images consist of several channels, e.g. coloured images
in RGB or HSV encoding. Motivated by these insights, this
paper presents new research by comparing the state-of-the-
art methods for memory-constrained image classification on a
significantly more challenging data set, CIFAR-10 [11], thus
establishing new benchmarks.

Section II briefly discusses the specifics of the CIFAR-10
[11] data set. Section III introduces four methods from the
literature along with their perceived strengths and weaknesses
in simpler applications. Following this, Section IV outlines
our methodology for configuring these models optimally for
the CIFAR-10 task, given the memory constraints, including
a new method of adjusting FastGRNN [3] for multi-channel
images. Finally, Section V describes our experiments and their
results while Section VI adds concluding remarks and outlines
future work.

II. PROBLEM DEFINITION

The CIFAR-10 data set consists of 60,000 32×32 3-channel
colour images, divided into 10 classes such as airplane,
automobile and dog [11]. It comes split in two balanced sets
of 50,000 images for training and 10,000 for testing. For our
analysis, we extract a validation set consisting of exactly 1000
images of each class from the training set, leaving 40,000
images for training. The algorithms will then be compared
using the test set accuracy.

III. ALGORITHMS UNDER CONSIDERATION

In this section we briefly introduce Direct Convolutions [8],
FastGRNN [3], Bonsai [13] and ProtoNN [4] as the state of the
art for memory-constrained image classification. We highlight
and discuss each method’s image classification performance
as has previously been reported in the literature.



A. Direct Convolutions

The Direct Convolution [8] method significantly reduces the
memory overhead of using CNNs through clever re-use of
memory. Memory used to store the pixels of an input feature
map is progressively replaced with the activations of the layer
as the inputs become stale, i.e. all activations depending on
the input pixel have been computed [8]. Though deceptively
simple, this method is made significantly more complicated
when a layer increases the channel depth: i.e. when the number
of channels in the input is strictly less than that in the output.
In such scenarios, naively processing the pixels in row-major
order would cause the memory to be freed in a fragmented
manner, making it difficult to re-use the freed memory. To
avoid this issue, a herringbone strategy is proposed where
the pixels are traversed in alternating row- and column-major
order, which provably uses optimal space [8] in addition to
that taken up by the input image.

Currently, this method holds the record performance
(99.15% test accuracy) on 10-class MNIST classification for
models with memory footprints on the order of kilobytes and
it does so with a model of only 2KB of memory [8]. However,
no results for a data set other than MNIST are presented in
[8], nor were any such results identified elsewhere.

B. FastGRNN

Gating mechanisms have a rich history and have long been
used to stabilize training and improve performance of RNNs,
such as in Long Short-Term Memory units, or LSTMs, [9].
However, gates add extra parameters to the model and thus
increase its memory footprint; as a result the gating mecha-
nisms used in LSTMs have since been refined by GRUs [6] and
UGRNNs [2]. FastGRNN [3] is a gated RNN which continues
along this line of producing smaller gating mechanisms.

FastGRNN uses only two prediction parameters to compute
both the gate activation and the hidden state, and the model can
then further be compressed through quantization or keeping
the two prediction parameters low-rank, sparse or both. To
allow for this compression, FastGRNN uses a three-stage
training process split evenly over the training epochs. First,
the sparsity constraints are ignored while a low-rank version
of the parameters are learned. Secondly, the sparsity structure
is learned along with the support for the prediction parameters.
Finally, the support set of the parameters is frozen and the
model is then fine-tuned [3].

Impressively, FastGRNN is able to accurately capture the
wakeword “Hey Cortana” with a model size of only 1KB
[3]. However, somewhat surprisingly, FastGRNN is also apt
at image classification, achieving 98.2% accuracy with a 6KB
model on a pixel-by-pixel version of 10-class MNIST [3]. As
such, it makes for an interesting contender in our analysis
despite recurrent models typically not being used for image
classification in the wider literature.

C. Bonsai

Bonsai [13] is a decision-tree based algorithm for resource-
constrained machine learning, which along with learning a

non-linear tree also learns a low-dimensional projection. The
model size is kept small by training a single tree rather than
an entire forest on the low-dimensional projected data and by
ensuring that the learned projection matrix is sparse.

Though the authors carry out experiments targeting sev-
eral data sets, the results are mainly compared to those of
pruned version of large networks, rather than architectures
which directly target the resource-constrained systems. While
it may have been state-of-the-art at the time of its publication,
Bonsai’s 97.01% 10-class MNIST test set accuracy at 84KB
[13] is now outperformed by both Direct Convolutions and
FastGRNN. On a 2-class version of CIFAR, this method is
shown to achieve 73.02% accuracy while only using up 2KB
of memory; at 16KB it reaches 76.64% [13].

D. ProtoNN

The ProtoNN algorithm takes inspiration from the familiar
k-Nearest-Neighbours method. ProtoNN performs inference
analogously to k-NN, however, it distinguishes itself by re-
quiring several orders of magnitude less space and time. This
is achieved by learning a small set of informative prototype
data points to compare against at time of inference, along with
a sparse projection onto low-dimensional space [4].

Compared to the other methods, ProtoNN achieves a less
impressive 95.88% accuracy on 10-class MNIST classification
and requires 64KB of memory to do so [4]. However, similarly
to Bonsai, ProtoNN is tested on a 2-class version of CIFAR
on which it achieves 76.35% accuracy with 16KB [4].

IV. METHODOLOGY

This section details how each of the methods outlined
in Section III can be applied to solve the 3-channel image
classification, along with the way in which we optimise each
method for the given memory budgets.

A. Direct Convolutions

In order to obtain 99.15% accuracy on 10-class MNIST in-
troduced in Section III-A, a sampling-based neural architecture
search was performed in [8]. Given the strong performance of
this method on MNIST, we adopt this search and its space for
the CIFAR-10 experiments as well. Specifically, this involves
first enumerating a large set of model architectures, then
calculating the memory requirements for each. From this data
a given number of models satisfying the memory size budget
are sampled. Each of the selected models is partially trained
(e.g. for 5 epochs) and the best model based on validation
accuracy after this limited training is identified. Finally, the
identified model is trained fully using early stopping, and
this is considered the optimal model. We deem this sampling
approach reasonable given recent empirical and theoretical
evidence that randomly searching for hyper-parameters can be
more efficient than a guided or grid search [1].

B. FastGRNN

To our knowledge, we are the first to apply FastGRNN to
a domain with multi-channel images. This raises the question



of how to model the input data as a time series in order to
benefit from the recurrent nature of the network. In simple
single-channel images such as those found in MNIST [14],
the input data can be turned into a time series either by
feeding the network with a single pixel at a time (e.g. [3])
or by feeding the network with a group of pixels, e.g. a full
row or column, at a time (e.g. the examples given in [5]).
In either case, multi-channel images complicate this process
by introducing an implicit trade-off between proximity in the
time series between pixels which lie close together within a
single channel (e.g. adjacent pixels in the red channel) and
pixels which lie close together across the channels (e.g. the
first pixels in each of the three channels).

We propose three different methods for classifying multi-
channel images with FastGRNN. These share the basic as-
sumption that each data point in the time series is one row
of one channel in the input, but differ in how the data is
fed into the network. Row-major: Feed the data into a single
FastGRNN unit, followed by a fully-connected layer, starting
first with all red rows, then all green rows and finally all blue
rows. Channel-major: Feed the data into a single FastGRNN
unit, followed by a fully-connected layer, starting with the first
red row, the first green row, the first blue row, then the second
red row, the second green row and the second blue row, etc.
until the last blue row. Multi-FastGRNN: Feed the data into
three separate FastGRNN units, one for each channel, followed
by a fully connected layer. Feed each unit with the rows of
the channel corresponding to the unit, in order.

For an RNN, learning features from several elements in its
input sequence is tied to their temporal latency, i.e. distance
between them in the sequence. With the row-major method,
we focus on features that relate the pixels in the first red row
to those in the second red row etc., where it takes time to see
the next channel. With the channel-major method, we focus
on features that relate pixels in the first rows of each channel,
where it takes time to see the next row. As such there is a trade-
off between setting up for intra- and inter-channel features.
With the Multi-FastGRNN architecture we seek to circumvent
this trade-off by explicitly separating the channels and training
one FastGRNN unit per channel. To retain the ability to learn
cross-channel features, we then concatenate the outputs of each
unit and feed the combined output into a fully-connected layer.

The size of a FastGRNN unit is predominantly determined
by its input dimensionality and its hidden dimensionality. As
briefly mentioned in Section III, the model can then be further
compressed if the predictor parameters U and W [3] are
kept low-rank and sparse, or if the parameters are quantized.
In this analysis, we carry out a grid search on the hidden
dimensionality and the sparsity of U and W to tune the size
of the models, to accommodate for the large amount of size
budgets and input sequencing methods to investigate. We thus
keep the prediction parameters full-rank and do not carry out
quantization, a trade-off which we do not believe to be a
cause for concern as our analysis involves comparatively large
memory budgets for the domain (up to 128KB).

C. Bonsai

Applying Bonsai to multi-channel inputs is straightforward
as it does not assume any spacial relationship between features.

As a Bonsai model is parameterised by the depth of the
decision tree and the dimensionality of the projection matrix
[13], we exhaustively search over these two parameters. We
begin by fixing the tree depth to 1 and train models with
varying dimensionality of the projection matrix, starting with
a dimensionality of 1 and then incrementing it until we reach a
model that no longer fits into the largest memory budget. After
that, we increment the tree depth and repeat the process, until
the tree depth is too large to to yield any models fitting within
the maximum memory budget. In order to make the search
tractable, all other remaining parameters will be set based on
recommended values sourced from the litrature.

D. ProtoNN

Like Bonsai, ProtoNN does not assume any spacial relation-
ship between elements of the feature vectors. Therefore, multi-
channel images can simply be flattened. More interestingly,
ProtoNN exposes three parameters which have an effect on
the model size: the dimensionality of the projected space, the
number of prototypes to learn, and a sparsity constraint on
the learned matrices (to allow for compression). The model’s
performance is also affected by the parameter γ from the
Gaussian kernel similarity function. Thus the best performing
ProtoNN model for each memory budget can be obtained by
carrying out a grid search over these parameters along with
the learning rate of the optimization.

V. EXPERIMENTS

In this section we set up and perform experiments following
the methodology outlined above. For the ProtoNN, Bonsai, and
the FastGRNN methods we use the versions included in the
EdgeML library [5], while for Direct Convolutions we base
our experiments on the software package provided by [7].

A. Direct Convolutions

As detailed in Section IV-A, we will employ a sampling
based neural architecture search to obtain the best performing
models for this method. In particular, we will sample 750
models for each memory budget from the viable model set1

and partially train each selected model for 5 epochs. We use
the Adam optimiser [10] for training, with an initial learning
rate set to 0.005 which is then decayed by 0.95 each epoch.
From this partial training the best model for each memory
budget, based on validation set accuracy, is identified. These
models are then trained for 100 epochs, using early stopping
with a patience of 5 epochs. Finally, the test set accuracies of
these models are computed, which are given in Table I.

1Detailed fully in https://arxiv.org/pdf/2005.04968.pdf, Table 1 & 2. [In-
cludes fixed parameters of the models.]



Budget Model Test Accuracy [Size]

≤ 8KB A,C2(16, (3, 3)), C1(8, (3, 3)), 0.604 [5.39KB]
C1(32, (3, 3)),M,Dr,D∗

≤ 16KB A,C1(6, (3, 3)), C1(32, (1, 1)),M, 0.629 [8.65KB]
C2(64, (3, 3)), Dr,D∗

≤ 32KB A,C1(8, (1, 1)), C2(16, (3, 3)), 0.643 [19.91KB]
C1(64, (5, 5)),M,Dr,D∗

≤ 64KB A,C1(64, (3, 3)),M,C1(64, (1, 1)), 0.657 [58.23KB]≤ 128KB C1(64, (5, 5)), Dr,D∗

TABLE I: Best models for the Direct Convolution method.
Symbols A,C1, C2,M,Dr,D∗ denote Average Pooling, Con-
volution, Depth-wise Convolution, Max. Pooling, Dropout and
Dense (with ReLU activation) Layers, respectively. C1 and C2

are followed by their variable parameters output dim then
kernel size.

B. FastGRNN

We begin by constructing several candidate models for each
size budget. For the row- and channel-major models we vary
the density of U and W independently between 0.1, 0.2 and
0.3 based on recommendations by the EdgeML library [5].
However, we also consider fully dense models where the
densities of U and W are both 1.0. We then construct models
by varying the hidden dimensionality in steps of 15 between
0 and 225. To make training tractable, we discard all but three
models per size budget, keeping the models which approach
the size budget most closely. For Multi-FastGRNN we fix the
density of U to 1.0 as we find the compression of U to have
a negligible effect on the model size due to the small hidden
dimensionality per unit, which we vary in steps of 5 between 0
and 100. We again discard all but three candidate models per
budget. However, as the search does not yield three models
for the 8KB size budget, we manually add a dense model
with hidden dimensionality 12 and a sparse model with hidden
dimensionality 14 and density 0.1 for W .

We are left with 45 models to train. Due to the large
number of models to compare, we fix the update and gate
non-linearities to the hyperbolic tangent and sigmoid function,
respectively. These are identified as good defaults by [3].

We use an Adam optimiser [10] with learning rate 0.01,
which is decayed by a factor of 0.1 after 100 epochs for the
32, 64, and 128KB model candidates. Starting at the 64KB
budget, we also introduce a weight decay of 5 × 10−4 to
reduce overfitting. We fix the batch size to 100 and the number
of epochs to 150. Due to FastGRNN’s three-stage training
process, we do not carry out early stopping. Instead we roll
the model back to the post-compression stage epoch at which
it obtained the best validation accuracy before computing the
test accuracy. Final results are given in Table II.

C. Bonsai

We search over possible Bonsai models by fixing the depth
of the Bonsai tree and varying the dimensionality of the
projection matrix, as outlined in Section IV-C. We use the
Adam optimiser [10] with an initial learning rate of 0.01, along

Budget ≤ 8KB ≤ 16KB ≤ 32KB ≤ 64KB ≤ 128KB

R
ow

Dim. (Input, Hidden) 32, 45 32, 75 32, 120 32, 150 32, 210
Density (W, U) 0.2, 0.2 0.1, 0.2 0.1, 0.2 0.1, 0.3 0.1, 0.3
Test Accuracy 0.471 0.515 0.541 0.572 0.587

[Size] [7.57KB] [14.23KB] [31.17KB] [63.56KB] [118.50KB]

C
ha

nn
el

Dim. (Input, Hidden) 32, 45 32, 60 32, 105 32, 150 32, 150
Density (W, U) 0.2, 0.2 0.3, 0.3 0.3, 0.2 0.1, 0.3 0.1, 0.3
Test Accuracy 0.482 0.533 0.553 0.589 0.589

[Size] [7.57KB] [15.80KB] [30.07KB] [63.56KB] [63.56KB]

M
ul

ti

Dim. (Input, Hidden) 32, 12 32, 20 32, 35 32, 55 32, 90
Density (W, U) 1.0, 1.0 1.0, 1.0 0.3, 1.0 1.0, 1.0 0.3, 1.0
Test Accuracy 0.447 0.447 0.527 0.558 0.558

[Size] [7.94KB] [15.06KB] [28.75KB] [63.87KB] [124.09KB]

TABLE II: Best models for FastGRNN. Dimensionalities for
the Multi-FastGRNN are as for each FastGRNN unit.

1 2 3 4 5 6 7 8

Tree Depth

0.1
0.2
0.3

V
al

. A
cc

.

Fig. 1: Average validation accuracy of 129 Bonsai models for
given tree depth, all within 128KB of memory.

with a batch size of 224 (the square root of the original 50,000
training samples [11]).

For the Bonsai-specific hyper-parameters, we set the sig-
moid sharpness to 1 and set a regulariser of 10−3 for the
prediction parameters W and V and the branching parameter
θ. For W and V we set a sparsity of 0.3 and for θ a sparsity
of 0.62. Finally, we set a regulariser of 10−4 with sparsity 0.2
for the projection parameter Z, all based on recommendations
in [13].

We train all models for 200 epochs. We do not perform early
stopping due to Bonsai’s sequence of distinct training phases
[13], but for each memory size budget choose the model with
the highest validation accuracy after the 200 training epochs.

Tree depths 1 to 8 are explored, however, as Figure 1
demonstrates the validation accuracies of trees with depth 7
and 8 are, on average, significantly lower than for shallower
Bonsai trees. We attribute this to a necessarily smaller dimen-
sionality of the projection matrix required to fit deeper trees
into the memory budgets. For example, a Bonsai tree of depth
5 can utilise a projection matrix with dimensionality up to 16
and achieving up to 37.6% validation accuracy with a memory
size of 94.52KB. Compare this to a tree of depth 8 which can
utilise a projection matrix up to only dimensionality 4 and
only achieves a maximum accuracy of 16.3% while requiring
89.25KB of memory. We therefore stop exploring deeper
Bonsai trees and summarise the best models in Table III.

D. ProtoNN

We carry out a grid search (as outlined in Section IV-D) by
varying both the dimensionality of the projected space and the
number of prototypes in {2, 4, 8, 16, 32, 64} in order to obtain
exponentially larger models. For the parameter γ [4], we use



Budget ≤ 8KB ≤ 16KB ≤ 32KB ≤ 64KB ≤ 128KB

Depth, Dim. 5, 1 2, 3 2, 6 3, 11 5, 12
Test Accuracy 0.149 0.153 0.221 0.325 0.377

[Size] [7.88KB] [15.43KB] [30.85KB] [60.86KB] [94.52KB]

TABLE III: Best Bonsai models for each memory budget.

1.5 × 10n, where we range n from -4 to 4 in integer steps.
We vary the parameter γ this extensively due the method’s
sensitivity to it [4]. For the sparsity constraint, we initially
consider dense models, i.e. sparsity value 1.0. Finally, the
learning rate is ranged in 0.1, 0.01 and 0.001 and we train for
100 epochs with early stopping with a patience of 10 epochs.

The models in this experiment ranged in size from 24.67KB
to 805.38KB. The best model for the memory budget of
32KB had the learning rate, projection dimension, number of
prototypes and γ parameters set to 0.01, 2, 16, and 1.5×10−4,
respectively. The size of this model was 25.34KB and its test
set accuracy was 0.127. For the 64KB and 128KB budgets
the best model had parameters 0.001, 4, 16, and 1.5 × 10−4

(order as above), its size was 50.05KB and its test set accuracy
was 0.142. We find that out all of the models trained in
this experiment, the best model with respect to validation
accuracy was of size 787.02KB but still only obtained the
final test accuracy of 0.145. That is, the performance of
the algorithm only marginally increased even when the strict
memory budget was disregarded. Given this result, intensive
searching of models for the lower memory bounds is omitted,
as well as tuning of the sparsity parameter, as compared to
Direct Convolutions, this algorithm is non-competitive.

VI. CONCLUSION

In conclusion, we have seen that the algorithms presented in
Section III vary wildly in how they adapt to the more complex
task of classifying CIFAR-10 images. ProtoNN failed to
achieve even 15% accuracy, which suggests that it struggles to
keep up as the complexity of the task increases. Bonsai did fit
the data but peaked at a modest 37.7% accuracy. Surprisingly,
FastGRNN proved apt at multi-channel image classification,
obtaining 58.9% test set accuracy with a footprint of 63.56KB.
At the same time, FastGRNN also proved sensitive to the
way that in which input image was turned into a time series,
something which we devoted significant attention to in this
analysis. Multi-FastGRNN consistently performs the worst
for every size budget, and the channel-major models perform
consistently the best, though only narrowly so for the 128KB
budget. The fact that the channel-major models consistently
beat out the row-major models suggests that FastGRNN finds
inter-channel features to be more representative than intra-
channel features for the CIFAR-10 data set. Multi-FastGRNN
may then be lagging behind due to the final fully-connected
layer not being able to combine the intra-channel features from
each unit into descriptive inter-channel features.

Ultimately, CNNs using Direct Convolutions [8] dominate
our analysis in this paper, obtaining a 65.7% test set accuracy

with only 58.23KB of model memory usage.
Future work would extend the analysis presented in this

paper to a wider set of image classification data sets to
strengthen or disprove our conclusion that CNNs dominate
image classification, even in the memory-constrained domain.
Additionally, experiments investigating the latency and energy
efficiency of each model would be of interest, given these are
also important factors to consider in this domain.

REFERENCES

[1] James Bergstra and Y. Bengio. Random Search for Hyper-Parameter
Optimization. The Journal of Machine Learning Research, 13:281–305,
03 2012.

[2] Jasmine Collins, Jascha Sohl-Dickstein, and David Sussillo. Capacity
and trainability in recurrent neural networks, 2016.

[3] Aditya Kusupati et al. FastGRNN: A Fast, Accurate, Stable and Tiny
Kilobyte Sized Gated Recurrent Neural Network. In S. Bengio et al.,
editor, Advances in Neural Information Processing Systems 31, pages
9017–9028. Curran Associates, Inc., 2018.

[4] Chirag Gupta et al. ProtoNN: Compressed and Accurate kNN for
Resource-Scarce Devices. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 1331–1340, 2017.

[5] Don Kurian Dennis et al. EdgeML: Machine Learning for resource-
constrained edge devices. Retrieved January 2020.

[6] Kyunghyun Cho et al. Learning phrase representations using RNN
encoder–decoder for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1724–1734, Doha, Qatar, Oct. 2014. Asso-
ciation for Computational Linguistics.

[7] Albert Gural. Code for reproducing work of ICML 2019 paper: Memory-
Optimal Direct Convolutions for Maximizing Classification Accuracy in
Embedded Applications. Retrieved January 2020.

[8] Albert Gural and Boris Murmann. Memory-Optimal Direct Convolutions
for Maximizing Classification Accuracy in Embedded Applications. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 2515–2524, Long
Beach, California, USA, 09–15 Jun 2019. PMLR.

[9] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural Comput., 9(8):1735–1780, Nov. 1997.

[10] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization, 2014. cite arxiv:1412.6980Comment: Published as a
conference paper at the 3rd International Conference for Learning
Representations, San Diego, 2015.

[11] Alex Krizhevsky. Learning Multiple Layers of Features from Tiny
Images. University of Toronto, 04 2009.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 1097–1105. Curran
Associates, Inc., 2012.

[13] Ashish Kumar, Saurabh Goyal, and Manik Varma. Resource-efficient
Machine Learning in 2 KB RAM for the Internet of Things. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 1935–1944, International Convention Centre,
Sydney, Australia, 06–11 Aug 2017. PMLR.

[14] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. In Proceed-
ings of the IEEE, pages 2278–2324, 1998.

[15] Hellen Norman. Living on the Edge: Why On-Device ML is Here to
Stay, Apr 2019.

[16] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In International Conference
on Learning Representations, 2015.

[17] J. Viega and H. Thompson. The State of Embedded-Device Security
(Spoiler Alert: It’s Bad). IEEE Security Privacy, 10(5):68–70, Sep.
2012.

[18] S. Yu, X. Wang, and R. Langar. Computation Offloading for Mobile
Edge Computing: A Deep Learning Approach. In 2017 IEEE 28th
Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pages 1–6, 2017.


