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The El Farol Bar Problem Revisited:
Reinforcement Learning in a Potential Game

Duncan Whitehead
University of Edinburgh

September 17, 2008

Abstract

We revisit the El Farol bar problem developed by Brian W. Arthur
(1994) to investigate how one might best model bounded rationality in
economics. We begin by modelling the El Farol bar problem as a market
entry game and describing its Nash equilibria. Then, assuming agents are
boundedly rational in accordance with a reinforcement learning model, we
analyse long-run behaviour in the repeated game. We then state our main
result. In a single population of individuals playing the El Farol game,
learning theory predicts that the population is eventually subdivided into
two distinct groups: those who invariably go to the bar and those who
almost never do. In doing so we demonstrate that learning theory predicts
sorting in the El Farol bar problem.

1 Introduction

The El Farol bar problem was introduced by Brian W. Arthur (1994) as a
framework to investigate how one models bounded rationality in economics. It
was inspired by the El Farol bar in Santa Fe, New Mexico, which o¤ered Irish
music on Thursday nights. The original problem was constructed as follows:

�N people decide independently each week whether to go to a bar
that o¤ers entertainment on a certain night. For correctness, let us
set N at 100. Space is limited, and the evening is enjoyable if things
are not too crowded � speci�cally, if fewer than 60 percent of the
possible 100 are present. There is no sure way to tell the numbers
coming in advance; therefore a person or an agent goes (deems it
worth going) if he expects fewer than 60 to show up or stays home
if he expects more than 60 to go.�1

Arthur�s (1994) preliminary results from the �eld of computational economics
show that the number of people attending the bar converges quickly and then
hovers around the capacity level of the resource.
Our contribution to the literature on the El Farol bar problem and theory

of learning in games is fourfold. First, we apply the Erev and Roth (1998)
model of reinforcement learning to the El Farol framework. We believe the

1Arthur (1994), pp 409.
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Erev and Roth (1998) model of reinforcement learning is the most appropriate
individual learning model to apply in this instance, because in general people
who stay at home do not know what payo¤ they would have received if they
had gone to the bar. We then prove analytically that long-run behaviour
will converge asymptotically to the set of pure strategy Nash equilibria of
the El Farol stage game.2 In other words the number of people attending
the bar converges and then hovers around the capacity level of the resource.
Furthermore, learning theory predicts sorting in the El Farol bar problem; that
is, in a single population of individuals playing the El Farol game, learning
theory predicts that the population is eventually subdivided into two distinct
groups: those who invariably go to the bar and those who almost never do.
Second, we demonstrate that the El Farol bar problem may be modelled as

a market entry game with boundedly rational reinforcement learners. We build
upon the work of Du¤y and Hopkins (2005), who have proved that in market
entry games, where payo¤s are decreasing in a continuous manner with respect
to the number of other market entrants, the only asymptotically stable Nash
equilibria are those corresponding to pure Nash pro�les. Our main result also
proves asymptotic convergence to those equilibria corresponding to pure Nash
pro�les in the market entry game. In addition our result also proves that this
is the case when payo¤s are decreasing in a discontinuous way with respect to
the number of other market entrants.
Third, Sandholm (2001) has proved that, under a broad class of evolutionary

dynamics, behaviour convergences to Nash equilibrium from all initial conditions
in potential games with continuous player sets. Sandholm�s (2001) convergence
results assume that individual behaviour adjustments should satisfy what was
termed positive correlation; meaning any myopic adjustment dynamic that
exhibits a positive relationship between growth rates and payo¤s in each
population. Our result contributes to this literature by proving that, for
the evolutionary dynamics associated with Erev and Roth�s (1998) model of
reinforcement learning, long-run behaviour converges in potential games with
�nite sets of players.
Finally, there is a contribution to be made to the extensive literature on the

El Farol bar problem and its associated problem, the Minority Game in the �eld
of complex systems.3 Currently, it would appear that the opportunity to apply
convergence results from models of individual learning to situations like those
represented by the El Farol bar problem has been overlooked.
We will begin by using the tools of game theory to model the El Farol bar

problem as a non-cooperative coordination game in which payo¤s are determined
by negative externalities. We then model the El Farol bar problem as a repeated
market-entry game with boundedly rational agents. Analysis of the stage game
will show that there are a large number of Nash equilibria. Therefore, equilibria
re�nement/coordination becomes problematic. In order to re�ne the equilibria
set, we allow players to learn from experience. The analytical tools developed
in Du¤y and Hopkins (2005), Hopkins and Posch (2005) and Monderer and
Shapley (1996) will be employed to study the predicted outcome of play under
the Erev and Roth (1998) model of reinforcement learning.

2This is in contrast with Franke�s (2003) use of numerical simulations of reinforcement
learning applied to the El Farol bar problem.

3See http://www.unifr.ch/econophysics/minority/ for research on the Minority Game.
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Reinforcement learning assumes that individuals only have access to the
attendance �gures of the bar for each week that they attend.4 The long-run
behaviour of agents under this adaptive rule will then be considered, and it will
be shown that under this learning process, play will converge to the set of pure
strategy Nash equilibria with probability one.
The intuition behind our main result is that in the El Farol bar problem

reinforcement learners who do not regularly attend are more often than not
disappointed when they do choose to do so. Similarly, those who regularly
attend always seem to have a good time, and thus are more likely to attend in
the future.
A good way to think about this outcome is to imagine that all players in one

week play a mixed strategy. It is quite likely that the bar actually turns out to
be busy. Therefore, all agents who attended will be reinforced with the lower
payo¤. This will reduce their propensity to attend in the future. The following
week the probability of the bar being overcrowded will be diminished. Those
who do attend will most likely receive high payo¤ reinforcement from attending
and their propensity to attend in the future will increase again while that of
the players who stayed away will be reduced. Therefore, we have two positive
feedback loops. One causes those who attend regularly to do so more often. The
other leads those who stay at home to be more likely to do so in the future. We
can therefore see that any mixed strategy Nash equilibrium is asymptotically
unstable under the dynamics of Erev and Roth (1998) reinforcement learning.
In Section 2 we review the El Farol bar problem as introduced by Arthur

(1994). We set out his modelling approach to bounded rationality in the El
Farol bar problem and summarise the initial results from his computational
experiments. We discuss the use of the inductive thinking approach to modelling
bounded rationality, both in the El Farol bar problem and its closely related
problem, the Minority Game. We then outline our motivation for the application
of the individual learning approach to capturing the bounded rationality of
decision makers and suggest a reinforcement learning model for the El Farol
framework. In Section 3 we introduce our model of the El Farol bar problem,
de�ne the El Farol stage game and characterise the set of Nash equilibria, set
out in detail the Erev and Roth (1998) model of reinforcement learning within
the El Farol framework, and write down an expression for player�s expected
strategy adjustment. In Section 4 we state and prove our main result; that in
the El Farol bar problem a population of boundedly rational agents who behave
in accordance with the Erev and Roth (1998) reinforcement learning model are
sorted into those who always attend the El Farol bar and those who always stay
at home. Finally, we provide some concluding remarks in Section 5.

2 The El Farol Bar Problem

The El Farol bar problem was created by Arthur (1994) as a device to investigate
how one might best model bounded rationality in economics. It was inspired
by the El Farol bar in Santa Fe, New Mexico, which o¤ered Irish music on
Thursday nights. The problem is set out as follows: there is a �nite population

4However, the results presented here within are easily extended to allow for the more
generic set-up where all individuals learn attendance �gures whether they attend or not. This
is often referred to as hypothetical reinforcement or �ctitious play learning.
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of people and every Thursday night all of the them want to go to the El Farol
bar. However, the El Farol bar is quite small, and it is not enjoyable to go there
if it is too crowded. So much so, in fact, that the following rules are in place:

� If less than 60% of the population go to the bar, those who go have a more
enjoyable evening at the bar than they would have had had they stayed
at home.

� If 60% or more of the population go to the bar, those who go have a worse
evening at the bar than they would have had had they stayed at home.

Unfortunately, it is necessary for everyone to decide at the same time whether
they will go to the bar or not. They cannot wait and see how many others go
on a particular Thursday before deciding to go themselves on that Thursday.
The important characteristic of the El Farol bar problem is that if there was

an obvious method that all individuals could use to base their decisions on, then
it would be possible to �nd a deductive solution to the problem. However, no
matter what method each individual uses to decide if they will go to the bar or
not, if everyone uses the same method it is guaranteed to fail. Therefore, from
the point of view of the individual, the problem is ill-de�ned and no deductive
rational solution exists.
Situations like those represented by the El Farol bar problem highlight two

speci�c reasons why perfect deductive reasoning might fail to provide clear
solutions to some theoretical problems. The �rst is simply a question of the
cognitive limitations of the mind. Beyond a certain level of complexity, logical
capacity fails to cope. The second is that in complex strategic situations
individuals cannot always rely on persons they are interacting with to behave
under assumptions of perfect rationality. In situations like the El Farol bar
problem, individuals are forced into a world where they must choose their
strategies based on guesses of their opponents� likely behaviour. Without
objective, well-de�ned, shared assumptions, these types of problems become
ill-de�ned and cannot be solved rationally.
The question that arises is how does one best model bounded rationality in

economics when perfect rationality fails? Given the de�ning characteristic of
the El Farol bar problem, namely that �nding a deductive rational solution is
impossible, it follows that the problem itself could provide a useful framework
to explore models of bounded rationality in general.

2.1 Inductive Reasoning in the El Farol Framework

Arthur (1994) notes that there is a consensus among psychologists that in
situations that are either complicated and/or ill-de�ned, humans tend to look
for patterns in order to develop internal models on which they can base their
decisions. These methods are inherently inductive. In the El Farol bar problem,
Arthur (1994) follows this line of thought and postulates that individuals decide
whether they will go to the bar or not by employing mental models to predict
expected future attendance. In other words they create forecasting models. If an
individual using a speci�c forecasting model predicts attendance to be low then,
based on that model, that individual would attend and vice-versa if attendance
is predicted to be high.

4



As previously discussed, and deriving from the ill-de�ned nature of the El
Farol bar problem itself, we can conclude that no forecasting model can be
employed by all individuals and be accurate at the same time. We can easily
demonstrate this fact by assuming that a forecasting model exists that predicts
that the attendance in the coming week, given attendance in past weeks, is going
to be high. If all individuals use this forecasting model to base their decisions
on, then nobody will go to the bar.5 This then renders the forecast invalid and
implies that there exists no single forecasting model that all individuals can use
upon which to base their attendance decisions. No deductive solution exists to
this problem.

2.1.1 The Inductive Thinking Approach

Arthur�s (1994) approach to modelling bounded rationality in the El Farol bar
problem is to assume that each individual has access to a number of forecasting
models which they use to make their decisions. Furthermore, they score and
rank these models at the end of each week according to their accuracy in order
to determine which particular model they should base their decision on.
Formally, Arthur (1994) imagines that each individual utilises a number of

forecasting models, denoted sk, to predict attendance in the coming week. Each
model forecasts attendance for the coming week given the history of attendance
over the last d weeks, denoted d (ht�1) 2 D, where D is the set of all possible
attendance pro�les for the last d weeks and d is an exogenously �xed parameter.
Then, following the disclosure of the number of individuals who attended the
El Farol bar on the most recent Thursday night, a score is associated with
each forecasting model. Speci�cally, the score, denoted Ut

�
sk
�
, is calculated

by computing the weighted average of the score of the same model in the
previous week and the absolute di¤erence between the forecasting model�s last
prediction, denoted sk (d (ht�1)), and the most recent realised turnout, denoted
yt. Equation (1) formulises this calculation.6

Ut
�
sk
�
= �Ut�1

�
sk
�
+ (1� �)

��sk (d (ht�1)� yt)�� (1)

In each week the forecasting model with the highest score is referred to as the
active predictor. On each Thursday individuals undertake the action of either
attending the El Farol bar or not in accordance with their active predictor. If an
individual�s active predictor forecasts the attendance on the coming evening to
be high, then that individual will choose not to go to the bar. Conversely, if the
active predictor forecasts attendance to be low, then that individual will deem it
worthwhile going to the bar and they will anticipate an enjoyable evening of Irish
music. Once all individuals have made their decisions, i.e. whether to attend
the El Farol bar or not, they are then informed of the actual turnout at the
bar. This information is made know publicly to all individuals. Each individual
then realises their payo¤s, updates the score for all their available forecasting
models, and con�rms their active predictor for next Thursday�s decision.

5This is reminiscent of Yogi Berra�s famous comment, "Oh, that place. It�s so crowded
nobody goes there anymore."

6 It should be noted that I have taken speci�c care to outline the El Farol bar problem and
Arthur�s proposed model of the problem as he originally formulated it. This has been possible
due to the work of Zambrano (2004) who re-analysed Arthur�s original code.
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2.1.2 Agent-Based Computer Simulations

Arthur (1994) investigated this model of the El Farol bar problem through the
use of computational experiments. He designed arti�cial agents and simulated
their dynamic interaction over time.
In Arthur�s (1994) computer simulations, as in the original formulation of

the problem, the size of the population, N , is set to 100 and the enjoyable
capacity of the El Farol bar, C, is set to 60. Arthur (1994) then creates a
�nite set of diverse forecasting models, or predictors, which map attendance
histories to a predicted bar attendance for the coming week. These models were
doled out uniformly and randomly, such that each agent was endowed with a
non-transferable set of K forecasting models.7 Each simulation experiment was
then run for 100 periods with the combined runs totalling to 10; 000 periods.

Figure 1: Attendance According to Arthur�s (1994) Simulations.

The �rst thing to note about the results of these computer experiments is
that, given the starting conditions and the �xed set of predictors available to
each simulated agent, the dynamics are completely deterministic. Nevertheless,
the simulations produce some interesting results. Two observations become
immediately apparent.
First, mean attendance always converges to the capacity of the bar. Second,

on average 40% of the active predictors forecasted attendance to be higher than
the capacity level and 60% below. Arthur (1994) expands on these observations
by noting that, �the predictors self organise into an equilibrium pattern or
�ecology�.�8 An example of the attendance rates from a typical run of 100 periods
can be seen in Figure 1.

2.1.3 The Minority Game

There has been much interest in the El Farol bar problem as a system to
study agents in market-like interactions. This has led to the de�nition of a
similar problem called the Minority Game which embodies some basic market
mechanisms, while keeping mathematical complexity to a minimum.

7This did not preclude the possibility that the agents�predictor sets might overlap.
8Arthur (1994), pp.409.
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The Minority Game is a repeated game where N agents have to decide
between two actions, such as buy or sell or attend or not. With N odd this
procedure identi�es a minority action as that chosen by the minority. Agents
who take the minority action are rewarded with one payo¤ unit. Agents
cannot communicate with one another and they have access to publicly available
information on the history of past outcomes for a �xed number of periods. As
in the El Farol bar problem, the set up requires a prohibitive computational
task and, from a strategic point of view, the problem is ill-de�ned. Again it
is postulated that in such complex strategic interactions, agents may prefer to
simplify their decision tasks by seeking out behaviour rules, or heuristics, that
allocate an action for each possible observed history of outcomes.
The literature on the Minority Game concludes, through both agent-based

and analytical models, that there exists a cooperative phase of play when the
ratio of the number of unique possible histories to the number of agents, N ,
is large enough. That is, with respect to the so-called �random agent� state,
in which each agent chooses their action by �ipping a coin, agents are better
o¤ because the system moves to a sort of �coordinated�state. The analytical
research on the Minority Game employs techniques borrowed from statistical
physics in order to describe the game as a spin system, thus enabling the system�s
properties to be outlined. It should be noted that this avenue of investigation
does not enable the study of individual behaviour, but only the system as a
whole.
One aspect of this approach, and indeed Arthur�s (1994) original investiga-

tions, to the El Farol bar problem and bounded rationality is that the theory
does not explicitly detail the predictors that should/would be available to each
individual/agent. In reality there most likely exists an evolutionary process that
regulates the set of predictors as a whole and their availability to each individual
agent. Arthur (1994) draws on the following metaphor to make the point: �Just
as species, to survive and reproduce, must prove themselves by competing and
being adapted within the environment created by other species, in this world
hypothesis, to be accurate and therefore acted upon, must prove themselves by
competing and being adapted within and environment created by other agents�
hypothesis.�9

2.2 Individual Learning in the El Farol Framework

The El Farol bar problem represents a complex strategic environment where
rational deductive thinking fails to provide any clear solutions. The question
we wish to address is what we should put in place of perfect rationality. In
the previous section, we reviewed the literature reporting work that has been
directed at achieving this goal within the El Farol framework through the use
of inductive reasoning. Suppose instead that individuals in the El Farol bar
problem can �nd their way to an optimal solution by trial and error, i.e.
learning.10 In e¤ect we propose that this is the role that, loosely speaking,
the predictors ful�l in Arthur�s (1994) original paper on inductive reasoning
and bounded rationality in the El Farol bar problem. Recall that if a predictor
correctly forecasts attendance, it is more likely to be used as an active predictor.

9Arthur, (1994), pp. 408.
10A player cannot adapt to situations that are only encountered once. With this in mind,

we must consider players learning equilibria in an identically repeated game environment.
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If not, it will not be used. Following this argument it seems reasonable to
consider the El Farol bar problem as one with boundedly rational agents who
gradually adjust their behaviour over time, until there is no longer any room
for improvement in their payo¤s.
In game theory the techniques for modelling this type of adaptation process

are closely related to replicator dynamics. The idea of replicator dynamics
was introduced by Smith (1974) to model dynamic processes in the biological
sciences. Essentially, replicator dynamics says that if an individual of a certain
type earns an above average payo¤, then that individual type�s frequency in the
population rises. When modelling an individual learning process in a repeated
game, we modify this interpretation of replicator dynamics to the following: if
an individual who has a propensity to use a particular strategy earns an above
average payo¤ from that strategy, then the propensity to use that strategy in
the future increases.
The El Farol bar problem will now be modelled as a repeated market entry

game where players adhere to a pre-speci�ed learning process. The manner
in which individual learning is modelled in repeated games is simple and quite
intuitive. Essentially, individual learning is an algorithm that each player follows
in each period of play. Imagine that each individual in the El Farol bar problem,
whether they go to the bar or not, keeps an urn by their side. In the urn there
are a number of balls coloured either green or red. We can consider these balls
to be replacing the function of Arthur�s (1994) predictors in the El Farol bar
problem.11 Instead of each individual making their action choice dependent
on the forecast of their active predictor, players will choose a ball from their
urn and obey its colour coding. In other words if a green ball is selected that
individual will go to the bar and if a red ball is chosen they will stay at home.
Once a ball is drawn and the corresponding action is taken, the ball is then
placed back into the urn.
The learning model is then speci�ed by an updating rule. This is the set of

instructions that dictates how many balls and of what colours should be added
to the urn after each round of play. Using this framework we can describe each
player as having propensities for each action. The propensity to undertake a
certain action is a function of the number of correspondingly coloured balls in
the urn.12 The probability that a ball of a certain colour will be chosen from a
particular individual�s urn is determined by the choice rule, which is a mapping
from propensities to a number in the unit interval. To �nd the equilibrium, we
calculate in the limit, as the number of repetitions of the game tends to in�nity,
the probability that each action will be taken.
Let us now recall in detail the motivation for employing an individual

learning model of bounded rationality in the El Farol bar problem. As previously
stated, the complexity of the problem makes it reasonable to assume that
individuals su¤er from cognitive limitations. Furthermore, we have already
demonstrated that the complexity of beliefs means that, from a strategic
viewpoint, individuals are unable to employ deductive reasoning to identify
optimal/coordinated strategies. Given these constraints we suppose that
individuals �nd their optimal strategies in the El Farol bar problem through

11This is not to be taken literally, but they will provide the same decision function as the
predictors do in Arthur�s formulation.
12 It is also dependent on the choice rule speci�ed in the learning model which shall be

expanded on later in the paper.
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repeated interaction and the application of an adaptive algorithm. It will be
assumed that any adaptive algorithm will adhere to some basic principles of
individual learning.
First, the law of e¤ect: choices that have led to good outcomes in the

past are more likely to be repeated in the future. Second, the power law of
practice: learning curves should initially be steep and then later they should
be �atter. This is paramount to assuming that in any adaptive process the
adjustments become smaller over time. Finally, choice behavior should be
probabilistic. This is a basic assumption in most mathematical learning theories
proposed in psychology. Erev and Roth (1998) have developed a robust model
of reinforcement learning which incorporates all these principles that shall be
applied to our model of the El Farol bar problem.

3 A Model of the El Farol Bar Problem

The El Farol bar problem is essentially a repeated simultaneous move game.
There are N players with identical preferences who attempt to coordinate their
actions of either going to the bar or staying at home in such a way as to maximise
their individual payo¤s, subject to the crowding externality from going to the
bar. Players need to coordinate their actions, independently and without prior
communication, such that:

� when a player decides to go to the bar, i.e. deems it worthy of going to
the bar, they can look forward to a payo¤ that is greater than what they
would have received had they stayed at home and

� when a player decides to stay at home, i.e. deems it not worthy of going
to the bar, they can look forward to a payo¤ that is greater than what
they would have received had they not stayed at home.

The El Farol bar problem can be interpreted as a market entry game (Franke
2003). In general market entry games are interpreted as truncated two-stage
games (Selten and Güth 1982). In the �rst stage, players simultaneously choose
either to enter or stay out of the market. Then, in the second stage, the payo¤s
of the entrants are determined from their market actions. Usually these payo¤s
are negatively related to the number of market entrants in a continuous way.
However, in the El Farol bar problem, payo¤s to players entering the bar are
related to the number of bar attendants in a discontinuous manner.
Alternatively, the El Farol bar problem may be viewed as a congestion model

and thus can be modelled, a la Rosenthal (1973), as a congestion game.13 It
is a congestion game, because each player�s payo¤ depends on the number of
other players who choose to utilise the same resource, namely the El Farol bar.
This interpretation has been referred to in many studies of the El Farol bar
problem in the literature (e.g. Greenwald, Mishra, and Parikh 1998, Bell and
Sethares 1999, Bell and Sethares 2001, Bell, Sethares, and Bucklew 2003, Farago,
Greenwald, and Hall 2002, Zambrano 2004), but has rarely been developed.
In this paper we shall initially interpret the El Farol bar problem as a market

entry game. Later on in our discussions we shall return to the idea of congestion

13Clearly market entry games are a subset of the larger class of congestion games.
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games, because they have important properties that are useful in understanding
the long-run behaviour of boundedly rational agents learning in accordance with
a reinforcement model in the El Farol bar problem.

3.1 The El Farol Stage Game

Let C, a positive no-zero integer, represent the capacity of the bar. If less than
C players choose to go to the bar, then the payo¤ they receive is allied with the
notion that ex post those players deemed it worthwhile going. They receive a
payo¤ strictly greater than the payo¤ they would have received had they stayed
at home. On the other hand, if C or more players choose to go to the bar, then
the payo¤ the bar entrants receive is allied with the notion that, ex post, those
players did not deem it worthwhile going to the bar. In other words they receive
a payo¤ strictly less than the payo¤ they would have received had they stayed
at home.

State

Player i

Uncrowded Crowded

Go to the Bar G B

Stay at Home S S

where G > S > B

Figure 2: State Dependent Payo¤ for Player i in the El Farol stage game.

The payo¤ function for each player i consists of an unconditional payo¤ for
staying at home, denoted by S, and a conditional payo¤, denoted by G or B,
dependent on the state of the bar. There are two states of the bar, crowded or
not crowded, and the state is determined by the remaining N � 1 players. To
ensure the strategic form of the game, the payo¤s must be strictly ordered such
that G > S > B. The payo¤ structure for representative player i for an isolated
Thursday in the El Farol bar problem can be represented by the following payo¤
matrix (see Figure 2).
Given the above preliminaries, we can now de�ne the El Farol stage game as
a single-stage market entry game with discontinuous, but weakly monotonic,
payo¤s in other players�actions.

De�nition 1 De�ne the El Farol stage game as the one shot strategic game
� =< N;�; �i > consisting of,

� N players indexed by i 2 f1; 2; ; :::; Ng,
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� a �nite set of actions � = f0; 1g indexed by �, where �i = 1 denotes
player i�s action �go to the bar�and �i = 0 denotes player i�s action �stay
at home�and14

� a payo¤ function �i : �i � ��i ! R = fS;B;Gg, such that G > S > B,
where ��i =

Q
i 6=j �

�j de�nes the state of the bar.

Formally we can write the payo¤ function as,

�i
�
�i
�
=

8<:
G if �i = 1 and

P
j 6=i �

j < C

B if �i = 1 and
P

j 6=i �
j � C

S if �i = 0

where C 2 Z.

3.1.1 Nash Equilibria in the El Farol Stage Game

Let us now characterise the equilibria of the El Farol stage game. The �rst thing
to note is that the number of Nash equilibria in the El Farol stage game is large
and rises quickly as N increases. Furthermore, the number of Nash equilibria
is maximised for any given N when C t N=2. There are essentially three types
of Nash equilibria, namely:

� Pure Strategy Nash Equilibria
Nash equilibria where all players play a pure strategy.

� Symmetric Mixed Strategy Nash Equilibria
Nash equilibria where all players play a mixed strategy.

� Asymmetric Mixed Strategy Nash Equilibria
Nash equilibria where some players play a pure strategy and the remaining
play a mixed strategy.

Let �Y denote the set of Nash equilibria of the El Farol stage game. It can
be shown that �Y contains a �nite number of elements. In Proposition 1 we
state the number of pure strategy Nash equilibria, denoted �YP . Next, we show
via Propositions 2 and 3 that there exists a unique symmetric mixed strategy
Nash equilibrium, denoted �YS . And �nally in Proposition 4, we show that the
number of asymmetric mixed strategy Nash equilibria, denoted �YA, is countable.
Therefore, the number of Nash equilibria in the El Farol stage game is �nite.15

Proposition 1 The number of pure strategy Nash equilibria in the El Farol
stage game with N 2 N players and a capacity of C 2 N is,�

N
C

�
=

N !

C! (N � C)! (2)

14 It should be noted that although we employ the notation � to denote the set of only
two actions available to each player, we do so only to indicate how the reinforcement learning
model would be extended to games with more than two distinct actions.
15Note that �Y = �YP [ �YS [ �YA.
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Proof See Section A.1 in Appendix A.
The following two propositions together demonstrate that a symmetric mixed

strategy Nash equilibrium exists and is unique. In Proposition 2 we prove that
there is a symmetric mixed strategy Nash equilibrium where all players play
the same mixed strategy and that it is unique. In Proposition 3 we then prove
that if all players are playing a mixed strategy they must be playing the same
mixed strategy. Therefore, we have a unique symmetric mixed strategy Nash
equilibrium in the El Farol stage game.16

Proposition 2 In the El Farol stage game there is a symmetric mixed strategy
equilibrium where all players play the same mixed strategy de�ned by the strategy
tuple (�; [1� �]), where � denotes the probability of going to the bar and [1� �]
denotes the probability of staying at home. Furthermore, � is uniquely de�ned
by the following relationship:�

S �B
G�B

�
=

C�1X
m=0

�
N � 1
m

�
�m [1� �]N�1�m (3)

Proof See Section A.2 in Appendix A.

Proposition 3 In a Nash equilibria in the El Farol stage game where all players
employ a mixed strategy, all agents must play the same mixed strategy.

Proof See section A.3 in Appendix A.
Let us now consider the asymmetric mixed strategy Nash equilibria. Given

that we can calculate the number of pure strategy Nash equilibria from (2) and
that there is a unique symmetric mixed strategy Nash equilibrium, an approach
can be tabled to demonstrate that the number of asymmetric mixed strategy
Nash equilibria is �nite.

Proposition 4 The number of asymmetric mixed strategy Nash equilibria in
the El Farol stage game is countable.

Proof See Section A.4 in Appendix A.
We have now characterised the Nash equilibria of the El Farol stage game.

Furthermore, we have shown that the number of Nash equilibria is �nite. This
�nding will be employed later in proving our main result.

3.2 The El Farol Game

For completeness we de�ne the El Farol bar problem as the repeated El Farol
stage game with boundedly rational agents who learn in accordance with the
Erev and Roth (1998) reinforcement learning model. Let us begin by de�ning
the El Farol game.

De�nition 2 The El Farol game is the in�nitely repeated El Farol stage game.
16A similar result has been proved by Cheng (1997).
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3.3 Erev and Roth (1998) Reinforcement Learning

We now set out the procedure for the Erev and Roth (1998) reinforcement
learning model in detail. In this learning model, each player i has a propensity
to undertake each action in each period, denoted qit (�). The timeline of the
learning procedure is that in each period t each player i chooses to undertake
one of their available actions � 2 � = f0; 1g in accordance with a mapping
from the propensities to the unit interval [0; 1]. This mapping is de�ned by
the choice rule. The player i then undertakes the action dictated by the choice
rule and receives a payo¤ in that period associated with that action. Player i
then updates his propensities. The updating procedure is determined by the
updating rule. In the Erev and Roth (1998) reinforcement learning model, the
only propensities to be updated are those corresponding to the actual action
taken. We can now de�ne the model formally. The learning procedure comprises
of three components: the initial conditions, a choice rule and an updating rule.

3.3.1 Initial Conditions

Let qit (�) be player i�s propensity to play action � 2 � in period t. In the
initial period, t = 0, we assume that all players have positive propensities for
all possible actions. That is,

qit (�) > 0 for t = 0 and for all i 2 N and � 2 � (4)

This assumption, along with positive payo¤s, will also ensure that qit (�) > 0 for
all t and � 2 �.

3.3.2 Choice Rule

Each player i has positive a propensity, qit (�), to take action � 2 � = f0; 1g
in period t. In models of reinforcement learning, the choice rule provides a
mapping from propensities to strategies. Let

�
yit;
�
1� yit

��
represent player i�s

mixed strategy in period t with two possible actions � 2 � = f0; 1g, where yit
is the probability placed by agent i on action � = 1 in period t and

�
1� yit

�
is the probability placed by agent i on action � = 0 in period t. The choice
rule employed in the Erev and Roth (1998) reinforcement learning model is
often referred to as the simple choice rule. It is a straightforward probability
mapping from propensities to the unit interval [0; 1]. That is,

Pr (� = 1) = yit =
qit (1)P
�2� q

i
t (�)

=
qit (1)

Qit
(5)

where Qit =
P

�2� q
i
t (�).

17

3.3.3 Updating Rule

Let ��i
�
�it;m

�i
t

�
denote the realised increment to player i�s propensity in period

t from taking action � 2 � = f0; 1g given the aggregate actions taken by the
17Note that since there are only two possible actions for each player i we can write

Pr (� = 0) =
�
1� yit

�
=

qit (0)P
�2� q

i
t (�)

=
qit (0)

Qit

13



remaining N�1, denoted bym�i
t wherem�i

t =
P

j 6=i �
j
t . To complete, and most

crucial to, our reinforcement learning model, we must state the means by which
players update their propensities. Speci�cally, in the Erev and Roth (1998)
reinforcement learning model, it takes the form that if agent i takes action
� in period t, then the agent�s �th propensity is increased by an increment
equal to agent i�s realised payo¤ in that period. All other propensities remain
unchanged. In other words only realised payo¤s act as reinforcers. We thus
have the following updating rule,18

qit+1 (�) = q
i
t (�) + ��

i
�
�it;m

�i
t

�
for all � 2 � = f0; 1g (6)

3.4 Reinforcement Learning in the El Farol Game

We will now model the El Farol bar problem as the El Farol game with
boundedly rational agents who learn according to the Erev and Roth (1998)
reinforcement learning model. To study the long-run dynamics of the El Farol
game with bounded rational agents learning in accordance with the Erev and
Roth (1998) reinforcement model, we need to �rst write the expected motion of
the ith player�s � = 1 strategy adjustment. In order to accomplish this task, we
must �rst de�ne player i�s expected payo¤ increment.
Let �̂i

�
�it; y

�i
t

�
denote the expected increment to player i�s propensity in

period t from taking action � given the aggregate actions taken by the remaining
N � 1 players, denoted by y�it , where y�it is a vector strategy pro�le. Note that
the updating rule in the Erev and Roth (1998) reinforcement learning model is
a function of realised payo¤s. However, the expected motion of the ith player�s
� = 1 strategy adjustment will be a function of expected payo¤ increments. This
is quantitatively and qualitatively di¤erent from realised payo¤ increments.

3.4.1 Expected Strategy Adjustment in the El Farol Game

To obtain analytical results from the application of Erev and Roth (1998)
reinforcement learning model to the El Farol game, we make use of results from
the theory of stochastic approximation. In essence we investigate the behaviour
of the stochastic learning model by evaluating its expected motion as t �!1.
In the case of the Erev and Roth (1998) learning model de�ned by the choice
rule (5) and updating rule (6), we can write down the expected motion of the
ith player�s � = 1 strategy adjustment through the following proposition:

Proposition 5 Given the choice rule (5) and the updating rule (6), the expected
motion of the ith player�s � = 1 strategy adjustment in the repeated El Farol game
is:

E
�
yit+1jyit

�
� yit =

1

Qit
yit
�
1� yit

� �
�̂i
�
1; y�it

�
� �̂i

�
0; y�it

��
+O

 
1�
Qit
�2
!

(7)

Proof See Section B.1 in Appendix B.
18Note that this updating rule reveals why in this model of reinforcement learning all payo¤s

must be positive. Otherwise, there would be a possibility of propensities becoming negative
and thus leading to choice probabilities that are unde�ned.
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4 Long-run Behaviour in the El Farol Game

We now arrive at our main result. We consider the behaviour of the expected
motion of the players� � = 1 strategy adjustment as t �! 1. We begin by
stating the main result.

Theorem 1 (Main Result) If agents in the repeated El Farol game as de�ned
employ the choice rule (5) and reinforcement updating rule (6) for all of N 2 N
and C 2 N such that C � N � 1 and payo¤s such that G > S > B � 0,
with probability one the Erev and Roth (1998) reinforcement learning process
converges to a pure Nash equilibrium of the one-shot El Farol game. That is,

Pr
�
limt�!1 yt 2 �YP

	
= 1,

where yt =
�
y1t ; y

2
t ; :::; y

N
t

	
, yt 2 Y , is a strategy pro�le for the N agents and

�YP is the set of pure Nash equilibrium pro�les.

Now we prove the main result, Theorem 1. In the El Farol game
with identical boundedly rational agents, learning according to the Erev
and Roth (1998) reinforcement learning model, long-run behaviour converges
asymptotically to the set of pure strategy Nash equilibria of the El Farol stage
game. This result is established by studying the convergent behaviour of the
discrete time stochastic process (7) describing the expected strategy adjustment
of player i�s action of going to the bar. In essence we wish to investigate the
limit of this process as t!1.
We accomplish this task in two main stages: a positive convergence

statement and a negative one. Drawing these two results together we prove
our main result. Each stage employs results from the literature on stochastic
approximation. First, a result of Benaïm (1999, Corollary 6.6) is employed to
demonstrate that the stochastic process will, in the limit as t ! 1, converge
asymptotically to one of the �xed points of the adjusted replicator dynamics.
Second, two results of Hopkins and Posch (2005, Proposition 2 and 3) are
utilised to demonstrate that the stochastic process describing the expected
strategy adjustment of player i�s action of going to the bar will not converge
asymptotically to any �xed points that do not correspond to a Nash equilibria
of the El Farol stage game or to any corresponding Nash equilibria that
are unstable under the adjusted replicator dynamics. These two stages
combined will imply that the discrete time stochastic process describing the
expected strategy adjustment of player i�s action of going to the bar converges
asymptotically to the set of pure strategy equilibria of the El Farol stage game.

4.1 Proof of Main Result: First Stage

In the �rst stage of the proof, we show that the discrete time stochastic process
(7) converges with probability one to one of the �xed points of the standard
replicator dynamics.
Consider for a moment the behaviour of the following stochastic process

(Benveniste, Métivier, and Priouret 1990):

xt+1 � xt = 
tf (xt) + 
t�t (xt) +O
�
[
t]

2
�

(8)
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where xt lies in RN , E [�t (xt) jxt] = 0 and 
t de�nes the nature of the gain in
this adaptive process. For our purposes 
t is interpreted as the step size of the
learning algorithm. In our analysis we wish to study the generic convergence
properties of stochastic processes of this form as t �!1.
It turns out that the nature of the gain is important in determining what

inferences can be made about the behaviour of (8) in the limit. In fact the
stronger results from the theory of stochastic approximation apply to adaptive
algorithms with decreasing gain, that is stochastic processes with decreasing
step size.

De�nition 3 The stochastic process (8) is said to have decreasing gain ifX
t

(
t)
�
<1 for some � > 1 where

X
t


t = +1

For example a common step size of 
t = 1=t would ensure that (8) has
decreasing gain. It emerges that as t �!1 there is a close relationship between
the behaviour of stochastic processes (8) with a decreasing gain and the mean
or averaged ordinary di¤erential equation of the stochastic process.

_x = f (x) (9)

In particular it can be shown via Benaïm (1999, Corollary 6.6) that if (9) meets
certain criteria, the stochastic process (8) must converge with probability one
to one of the �xed points of the mean or averaged ordinary di¤erential equation
(9).

Theorem 2 (Benaïm (1999, Corollary 6.6)) If the dynamic process (9)
admits a strict Lyapunov function and processes a �nite number of �xed points,
then with probability one the stochastic process (8) converges to one of these
�xed points.

We now have a method of illustrating that the long-run behaviour of
boundedly rational agents, adjusting their strategies according to the Erev and
Roth (1998) reinforcement learning model, in the El Farol game converges to
one of the �xed points of mean or averaged di¤erential equation (9) associated
with the vector of player�s expected strategy adjustments.
In order to apply this general result, we must �rst identify the mean

or averaged di¤erential system associated with players� expected strategy
adjustment. Furthermore, it must be shown that the mean or averaged
di¤erential system admits a strict Lyapunov function. And �nally, we must
establish that the mean or averaged di¤erential system possesses a �nite number
of isolated �xed points. In the next three subsections we purport to demonstrate
just that.

4.1.1 The Joint Dynamic System

One might hope that the standard replicator dynamics represent the mean or
averaged di¤erential system derived from the discrete time stochastic process
(7).

_yi = yi
�
1� yi

� �
�̂i
�
1; y�i

�
� �̂i

�
0; y�i

��
(10)
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Unfortunately, the standard replicator dynamics (10) do not for two simple
reasons. First, in the Erev and Roth (1998) model, the step size is endogenous;
that is, it is determined by the accumulation of payo¤s, and thus is not
exogenously �xed. Second, the step size is not a scalar.
In order to account for these discrepancies, let us introduce a common step

size of 
t = 1=t and N new variables �it, such that:

�it =
t

Qit

We can now substitute 
t�
i
t for 1=Q

i
t in our discrete time stochastic process (7)

and arrive at the following corrected expected motion of the ith player�s strategy
adjustment of going to the bar:

E
�
yit+1jyit

�
� yit = 
t�ityit

�
1� yit

� �
�̂i
�
1; y�it

�
� �̂i

�
0; y�it

��
+ 
t�t

�
yit
�
+O

�
[
t]

2
�

(11)

Since we have assumed that all payo¤s in the El Farol game are positive to
ensure that choice probabilities are well de�ned, it follows that �it is bounded
away from zero. Furthermore, since �it = t=Q

i
t equals the inverse of the average

payo¤ in the limit as t ! 1; it follows that the associated mean or averaged
di¤erential equation (9) associated with the corrected discrete time stochastic
process (11) is:

_yi = �iyi
�
1� yi

� �
�̂i
�
1; y�i

�
� �̂i

�
0; y�i

��
(12)

In equilibrium this amounts to the standard de�nition of the adjusted replicator
dynamics. This is extremely useful because there are many results in the
literature on the equilibrium behaviour of the adjusted replicator dynamics (see
Fudenberg and Levine 1998, Hopkins 2002). We shall revisit some of these
�ndings later in this proof of the main result.
Because each �it varies over time, we require a further set of N equations

describing the discrete time stochastic process of �it. Using the method we
previously employed to write player i�s expected strategy adjustment of going
to the bar, we now �nd the expected change player i�s step size.

Lemma 1 Given the choice rule (5) and the updating rule (6), the expected
motion of the ith player�s step size in the El Farol game is:

E
�
�it+1j�it

�
� �it = 
t�it � 
t

�
�it
�2
�̂i
�
0; y�it

�
+ 
t

�
�it
�2
yit
�
�̂i
�
0; y�it

�
� �̂i

�
1; y�it

��
+ 
t�t

�
yit
�
+O

�
[
t]

2
�

(13)

Proof First, imagine that player i chooses to attend the bar in period t. The
expected change in the player step size can be written as:

�it+1 � �it (t) =
t+ 1

Qit + �̂
i
�
1; y�it

� � t

Qit

= 1� �it�̂i
�
1; y�it

�
+O (
t)
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Now consider the expected change in step size if player i stays at home.

�it+1 � �it (t) =
t+ 1

Qit + �̂
i
�
0; y�it

� � t

Qit

= 1� �it�̂i
�
0; y�it

�
+O (
t)

The expected motion of each player i�s step size given �it can now be written as
the expected motion in the step size given yit times the step size in period t.

E
�
�it+1j�it (t)

�
� �it (t) = 
t�ityit

�
1� �it�̂i

�
1; y�it

�
+O (
t)

�
+ 
t�

i
t

�
1� yit

� �
1� �it�̂i

�
0; y�it

�
+O (
t)

�
and after some more algebraic manipulation we arrive at (13).
The mean or averaged di¤erential equation derived from the discrete time

stochastic process (7) has now been corrected for the endogenous and non-scalar
step size. Therefore, we have the following mean or averaged di¤erential system
consisting of 2N di¤erential equations with 2N endogenous variables:

_yi = �iyi
�
1� yi

� �
�̂i
�
1; y�i

�
� �̂i

�
0; y�i

��
(14a)

_�i = �i
�
1� �i

�
�̂i
�
0; y�i

�
+ yi

�
�̂i
�
0; y�i

�
� �̂i

�
1; y�i

����
(14b)

Let us refer to this as the joint dynamic system describing the evolution of player
i�s strategy adjustment of going to the bar in the El Farol game.

4.1.2 Admission of a Strict Lyapunov Function

Wemust show that the associated mean or averaged ordinary di¤erential system,
the joint dynamic system (14), admits a strict Lyapunov function. Let us begin
with some de�nitions.

De�nition 4 Let (9) be an ordinary di¤erential equation de�ned on some
subset Y of RN . Let V : Y ! R be a continuously di¤erentiable function.
Furthermore, let �y be a �xed point of V (y). V (y) is a Lyapunov function if,

_V (y) � 0; 8 y 2 Y and (15a)
_V (�y) = 0; 8 �y 2 � (15b)

where � is the set of �xed points of (9).

De�nition 5 A strict Lyapunov function is a Lyapunov function V (y) such
that:

_V (y) > 0; 8 y =2 � (16)

In general it can be di¢ cult and time consuming to identify a suitable
Lyapunov function for a particular system. It is often a process of trial and error.
An approach to this aspect of the problem developed in the existing literature
on the convergence of learning models in games (see Du¤y and Hopkins 2005)
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has been to explicitly derive a suitable function for V (y) and then show that
it admits a strict Lyapunov function. In theory, but not always in practice,
this can be accomplished by �rst assuming that V (y) indeed admits a strict
Lyapunov function. If this is the case, then the partial derivative @V (y) =@yi

represents the expected payo¤ increment to player i from going to the bar.

@V (y)

@yi
= �̂i

�
1; y�i

�
� �̂i

�
0; y�i

�
(17)

It should then just be a question of integrating @V (y) =@yi with respect to yi in
order to �nd a suitable V (y) and checking that both conditions (15) and (16)
de�ning strict Lyapunov functions are met.
The di¢ culty with this approach is in explicitly �nding a function V (y).

Expressing �̂i
�
1; y�i

�
� �̂i

�
0; y�i

�
in a compact form is not as straightforward

as one might �rst hope. This can be demonstrated by examining @V (y) =@yi

further. Note that (17) can be expressed as:

@V (y)

@yi
= E

�
�ij� = 1

�
� E

�
�ij� = 0

�
= [B � S] + � [G�B]

where

� =
C�1X
j=0

Pr
�
m�i
t = j

�
(18)

� is the probability that C�1 players or less of the remainingN�1 players choose
to go to the El Farol bar. It is writing out this latter probability expression (18)
for � that is unfortunately problematic and can get cumbersome very quickly.
Therefore, this turns out to be an intractable method of demonstrating that the
joint dynamic system (14) admits a strict Lyapunov function.
An alternative approach is to employ a result of Monderer and Shapley

(1996, Theorem 3.1) from the theory of potential games to demonstrate that
the joint system (14) admits a strict Lyapunov function. The argument is as
follows: the El Farol game is a congestion game therefore it is a potential game
and thus admits a potential function. The properties of potential functions are
similar to those of strict Lyapunov functions and therefore, it follows that the
joint dynamic system (14) admits a strict Lyapunov function.
Let us now begin with some de�nitions and a restating of Monderer and

Shapley (1996, Theorem 3.1).

De�nition 6 Let �
�
N;Y i; �i

�
be a game in strategic form. � is called a

potential game if it admits a potential function.

De�nition 7 A function P : Y ! R is a potential function for �, if for every
i 2 N and for every y�i 2 Y �i

�i
�
x; y�i

�
� �i

�
x0; y�i

�
= P

�
x; y�i

�
� P

�
x0; y�i

�
8 x; x0 2 Y i

Theorem 3 (Monderer and Shapley (1996, Theorem 3.1)) Every conges-
tion game is a potential game.
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Now we can show that the joint dynamic system (14) admits a strict
Lyapunov function.

Lemma 2 The joint dynamic system (14) admits a strict Lyapunov function.

Proof The El Farol stage game is a congestion game and therefore by Theorem
3, Monderer and Shapley (1996, Theorem 3.1), it is a potential game. Thus,
there exists a function P : �i���i ! R for every i 2 N and for every ��i 2 ��i
such that:

�i
�
1; ��i

�
� �i

�
0; ��i

�
= P

�
1; ��i

�
� P

�
0; ��i

�
8 � 2 � = f0; 1g

Given that there is a continuous set of mixed strategies, we can write the
potential function P (y) as a smooth function with respect to the strategy space
y 2 [0; 1]N . P (y) is therefore continuously di¤erentiable. Therefore, for every
i 2 N and for every x�i 2 [0; 1]N�1,

�i
�
x; y�i

�
� �i

�
x0; y�i

�
= P

�
x; y�i

�
� P

�
x0; y�i

�
8 x; x0 2 [0; 1]

Now choose x and x0 equal to 0 and 1 respectively and take expectations of both
sides. It follows that for every i 2 N and for every y�i 2 [0; 1]N�1,

�̂i
�
1; y�i

�
� �̂i

�
0; y�i

�
= P

�
1; y�i

�
� P

�
0; y�i

�
Or otherwise stated,

@P (y)

@yi
= �̂i

�
1; y�i

�
� �̂i

�
0; y�i

�
(19)

Furthermore,

_P (y) =
dP (y)

dyi
_yi

= �̂i
�
1; y�i

�
� �̂i

�
0; y�i

�
_yi

= �iyi
�
1� yi

� �
�̂i
�
1; y�i

�
� �̂i

�
0; y�i

��2 � 0
By assumption, �i > 0 and yi 2 [0; 1]. Since

�
�̂i
�
1; y�i

�
� �̂i

�
0; y�i

��2 � 0 we
have that _P (y) is non negative. Additionally, at any �xed point �y 2 � either
�yi = 0,

�
1� �yi

�
= 0 or

�
�̂i
�
1; y�i

�
� �̂i

�
0; y�i

��
= 0. Thus P (y) admits a

Lyapunov function.
At any y =2 �, _yi 6= 0. It should be obvious that:

_P (�y) = �iyi
�
1� yi

� �
�̂i
�
1; y�i

�
� �̂i

�
0; y�i

��2
> 0.

Therefore, P (y) admits a strict Lyapunov function. It follows that the joint
dynamic system (14) admits a strict Lyapunov function.

4.1.3 Fixed Points of the Joint Dynamic System

De�nition 8 The �xed points of the joint dynamic system (14) are de�ned as
�x = (�y; ��) such that _y = 0 and _� = 0.
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Lemma 3 The joint dynamic system (14) possesses a �nite number of isolated
�xed points.

Proof Consider the joint dynamic system (14). The �xed points of the N
equations describing the evolution of the step size occur when either:

��i = 0;
1�

�̂i
�
0; y�it

�
+ yi

�
�̂i
�
0; y�it

�
� �̂i

�
1; y�it

���
By assumption, all payo¤s are positive therefore ��i is bounded away from zero.
This means that the �xed points of the joint dynamic system (14) with ��i = 0
are always unstable (see Hopkins 2002, Du¤y and Hopkins 2005) and therefore
are never asymptotic outcomes. We can thus concentrate on the latter case.
Consider the �rst N equations of the joint dynamic system (14). Once we
substitute for ��i and multiply both sides by the denominator we have:

yi
�
1� yi

� �
�̂i
�
1; y�it

�
� �̂i

�
0; y�it

��
= 0

In other words the �xed points of the joint dynamic system (14) are exactly the
same as those under the adjusted replicator dynamics (12) and, consequently,
the standard replicator dynamics (10). The characterisation of the �xed point
of the standard replicator dynamics (10) is well known (see Weibull 1995) and
consists of the union of all pure states and Nash equilibria of the underlying
game.
The number of pure states is obviously �nite and, as proved in Propositions
2-4, the number of Nash equilibria in the underlying El Farol game is countable.
Therefore, the joint dynamic system (14) possesses a �nite number of �xed
points points.
Just to be absolutely clear, the �xed points of the joint dynamic system (14)

consist of the following:

� Pure strategy Nash equilibria
These are the pure states of the joint dynamic system (14) that correspond
to the pure strategy Nash equilibria of the underlying game.

� Symmetric mixed strategy Nash equilibrium
This is the full interior state of the joint dynamic system (14) that
corresponds to the symmetric mixed strategy Nash equilibria of the
underlying game. That is, the Nash equilibrium where all players play
a unique mixed strategy best response.

� Asymmetric mixed strategy Nash equilibria
These are boundary states of the joint dynamic system (14) that corre-
spond to asymmetric mixed strategy Nash equilibria of the underlying
game. By boundary states we mean those where a subset of the N players
play a unique mixed strategy best response while the remainder play a
pure strategy.

� Fixed points that are not Nash equilibria
Not all �xed points of the joint dynamic system (14) correspond to
Nash equilibria of the underlying game. There are pure states of the
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joint dynamic system (14) that do not correspond to pure strategy Nash
equilibria of the underlying game. Note that it is not possible to have
interior �xed points or �xed points on some boundary of the state space
of the joint dynamic system (14) that do not correspond to Nash equilibria
of the underlying game.

4.1.4 Positive Convergence Result

Proposition 6 The discrete time stochastic process (7) converges with proba-
bility one to one of the �xed points of the standard replicator dynamics (10).

Proof By Lemma 2 the joint dynamic system (14) admits a strict Lyapunov
function. By Lemma 3 the joint dynamic system (14) possesses a �nite number
of �xed points which are identical to those of the standard replicator dynamics
(10). Therefore, by Theorem 2, Benaïm (1999, Corollary 6.6), the discrete
time stochastic process (7) converges to one of the �xed points of the standard
replicator dynamics (10).

4.2 Proof of Main Result: Second Stage

In the second part of the proof of the main result, we show that the discrete
time stochastic process (7) does not converge to any equilibria corresponding to
Nash equilibria of the underlying game which are unstable under the adjusted
replicator dynamics (12) or equilibria that do not corresponding to a Nash of
the underlying game. We tackle this in two steps.
First, we show that the stability properties of a �xed point of the joint

dynamic system (14) are entirely determined by the stability properties of
the corresponding �xed point under the adjusted replicator dynamics (12).
We then determine the stability properties of the Nash equilibria under the
adjusted replicator dynamics (12). We conclude that only the pure strategy
Nash equilibria are stable under the adjusted replicator dynamics (12). Finally,
we employ Hopkins and Posch (2005, Proposition 2) to show that the discrete
time stochastic process (7) cannot converge to any �xed points unstable under
the adjusted replicator dynamics (12).
Second, we employ Hopkins and Posch (2005, Proposition 3) to demonstrate

that the discrete time stochastic process (7) cannot converge to any �xed point
not corresponding to a Nash equilibria under the underlying game. Therefore,
we have our negative convergence result.

4.2.1 Unstable Equilibria in the Adjusted Replicator Dynamics

De�nition 9 A �xed point �x = (�y; ��) of the joint dynamic system (14) is
unstable if its linearisation evaluated at �x has at least one eigenvalue with a
positive real part.

Theorem 4 (Hopkins and Posch (2005, Proposition 2)) Let �x be a Nash
equilibrium that is linearly unstable under the adjusted replicator dynamics (12).
Then the Erev and Roth (1998) reinforcement learning process de�ned by the
choice rule (5) and the updating rule (6) asymptotically converges to one of
these points with probability zero.
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Lemma 4 The stability properties of the �xed points of the joint dynamic sys-
tem (14) are entirely determined by the stability properties of the corresponding
�xed points of the adjusted replicator dynamics (12).

Proof The linearisation of the joint dynamic system (14) at any �xed point, �x,
will be of the form:0B@

@ _y

@y

@ _y

@�
@ _�

@y

@ _�

@�

1CA (20)

Consider the partitions of the above matrix (20) evaluated at a �xed point of
the joint dynamic systems (14) in turn. d _y=d� is obviously the null matrix.

@ _yi

@�j
= 0 for all i; j (21)

Given (21), every eigenvalue of the matrix (20) is an eigenvalue for either d _y=dy
or d _�=d�. The latter matrix is diagonal.

@ _�i

@�j
= 0 for i 6= j

@ _�i

@�j
6= 0 for i = j

And the diagonal elements are all negative.

@ _�i

@�i
= 1� 2��i

�
�̂i
�
0; y�it

�
+ �yi

�
�̂i
�
0; y�it

�
� �̂i

�
1; y�it

���
< 0

Therefore, all the eigenvalues of d _�=d� are negative. Now consider the elements
of d _y=dy. This is the linearisation, or otherwise referred to as the Jacobian, of
the adjusted replicator dynamics (12).

J =

0BBBBBBBBB@

@ _y1

@y1
@ _y1

@y2
� � � @ _y1

@yN

@ _y2

@y1
@ _y2

@y1
� � � @ _y2

@yN
...

...
. . .

...
@ _yN

@y1
@ _yN

@y2
� � � @ _yN

@yN

1CCCCCCCCCA
If the linearisation of the adjusted replicator dynamics (12) has one or more
positive eigenvalues, then the �xed point of the joint dynamic system (14) at
which the Jacobian is evaluated is unstable for the joint dynamic system (14).
Otherwise, the �xed point is asymptotically stable for the joint dynamic system
(14).
Now consider the stability properties of the �xed points of the adjusted

replicator dynamics (12) that correspond to Nash equilibria in the El Farol
game.
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Lemma 5 The �xed points of the adjusted replicator dynamics (12) corre-
sponding to the pure strategy Nash equilibria of the El Farol stage game are
asymptotically stable.

Proof Given that the pure strategy Nash equilibria are strict, they constitute
an evolutionary stable strategy of the El Farol stage game. By Weibull (1995),
all evolutionary stable strategies are asymptotically stable under the replicator
dynamics.

Lemma 6 The �xed point of the adjusted replicator dynamics (12) correspond-
ing to the symmetric mixed strategy Nash equilibrium of the El Farol stage game
is asymptotically unstable.

Proof The �xed point of the joint dynamic system (14) corresponding to the
symmetric mixed strategy Nash equilibria of the El Farol stage game is unique
and is a fully mixed equilibrium. Furthermore, at this fully mixed �xed point of
the joint dynamic system (14), �yi = �yj . Let us consider the diagonal elements
of J :

@ _yi

@yi
= �i

�
1� 2yi

� �
�̂i
�
1; y�it

�
� �̂i

�
0; y�it

��
= 0 if yi = �y

Since all the diagonal elements of J equal zero, the trace of J is zero. Now
consider the o¤ diagonal elements:

@ _yi

@yj
= yi

�
1� yi

�
26664
�i

 
@
�
�̂i
�
1; y�it

��
@yj

�
@
�
�̂i
�
0; y�it

��
@yj

!
+
@�i

@yj
�
�̂it
�
1; y�it

�
� �̂it

�
0; y�it

��
37775

Since all players earn the same payo¤ in this fully mixed symmetric equilibrium,
we have that �i = �j and therefore, J is symmetric. Therefore, J has no complex
eigenvalues. With a zero trace, the real eigenvalues sum to zero. Therefore, there
must be at least one eigenvalue which is positive. Hence, �x is linearly unstable
with respect to the joint dynamic system (14).

Lemma 7 The �xed points of the adjusted replicator dynamics (12) correspond-
ing to the asymmetric mixed strategy Nash equilibria of the El Farol stage game
are asymptotically unstable.

Proof At the �xed points of the joint dynamic system (14) corresponding to
the asymmetric mixed strategy Nash equilibria, N � j � k players randomise
over entry while the remaining j+k players play a pure strategy. One can then
calculate the Jacobian, J , evaluated at this �xed point which is of the form:

J =

�
A B
0 C

�
where A is a (N � j � k) � (N � j � k) matrix of the form found at the
symmetric �xed point as described in Lemma 6.
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It is easily veri�ed that C is a diagonal matrix of negative elements. By
the same argument as put forward in Lemma 6, A is a mixture of positive and
negative eigenvalues. Therefore, J has at least one positive eigenvalue and it
follows that the �xed point associated with the asymmetric mixed strategy Nash
equilibrium is unstable under the adjusted replicator dynamics (12).

4.2.2 Non-Nash Fixed Points of the Joint Dynamic System

Theorem 5 (Hopkins and Posch (2005, Proposition 3)) Let �x be a �xed
point of the replicator dynamics (10) which is not a Nash equilibrium. Then the
Erev and Roth (1998) reinforcement learning process de�ned by choice rule (5)
and the updating rule (6) asymptotically converges to one of these points with
probability zero.

Therefore, the discrete time stochastic process (7) cannot converge to any
�xed point not corresponding to a Nash equilibrium under the underlying game.

4.2.3 Negative Convergence Result

Proposition 7 The discrete time stochastic process (7) converges with prob-
ability zero to equilibria corresponding to Nash equilibria of the underlying
game unstable under the adjusted replicator dynamics (12) or equilibria not
corresponding to a Nash equilibrium of the underlying game.

Proof The result follows from Theorem 4, Hopkins and Posch (2005, Proposi-
tion 2), and Theorem 5, Hopkins and Posch (2005, Proposition 3).

4.3 Proof of Main Result: Concluding Stage

Proposition 8 In the El Farol game with identical bounded rational agents
learning in accordance with the Erev and Roth (1998) reinforcement learning
model, long-run behaviour converges asymptotically to the set of pure strategy
Nash equilibria of the El Farol stage game.

Proof The result follows directly from our positive convergence result, Propo-
sition 6, and our negative convergence result, Proposition 7.

5 Conclusion

The results obtained from modelling the El Farol bar problem as a repeated
game with boundedly rational agents implies that people tend to minimise bad
experiences and maximise good ones. This is exactly what is assumed by the
Erev and Roth (1998) reinforcement learning model.
The application of the Erev and Roth (1998) reinforcement learning model

implies that the average attendance converges to the capacity of the El Farol
bar as in Arthur�s (1994) �inductive thinking�approach to modelling boundedly
rational agents. The di¤erence lies in who, in the long-run, attends the bar. The
most salient aspect of this result is that in the El Farol game the population
of boundedly rational agents, who behave in accordance with the Erev and
Roth (1998) reinforcement learning model, are partitioned into those who always
attend the El Farol bar and those who always stay at home. This di¤ers from
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the outcome of Arthur�s (1994) model where agents are di¤erentiated by the
forecasting methods, not by attendance.
The main result implies sorting and is crucially dependent on the fact that

the game in question is a potential game. It can be shown that the result is
robust when compared to other variants of reinforcement learning. In fact Du¤y
and Hopkins�s (2005) paper shows how this would be the case with stochastic
�ctitious play. It is also possible to derive some general results for an extension
to this treatment where players have idiosyncratic payo¤ functions. Milcataich
(1996) shows that any multi-player coordination game with two identical pure
actions for each player admits a potential function and by de�nition, is a
potential game. Therefore, even if one considers players in the El Farol game
with heterogenous preferences, it appears that reinforcement learning will lead
to sorting.
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A First Appendix

A.1 Proof to Proposition 1

Proof The number of pure strategy Nash equilibria in the one-shot El Farol
game is the number of ways C di¤erent players can be chosen out of the set of
N players at a time.

A.2 Proof to Proposition 2

Proof ExistenceDe�ne the binary state of the bar, either uncrowded or crowded,
as a binomial distribution, denoted P i (N;C; �) ; over the number of players in
the game, denoted by N , the capacity of the bar, denoted by C, and the mixed
strategies employed by player i, denoted by the probability � of attending and
(1� �) of staying at home.In particular in a mixed strategy equilibria, each
player i should be indi¤erent between going to the bar and staying at home.

E
�
�ij� = 1

�
= E

�
�ij� = 0

�
; 8 i 2 f1; 2; :::; Ng

We have that:

E
�
�ij� = 1

�
= G � P i (N;C; �) +B �

�
1� P i (N;C; �)

�
E
�
�ij� = 0

�
= S

(22)

where P i (N;C; �) denotes the probability of the bar being in the uncrowded
state or otherwise stated as the probability that less than C other players out
of the (N � 1) remaining players choose to attend the bar.Given that players
are homogeneous in preferences and the El Farol game is symmetric in payo¤s,
we may write:

P i (N;C; �) = P (N;C; �) for all i 2 f1; 2; :::; Ng .
Returning to (22), we can now substitute P (N;C; �) for P i (N;C; �) and solve
for P (N;C; �).

P (N;C; �) =
(S �B)
(G�B)

where P (N;C; �) is de�ned by the following binomial probability:

P (N;C; �) =

C�1X
m=0

CN�1m �m (1� �)(N�1)�m .

Therefore, we have (3).Uniqueness:P (N;C; �) is continuous and well de�ned
over the closed interval [0; 1]. Given that lim�!0 P (N;C; �) = 1 and
lim�!1 P (N;C; �) = 0, (3) has a unique solution if the partial derivative of
P (N;C; �), denoted P� (N;C; �), is less than zero.

P� (N;C; �) =
@

@�

 
C�1X
m=0

CN�1m �m (1� �)(N�1)�m
!

=

 
C�1X
m=1

(N � 1)CN�2m�1�
m�1 (1� �)(N�1)�m

!

�
 
C�1X
m=0

(N � 1)CN�2m �m (1� �)((N�1)�m)�1
!
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Now let k = (m� 1).

P� (N;C; �) = (N � 1)
 
C�2X
k=0

CN�2k �k (1� �)N�2�k
!

� (N � 1)
 
C�1X
m=0

CN�2m �m (1� �)N�2�m
!

= (N � 1) (�1)CN�2m�1�
m�1 (1� �)N�1�m

< 0

Hence (3) has a unique solution and thus the number of mixed strategy Nash
equilibria where all agents employ the same �mixing�is one.

A.3 Proof to Proposition 3

Proof Here we use the fact that there are only two pure strategies available
to each player. We show via contradiction that if no players employ a pure
strategy, all players must play the same mixed strategy.First, assume that here
are two players, say i and j, who employ di¤erent mixed strategies in a mixed
strategy equilibrium in which their probabilities of attending the bar are �i and
�j respectively, where �i 6= �j . Note that the remaining N �2 players also play
mixed strategies. Since player i uses a mixed strategy in equilibrium, it must
be that the probability of less than C attending the bar is (S �B) = (G�B)
given �j and the mixed strategies employed by the (N � 2) remaining players.
Likewise if player j uses a mixed strategy in equilibrium, it must be that the
probability of less than C attending the bar is (S �B) = (G�B) given �i and
the mixed strategies employed by the (N � 2) remaining players. If �i 6= �j ,
both these statements cannot be true.Consider the case where �i > �j . The
probability of less than C attending the bar is (S �B) = (G�B) given �j and
the mixed strategies employed by the (N � 2) remaining players. It is then
impossible to have the probability of less than C attending the bar, given �i
and the mixed strategies employed by the (N � 2) remaining players equal
(S �B) = (G�B). We have the similar argument for �i < �j . Recall that
agents have only two possible pure strategies.This contradiction tells us that in
an equilibrium where all players play a mixed strategy, they must all play the
same mixed strategy.

A.4 Proof to Proposition 4

Proof Recall that an asymmetric mixed strategy Nash equilibria is a Nash
equilibrium where players from a subset of the population play either of the
available pure strategies, and the remaining players play the symmetric mixed
strategy which supports the asymmetric mixed strategy Nash equilibria. In an
asymmetric mixed strategy equilibrium, we require at least two players to play
a mixed strategy and at least one player to play a pure strategy. Given that all
the players playing a mixed strategy are playing the same mixed strategy, we
can simply count the number of asymmetric mixed strategy Nash equilibria.
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B Second Appendix

B.1 Proof to Proposition 5

Proof First, suppose that in period t player i chooses to attend the bar. The
ith player�s strategy adjustment of going to the bar given that player i chooses
to go to the bar is,

E
�
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Similarly, the ith player�s strategy adjustment of going to the bar given that
player i chooses to stay at home is,
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Recall that by de�nition player i goes to the bar with probability yit and stays
at home with probability

�
1� yit

�
. Therefore, the expected motion of the ith

player�s � = 1 strategy adjustment in the repeated El Farol game is,
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and after further algebraic simpli�cation we arrive at (7).
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