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Abstract

This paper introduces AlphaSimR, an R package for stochastic simulations of plant and animal breeding programs. AlphaSimR is a highly
flexible software package able to simulate a wide range of plant and animal breeding programs for diploid and autopolyploid species.
AlphaSimR is ideal for testing the overall strategy and detailed design of breeding programs. AlphaSimR utilizes a scripting approach to
building simulations that is particularly well suited for modeling highly complex breeding programs, such as commercial breeding
programs. The primary benefit of this scripting approach is that it frees users from preset breeding program designs and allows them to
model nearly any breeding program design. This paper lists the main features of AlphaSimR and provides a brief example simulation
to show how to use the software.
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Introduction
This paper introduces AlphaSimR, an R package for stochastic
simulations of plant and animal breeding programs.

Stochastic simulation is a powerful tool for design and opti-
mization of breeding programs, because it provides a fast, in-
expensive method for testing alternative breeding program

designs. Simulations have been used to improve both plant
breeding programs (e.g., Lin et al. 2016; Gaynor et al. 2017;

Gorjanc et al. 2018) and animal breeding programs (e.g., Hayes
and Goddard 2003; Jenko et al. 2015; Johnsson et al. 2019) as
well as to address theoretical concepts in quantitative genet-

ics and breeding (e.g., Gorjanc et al. 2015). AlphaSimR has
been specifically designed to make simulations more common
by providing an easy-to-use and highly flexible software pack-

age able to simulate a wide range of plant and animal breed-
ing programs.

Stochastic simulations of whole breeding programs have

rarely, if ever, been used to improve long-term performance of
breeding programs for many agriculturally important species.
This is likely due to the difficultly in setting up and running these

simulations. This difficulty is in no small part due to the need for
a person with thorough knowledge of breeding programs and
computer programming. This person must possess a thorough

understanding of the breeding programs they wish to simulate so
that they can construct an informative simulation. They must
also possess the programming skills needed to develop, run, and

evaluate the simulations. The amount of programming skills this
person needs to possess is considerable when there are no exist-

ing software programs for modeling the specific breeding pro-
gram of interest. To address this issue, new software is needed

that can lower the programming burden and thereby increase
the ease of running simulations.

AlphaSimR has been specifically designed to make running
stochastic simulations of whole breeding programs easier. To ac-
complish this goal, AlphaSimR provides the ability to run simula-
tions both interactively or via scripts within the R software
environment (R Core Team 2019). More specifically, AlphaSimR
provides users with a range of R functions that correspond to
common operations in a breeding program, such as crossing and
selection. This allows users to apply functions representing
breeding operations directly to objects that represent populations
of animals or plants. The benefit of this approach is that it makes
writing simulation code more intuitive, by allowing users to di-
rectly translate a description of a breeding program into an R
script. Providing this functionality in R allows users benefit from
the wealth of packages already available in R for visualization
and report generation. It also provides a natural path for learning
how to use the software by allowing users to start with simula-
tions of simple breeding programs and gradually progress to
more complicated breeding programs. With the respect to learn-
ing, simulations are also an invaluable tool to teach students and
new professionals about theoretical and practical breeding con-
cepts.

AlphaSimR is suitable for simulating a wide range of breeding
programs and species. The software models the genomes of both
diploid and autopolyploid species. The scripting approach
employed by AlphaSimR allows for modeling nearly any breeding
program structure, without limiting users to preset designs.
AlphaSimR has been specifically designed for simulating whole
breeding programs over multiple generations to model long-term
genetic gain in said breeding programs.
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Methods
AlphaSimR is a large package with an extensive list of features,

so we will only describe its main features here. For the sake of

brevity, these descriptions are designed to provide an overview of

AlphaSimR’s functionality and not a detailed accounting of its

implementation. First, AlphaSimR’s approach to stochastic simu-

lations will be given to provide a high-level overview of how the
software works. Then, we will describe a few key elements of this

approach before concluding with an overview of AlphaSimR’s im-

plementation.

Simulation approach
AlphaSimR uses a simulation approach that combines the coa-

lescent and gene drop methods (Hickey and Gorjanc 2012). The

coalescent method is used for backwards-in-time simulations. It

is used in AlphaSimR to generate whole-chromosome founder
haplotypes with distributions of linkage disequilibrium and allele

frequencies that match a defined population genetic model. The

gene drop method is used for forwards-in-time simulations. It is

used in AlphaSimR to create new haplotypes from the original

founder haplotypes.

Founder haplotypes
The preferred method for creating founder haplotypes in

AlphaSimR is to use the Markovian Coalescent Simulator (MaCS;
Chen et al. 2009). MaCS is included in AlphaSimR and used to gen-

erate founder haplotypes according to either a predefined param-

eter set for some species, or user-supplied parameters.

Alternatively, users can create founder haplotypes by importing

external data into AlphaSimR or using built-in functions for ran-

dom sampling. The option to import external data allows users

to use other coalescent simulators or real genotypic data, pro-

vided the linkage phase and genetic map are known.

Genetic recombination
AlphaSimR creates new haplotypes by modeling genetic recombi-

nation during meiosis. A genetic map is used to model the distri-

bution of genetic recombination. AlphaSimR allows for sex-

specific genetic maps to represent different recombination rates

between sexes. The specifics for modeling meiosis in AlphaSimR

depend on whether the species is a diploid or an autopolyploid.
For diploid species, AlphaSimR simulates meiosis and genetic

recombination according to the gamma model (McPeek and

Speed 1995). The gamma model accommodates crossover inter-

ference and has been shown to fit real data (e.g., Broman and

Weber 2000). The magnitude of crossover interference is con-

trolled by a single parameter that can be adjusted by the user.
For autopolyploid species, AlphaSimR simulates meiosis using

a combination of bivalent and quadrivalent chromosome pairing.
Bivalent or quadrivalent homologous pairs are chosen at random

according to a parameter for the probability of quadrivalent pair-

ing, which can be tuned by the user. Bivalent pairs are resolved

using the gamma model for diploids. Quadrivalent pairs are re-

solved according to the model for ‘cross-type’ configurations

used in the PedigreeSim software (Voorrips and Maliepaard 2012).

This model involves sampling chiasmata positions from a

gamma distribution and resolving crossovers by sampling centro-

meres and working outwards toward the telomeres. This tech-

nique models unique features of meiosis in autopolyploids, such

as recombinant chromosomes composed of three parental chro-
mosomes and double reductions (Bourke et al. 2015).

Traits
Traits in AlphaSimR are classified according to the biological
effects they model. The biological effects modeled in AlphaSimR
are Additive, Dominance, Epistatic, and Genotype-by-
environment. The first letter of each effect is used to derive a
name for each trait type under the ADEG framework. For exam-
ple, a trait with only additive effects is called an A trait. A trait
with additive and dominance effects is called an AD trait.
AlphaSimR currently supports the following trait types: A, AD,
AE, AG, ADE, ADG, AEG, and ADEG.

The modeling of biological effects is based on classic quantita-
tive genetics models. For example, the additive effects are equiv-
alent to additive effects described in a quantitative genetics
textbook (e.g., Falconer and Mackay 1996). The modeling of the
dominance effects allows for both directional dominance and a
variable degree of dominance, ranging from partial dominance to
overdominance (Gaynor et al. 2018). For autopolyploid species,
the modeling of dominance represents digenic dominance.
Epistatic effects are modeled as additive-by-additive epistatic
effects between discrete pairs of loci. Genotype-by-environment
effects are modeled as additive effects whose value is a function
of a single environmental covariate.

AlphaSimR can simulate multiple traits using any combina-
tion of trait types. Each trait is simulated according to a user-
defined number of QTL, which can differ between traits.
Correlated traits can be simulated, provided they are pleiotropic
and belong to the same trait type.

AlphaSimR uses a method for sampling QTL effects that
allows users to specify a desired mean and variance, either total
or additive, for each trait. AlphaSimR first samples QTL effects
from an initial distribution and then scales the values for those
effects and adds an intercept to achieve precisely the mean and
variance requested by the user in a founder population. The ini-
tial distribution is typically a standard normal distribution, but in
the case of additive effects, it can also be a gamma distribution
with a user-specified shape parameter and a randomly sampled
sign to make the distribution symmetric. The benefit of
AlphaSimR’s approach is that it allows users to set variables re-
lating to the relative levels of dominance or epistasis indepen-
dently of the founder population’s genetic variance. For example,
a user can specify the average degree of dominance for QTL con-
trolling a trait independently of the additive genetic variance for
this trait.

Variance components
AlphaSimR reports additive, dominance, and additive-by-additive
epistatic variances for any population. This is done without as-
suming random mating or linkage equilibrium, so that the values
are correct regardless of the population’s genetic structure. This
allows users to compare simulated populations to real-world
data for the sake of benchmarking simulations. AlphaSimR also
offers further partitioning of genetic variance into genic variance,
covariance due to departures from Hardy–Weinberg equilibrium,
and covariance due to linkage disequilibrium, as described by
Bulmer (1976).

Selection
A wide range of functions are available for modeling selections.
These functions allow for selection on multitude of criteria, such
as phenotypes, genetic values, breeding values, or estimated
breeding values. Selection can be on one trait or an index of mul-
tiple traits. Selections can also be modeled as selection between
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or within families or over an entire population. AlphaSimR also
supports user-supplied selections, allowing users to implement
their own selection methods, for example optimum contribution
selection as in Gorjanc et al. (2018).

Mating and propagation schemes
A wide range of functions are available in AlphaSimR for model-
ing common mating and propagation schemes. These schemes
include biparental crossing, selfing, clonal propagation, genera-
tion of doubled haploid (DH) lines, and propagation in open polli-
nating populations with variable degrees of selfing. AlphaSimR
also supports user-supplied mating plans.

Genomic prediction
Modeling genomic prediction in breeding programs is one of the
main use cases for AlphaSimR. AlphaSimR offers several built-in
functions for fitting common genomic prediction models. The
built-in functions use mixed-model solvers based on the follow-
ing R packages: rrBLUP (Endelman 2011), EMMREML (Akdemir
and Godfrey 2015), and Sommer (Covarrubias-Pazaran 2016).
Each solver has been optimized for performance within
AlphaSimR and written in Cþþ using the R packages Rcpp
(Eddelbuettel and Francois 2011) and RcppArmadillo
(Eddelbuettel and Sanderson 2014). Users can also make use of
other R packages or external applications for modeling genomic
prediction. This is done by exporting data from an AlphaSimR
simulation into another R function or external program for geno-
mic predictions, generating predictions, and importing the pre-
dictions back into AlphaSimR objects.

Implementation
Much of AlphaSimR’s code has been written in Cþþ to improve
performance. For example, this has been used to implement bit-
wise storage of genotype data to reduce memory usage and en-
able multithreading for increased speed. AlphaSimR also
improves performance by limiting data storage and calculations,
such as variance component calculations, to only those expressly
requested by the user. This approach differs from other stochas-
tic simulation programs, including AlphaSimR’s predecessors:
AlphaDrop (Hickey and Gorjanc 2012) and AlphaSim (Faux et al.
2016), which typically perform all calculations and save all data.

Data availability
AlphaSimR is publicly available on CRAN (https://CRAN.R-proj
ect.org/package¼AlphaSimR). Additional documentation as well
as links to graphical user interfaces for specialized applications
are available on the AlphaGenes website (https://alphagenes.
roslin.ed.ac.uk/wp/software-2/alphasimr/). A repository of exam-
ple simulation scripts for learning to use the software, modeling-
specific breeding programs, and learning quantitative genetics
principles are available on GitHub (https://github.com/gaynorr/
AlphaSimR_Examples). The example script repository also
includes the script used in this manuscript to evaluate the com-
putational performance of AlphaSimR (“Performance.R”).

Results and discussion
Example simulation
This section will demonstrate AlphaSimR using a simulation of a
single breeding cycle for a generic wheat breeding program. The
code needed to run this simulation is presented below after a
brief description of the breeding program.

Figure 1 shows a schematic representing the stages of the
generic wheat breeding program with a 7-year breeding cycle.
In the first year, 200 biparental populations are produced by
crossing and production of DH lines from those biparental pop-
ulations begins. In the second year, the production of DH lines
is completed in. In the third year, the DH lines are visually
evaluated in a head row (HDRW) nursery. In the remaining
years, lines are selected based on performance in the previous
year and evaluated in a yield trial. The yield trials are con-
ducted over the course of 3 years before selecting a variety to
release.

The first step is to generate founder haplotypes using MaCS.
The founder haplotypes will be used to form the initial parents in
the breeding program. Code for simulating the founder haplo-
types for 50 inbred individuals is shown below. Each individual
will have 21 chromosomes, each with 1000 segregating sites.

founderPop ¼ runMacs(nInd¼ 50, nChr¼ 21, segSites¼ 1000,
inbred¼TRUE).

The second step is to set global parameters. Below is code for
setting simulation parameters to model a single trait. The trait
models additive genetic effects on 1000 loci per chromosome.
The trait is also modeled as having a broad-sense heritability of
0.4 for evaluation in a single location.

SP ¼ SimParam$
newðfounderPopÞ$
addTraitAð1000Þ$
setVarEðH2 ¼ 0:4Þ

:

The next step is to simulate each year of the breeding pro-
gram. In the first year, 200 biparental populations are produced
by crossing the parents formed from the founder haplotypes.
This code is presented below. The first line uses the founder hap-
lotypes to form the parents and the second line makes 200 ran-
domly chosen crosses between those parents.

Parents ¼ newPopðfounderPopÞ
F1 ¼ randCrossðParents; 200Þ :

Figure 1 An overview of the variety development cycle for the example
wheat breeding program. A variety is developed over the course of 7
years. The steps in the development cycle are making biparent crosses,
forming DH lines, visually select lines grown in head rows (HDRW),
evaluate lines in a PYT, evaluate lines in an AYT, evaluate lines in an
EYT, and release a variety.
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In the second and third years, the DH lines are produced and
then they are evaluated in the HDRW nursery. The code for both
these years is presented below. The first line forms 100 DH lines per
F1 plant. The second line models evaluation in the HDRW nursery
for the previously defined additive trait. The broad-sense heritabil-
ity of this trait is reduced to 0.1 to represent visual selection.

HDRW ¼ makeDHðF1; 100Þ
HDRW ¼ setPhenoðHDRW; H2 ¼ 0:1Þ :

In the fourth year, the best entries in the HDRW nursery are
selected and evaluated in a preliminary yield trial (PYT). This is
modeled with the code below. The first line models selection in
the HDRW by selecting the best lines within families. The second
line models evaluation of the PYT at one location. The accuracy
of this evaluation is based on the broad-sense heritability defined
in the simulation parameters.

PYT ¼ selectWithinFamðHDRW; 5Þ
PYT ¼ setPhenoðPYTÞ :

In the fifth year, the best PYT entries are selected and evalu-
ated in an advanced yield trial (AYT). This is modeled with the
code below. The first line models selection of the best PYT lines.
The second line models evaluation of the AYT at four locations,
which are represented as reps in the code.

AYT ¼ selectIndðPYT; 100Þ
AYT ¼ setPhenoðAYT; reps ¼ 4Þ :

In the sixth year, the best AYT entries are selected and evalu-
ated in an elite yield trial (EYT). This is modeled with the code be-
low. The first line models selection of the best AYT lines. The
second line models evaluation of the EYT at 16 locations.

EYT ¼ selectIndðAYT; 10Þ
EYT ¼ setPhenoðEYT; reps ¼ 16Þ :

In the seventh year, the best-performing EYT entry is chosen
for release as a variety. This is modeled with the code below.

Variety ¼ selectIndðEYT; 1Þ:

The final step is to evaluate the simulation results. This is
done by producing a boxplot for the genetic values of entries in
stage of the breeding program. The boxplot is shown in Figure 2.
The code for generating the boxplot is given below. The first line
of code extracts the genetic values for each entry and saves it in a
list. The second line creates the boxplot showing the distribution
of genetic values for entries in each stage of the breeding pro-
gram.

yield ¼ listðParents ¼ gvðParentsÞ; F1 ¼ gvðF1Þ;
HDRW ¼ gvðHDRWÞ; PYT ¼ gvðPYTÞ;

AYT ¼ gvðAYTÞ; EYT ¼ gvðEYTÞ;
Variety ¼ gvðVarietyÞÞ

boxplotðyield; ylab ¼ 00Genetic Value00Þ

Evaluation of computational performance
The computational performance of AlphaSimR was evaluated us-
ing a simulation of a simple, large-scale recurrent selection
breeding program. The simulation modeled 100 generations of re-
current selection in a species with 10 chromosomes and on a trait

controlled by 1000 QTL per chromosome with additive effects.

The trait had an initial heritability of 0.3. In each generation,

1000 parents were selected and randomly mated to form 10,000
progeny. Overall 100 generations, the simulation modeled

1,000,000 meioses and 1,001,000 individuals.
The simulation script was evaluated on a Windows laptop

with an IntelVR CoreTM i7-7700HQ CPU using R 4.03 with its native

BLAS and LAPACK replaced by linking to the IntelVR Math Kernel
Library. The runtime for the script was 4 min and 59 s. The max

memory usage was 192 megabytes.

Concluding remarks
AlphaSimR represents a considerable improvement over its pre-

decessor in terms of ease-of-use, flexibility, and computational
efficiency (AlphaSim; Faux et al. 2016). It has been used in a hand-

ful of published simulations (e.g., Gorjanc et al. 2018; Johnsson

et al. 2019; Muleta et al. 2019) as well as numerous unpublished

simulations. The largest simulation undertaken in AlphaSimR to
date involved over a hundred million individuals (unpublished), a

feat that would not be feasible with original AlphaSim.
The improvements made to AlphaSimR make it uniquely well

suited for simulating whole breeding programs. These types of

simulations serve as a valuable tool for aiding strategic decision-
making within breeding programs. For example, AlphaSimR can

be used test the economic value of modifying an existing breed-

ing program. This will be of particular interest to breeding pro-

grams considering implementing genomic selection or changing
their current implementation. These types of simulations can

also be used to optimize selection stages or compare the effi-

ciency of mating strategies.
AlphaSimR can be used for a wide range of simulations out-

side of whole breeding program simulations. For example,
AlphaSimR can be used to test QTL mapping strategies or marker

imputation strategies. AlphaSimR is also well suited for running

simulations that help with teaching quantitative genetics and

breeding. This is because students can be quickly taught how to

use AlphaSimR for simple simulations, and the software’s ability
to report variance components, perform genomic evaluations,

and evaluate accuracy of evaluations against the simulated true

values is highly instructive.
AlphaSimR is under continuous development with new fea-

tures being added on a semi-regular basis. Additional planned
features include developing standard breeding program blue-

prints for major species and developing easy-to-use graphical

user interfaces for these blueprints. These planned additions

should make AlphaSimR even more user-friendly than it cur-
rently is.

Figure 2 The distribution of genetic values in one replicate of the
example breeding program. Separate boxplots are given for each stage of
the breeding program.
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