Role of plant growth promoting bacteria in driving speciation gradients across soil-rhizosphere-plant interfaces in zinc-contaminated soils

Nyekachi C. Adelea, Bryne T. Ngwenyaa*, Kate V. Heala and J. Frederick W. Mosselmansb

aSchool of GeoSciences, University of Edinburgh, Edinburgh, UK
bDiamond Light Source, Harwell Science and Innovation Campus, Didcot, UK

*Corresponding author

Abstract

Inoculation of soil or seeds with plant growth promoting bacteria ameliorates metal toxicity to plants by changing metal speciation in plant tissues but the exact location of these changes remains unknown. Knowing where the changes occur is a critical first step to establish whether metal speciation changes are driven by microbial metabolism or by plant responses. Since bacteria concentrate in the rhizosphere, we hypothesised steep changes in metal speciation across the rhizosphere. We tested this by comparing speciation of zinc (Zn) in roots of \textit{Brassica juncea} plants grown in soil contaminated with 600 mg kg-1 of Zn with that of bulk and rhizospheric soil using synchrotron X-ray absorption spectroscopy (XAS). Seeds were either uninoculated or inoculated with \textit{Rhizobium leguminosarum} \textit{bv. trifolii} and Zn was supplied in the form of sulfide (ZnS nanoparticles) and sulfate (ZnSO\textsubscript{4}). Consistent with previous studies, Zn toxicity, as assessed by plant growth parameters, was alleviated in \textit{B. juncea} inoculated with \textit{Rhizobium leguminosarum}. XAS results showed that in both ZnS and ZnSO\textsubscript{4} treatments, the most significant changes in speciation occurred between the rhizosphere and the root, and involved an increase in the proportion of organic acids and thiol...
complexes. In ZnS treatments, Zn phytate and Zn citrate were the dominant organic acid complexes, whilst Zn histidine also appeared in roots exposed to ZnSO₄. Inoculation with bacteria was associated with the appearance of Zn cysteine and Zn formate in roots, suggesting that these two forms are driven by bacterial metabolism. In contrast, Zn complexation with phytate, citrate and histidine is attributed to plant responses, perhaps in the form of exudates, some with long range influence into the bulk soil, leading to shallower speciation gradients.

Keywords: Brassica juncea, nanoparticles, phytoremediation, X-ray absorption spectroscopy, zinc

1. Introduction

The rhizosphere is a narrow region of soil surrounding the plant-root environment and is characterised by microbial populations that exceed the populations in nearby bulk soil (Helliwell et al., 2017) due to production of exudates by plants, which microbes use as metabolites (Lee et al., 2019). As a result, the rhizosphere is an active zone of plant-microbe interactions which facilitate a large number of processes that may be beneficial, harmful or neutral to both the plant and the microbe (Bishnoi, 2015; Buée et al., 2009). Amongst the plant-beneficial attributes of such interactions are nutrient acquisition, plant growth promotion, pest control, stress alleviation (Adediran et al., 2016a; Adele et al., 2018; Glick, 2014) and degradation of toxic substances (Jambon et al., 2018). An understanding of plant-microbe interactions in the rhizosphere is therefore essential for improving plant health, ecosystem functioning and environmental health (Helliwell et al., 2017; Wu et al., 2017).
Toxic metals, which are being continuously added to soils through industrial and transport emissions, increased production and use of nanomaterials, mining activities, waste and sewage disposal, fertilisers and pesticides, and atmospheric deposition (Auffan et al., 2009; Hernandez-Viezcas et al., 2011; Lv et al., 2019; Pradas del Real et al., 2016), pose a particularly persistent environmental problem because they are not degradable and thus accumulate in the environment (Rizwan et al., 2017). Metal toxicity and bioavailability can be alleviated by changing its chemical speciation (Adele et al., 2018). Differences in chemical and physical characteristics across the rhizosphere (Chiang et al., 2006; Rico et al., 2018) are manifest in the development of steep gradients in metal concentration, pH, redox potential, pO$_2$, pCO$_2$ and organic ligand concentrations between the plant root and soil (Guo et al., 2019; Jilling et al., 2018; Ma et al., 2018; Zhalnina et al., 2018; Zhao et al., 2016), and are likely to lead to changes in metal speciation. For example, the grass species Festuca rubra (red fescue) and Agrostis tenuis (colonial bent grass) accelerated the weathering of ZnS when grown on contaminated dredged sediment, thus increasing Zn bioavailability in the rhizosphere (Panfili et al., 2005). However, after 2 years of plant growth, μm-sized Mn-Zn black precipitates were observed on the surface of Festuca rubra roots, which were identified as a Zn-rich phyllomanganate, suggesting that Zn biomineralisation by plants is a defence mechanism against metal toxicity (Lanson et al., 2008). In another study, changes in metal solubility in rhizobox experiments were attributed to altered soil solution pH and dissolved organic carbon arising from B. juncea root exudates (Kim et al., 2010).

The presence of microbes is likely to amplify these gradients because of increased metabolic activities that change the balance between reductants and terminal electron acceptors, the latter of which include redox-sensitive trace metals (Gadd, 2010). Many studies have demonstrated that the presence of microbes within the soil-root environment (rhizospheric or
endophytic) can influence both the bioavailability and toxicity of metals within plant tissues, ultimately increasing metal bioaccumulation and improving plant health (Adediran et al., 2016a; Adele et al., 2018; Luo et al., 2011; Sessitsch, et al., 2013). The traditional explanation for these microbial-induced effects is biochemical changes in the soil-root environment arising from microbial activity, resulting in prevention of excessive secretion of ethylene by plants, optimum production of plant essential hormones (e.g. cytokinins and gibberellins), and improved release and utilisation of essential nutrients (Bardgett and van der Putten, 2014; Khanna et al., 2019). However, recent advances in molecular level studies, especially those using synchrotron-based spectrosopies, increasingly invoke changes in speciation of the metal as the principal driver of metal bioavailability and toxicity alleviation (Adediran et al., 2016a; Kopittke et al., 2011).

Our group has been studying the role of rhizospheric and endophytic bacteria on Zn uptake by *B. juncea* (Adediran et al., 2015, 2016a,b; Adele et al., 2018). Whilst Zn is an essential micronutrient required for healthy plant growth, excess Zn can be detrimental, inducing impaired plant growth, and reduced chlorophyll and seed production, resulting in chlorosis and plant death (Broadley et al., 2007; Rascio and Navari-Izzo, 2011). Inoculation of *B. juncea* seeds with bacteria improved plant growth in Zn-contaminated soil but, paradoxically, improved growth was associated with increased Zn bioaccumulation in plant tissue (Adele et al., 2018). We hypothesised that toxicity amelioration was driven by bacteria-induced changes in Zn speciation, and subsequent synchrotron-based micro X-ray fluorescence (\(\mu\)-XRF) and micro X-ray absorption near edge structure (\(\mu\)-XANES) analysis of roots showed that bacterial inoculation significantly increased the proportion of Zn complexed with cysteine-rich ligands (Adediran et al., 2015, 2016a; Adele et al., 2018). These changes were replicated regardless of whether Zn was applied in dissolved or nanoparticulate form (Adele...
et al., 2018), although the proportions depended on the bacterial species used (Adediran et al., 2015).

Major questions remain about the exact mechanisms by which bacteria effect such changes in metal speciation. One question is whether the bacteria themselves synthesise the ligands that complex Zn, perhaps as a form of metabolic response to toxic metal exposure (Adediran et al., 2016a; Chandrangsu et al., 2017). Answering this question requires the isolation of bacterial metabolic responses from those of the plants, which also deploy cysteine-rich ligands, including glutathione and phytochelatins for metal detoxification (Bhattacharjee and Rosen, 2007; Feldman et al., 2018; Khan et al., 2018; Mesa et al., 2017). The other question is determining the locus of the speciation changes, and whether the changes are driven by plant responses or microbial processes. If bacteria synthesise their own ligands, we would expect transformations to occur throughout the bulk soil. Alternatively, transformation occurs exclusively at the soil-root interface where microbes congregate, changing metal speciation. Adediran et al. (2016a) showed that bacteria co-localised with Zn in the rhizosphere of B. juncea, suggesting that metal speciation changes occur in the rhizosphere before plant uptake, a hypothesis which was tested in this study by comparing Zn speciation amongst bulk soil, rhizosphere and plant roots using X-ray absorption spectroscopy (XAS). Specific objectives were to: (i) investigate whether there are root-induced speciation changes of different Zn forms in the rhizosphere; (ii) determine whether such changes affect the uptake, accumulation and distribution of Zn in the plant; and (iii) investigate the role of Rhizobium leguminosarum bv. trifolii in modifying speciation across the soil-rhizosphere-plant interface.

Some previous studies have used selective extractions to characterise speciation gradients around the rhizosphere, but these only yield bulk phase associations rather than specific
chemical species, which XAS analysis can provide (Panfili et al., 2005). Indeed, XAS analysis has been used to significantly advance understanding of metal associations as well as chemical speciation in plant tissues (Salt et al., 1999), in the rhizosphere around plant roots (Medas et al., 2015; Terzano et al., 2008), and in the soils in which plants grow, including metal-mine waste areas (Boi et al., 2020; Medas et al., 2015). Very few studies have included the effects of plant-growth promoting bacteria, notably Medas et al. (2015), where the chemical speciation and mineralogical association of Zn in the rhizosphere and roots was controlled by plant-driven biomineralisation and/or plant exudates with no demonstrable involvement of bacteria. By using XAS analysis of samples spanning the bulk soil through the rhizosphere to the root tissue, we are able to assess not only the importance of the rhizosphere in changing Zn speciation but also to differentiate between plant and bacteria dominated speciation.

2. Materials and Methods

2.1 Experimental materials
This study focused on contamination by soluble Zn (in the form of ZnSO₄·7H₂O, Sigma Aldrich, UK) and ZnS nanoparticles. Zinc sulfide NPs (ZnS NPs) are rapidly increasing in the environment due to their multi-faceted applications such as in the pharmaceutical and cosmetic industries, biosensors, nanogenerators, and field emitters amongst others (Biruntha et al., 2020; Fang et al., 2011). ZnS was also used as a nanoparticle model relating to mine waste contamination. ZnS in the form of sphalerite is the most common form in which Zn is mined and therefore prevalent in mining impacted soils and has received increasing attention, although it may not necessarily occur in nanoparticulate form. For this study, ZnS nanoparticles were synthesised in the laboratory using a chemical precipitation method (Adele et al., 2018; Ganguly et al., 2014). Mean nanoparticle diameter was 8.65 nm, although
some aggregation was observed (see Supplementary Material S1 for details). Topsoil (Westland Horticulture Ltd., UK) was amended with 10% sand to improve drainage, and then air dried, crushed, and passed through a 2 mm stainless steel sieve. Measured soil physicochemical properties before amendment are reported in Supplementary Material Table S1. The air-dried soil was amended with 600 mg Zn kg$^{-1}$ in the form of ZnSO$_4$, or ZnS nanoparticles. The Zn concentration chosen was sufficient to trigger toxic effects in plants without completely curtailing growth and also for XAS analysis of plant and soil samples (Adele et al., 2018). Brassica juncea (L.) Czern (hereafter B. juncea) was chosen for this study as a suitable candidate plant for remediation of Zn-contaminated soil or sediment (Qu et al., 2012; Wang et al., 2009). Seeds of B. juncea were purchased (Sow Seeds Ltd., UK) and stored in a clean plastic bag in the dark at room temperature (14-16 °C) until required. Rhizobium leguminosarum bv. trifolii (hereafter R. leguminosarum) was selected for bacterial inoculation due to its tolerance to Zn and demonstrated ability to promote growth of B. juncea (Adediran et al., 2016a; Adele et al., 2018).

2.2 Plant growth experiment design and set-up

The plant growth experiment (detailed in Supplementary Material S2) contained six treatments (including controls), each containing three replicates, in which B. juncea were grown in pots exposed to the different Zn species with and without the presence of bacteria. Briefly, sterilised air-dried soil was contaminated with 600 mg Zn kg$^{-1}$ of ZnSO$_4$, or ZnS nanoparticles. pH was determined in two subsamples of the soil from each treatment after amendment in a 1:2 (fresh soil mass:deionised water volume) suspension. The mixture was stirred and shaken for 30 min before pH measurement using an electrode calibrated using pH 7.0 and 4.0 buffer solutions. Bacterial inoculation of B. juncea seeds involved surface sterilisation with 5% NaClO for 15 min, then washing three times with sterile deionised
water, before soaking for 4 h in 10 mL *R. leguminosarum* bacterial suspension. Uninoculated seeds were soaked in sterilised deionised water for the same duration. One kg of spiked or unspiked soil (control) was placed in 2.15 L pots and left to equilibrate for 1 week before sowing five seeds in each pot. Seedlings were thinned out to three plants per pot at 12 days after planting. Pots were distributed randomly in the greenhouse space and irrigated individually with tap water twice a week. Greenhouse conditions were mean 21 °C daytime and 18 °C night time temperatures, with a photoperiod of 18 h day⁻¹ at a photosynthetic photon flux density of 150 µmol m⁻² s⁻¹ provided by cool white fluorescent bulbs. Metal-related phytotoxicity was evaluated by measuring plant height weekly, and root length and dry biomass at the end of the experiment (6 weeks after seed planting), and through visual observations such as leaf chlorosis and necrosis.

2.3 Plant harvest, rhizospheric and bulk soil sampling and analysis

All plants were harvested 6 weeks after planting. Shoots were separated from roots with scissors. Rhizospheric soil was obtained as a composite sample of the loosely adhering soil material obtained by shaking by hand the roots of the three plants in each pot. Bulk soil was collected from outside the rhizosphere. Roots were washed gently with tap water and stretched out for root length measurement. All samples were transferred to paper bags and oven dried at 70 °C to constant weight, before grinding using mortar and pestle. Total Zn concentrations in duplicate subsamples of the ground plant materials, bulk and rhizospheric soil (mixed from the three replicate pots for each treatment) were determined as described by Allen et al. (1974). Six mL concentrated HCl and 2 mL HNO₃ were used for digestion of 0.5 g ashed soil samples and 2 mL concentrated H₂SO₄ and 0.75 mL H₂O₂ (30%) for digestion of 0.1 g plant material samples. Zn concentrations in the digests were determined (following filtration with 0.45 µm syringe filters) by inductively coupled plasma-optical emission
spectrometry (ICP-OES, PerkinElmer Optima 5300DV) using the Zn 206.200 nm line.

Calibration standards (0.001-2 mg Zn L⁻¹) were prepared from Zn stock standard solution and calibration curves required an r^2 value ≥ 0.9999. Quality control checks comprised analysis of blanks and an external standard (Merck ICP Multi element standard solution VI CertiPUR®). Zinc concentrations measured in digest blanks were subtracted from the sample results. Zinc contents were expressed as mg kg⁻¹ (dry weight) as the mean of the two subsamples for each treatment. Fresh bulk and rhizosphere soil were homogenised separately for pH determination in two subsamples in suspension as already described in section 2.2.

2.4 X-ray absorption spectroscopy (XAS) of bulk and rhizospheric soil and plant roots

XAS was used to investigate the distribution and speciation of Zn in bulk soil, rhizospheric soil and plant root samples on Beamline B18 at the Diamond Light Source, Didcot, UK. Samples and Zn reference standards were prepared and analysed as detailed in Supplementary Material S3. Duplicate samples were analysed of roots and rhizospheric soil in the uninoculated and inoculated ZnS treatments and the inoculated ZnSO₄ treatments, where the greatest changes in Zn speciation were expected. To assess Zn speciation, all X-ray absorption near edge structure (XANES) spectra collected from the samples and standards were normalised and aligned. Linear Combination Fitting (LCF, Athena IFFEFIT software; Ravel and Newville, 2005) was used to quantify the relative proportions of Zn reference compounds within the samples. The goodness of fit was determined from the residual R-factor between the sample spectrum and the spectrum fitted to a combination of Zn standards (Eq. 1), where a lower R-factor represents the best fit between the sample spectrum and the fitted spectrum:

$$R = \frac{\sum(data - fit)^2}{\sum(data)^2} \quad \text{Eq. 1}$$
2.5 Data analysis

The means and standard error (SE) of plant height, root length, dry shoot and root biomasses, and metal concentrations in plant materials and bulk and rhizospheric soil were calculated for each treatment. Statistical analyses were conducted using Minitab v.18 (Minitab TM Inc., State College, PA), with significance level $p < 0.05$. Datasets were tested for normality with the Anderson-Darling test and those that were not normally distributed were transformed for statistical analysis. General linear models (GLM) followed by Tukey multiple comparison tests were used to identify any significant differences between treatments and controls on these. All models contained factors of Zn exposure, bacterial inoculation, and their interaction, and additionally soil type (bulk vs. rhizospheric) for the soil Zn concentration model.

3. Results and Discussion

3.1 Plant growth and health

The effects of Zn and inoculation with *R. leguminosarum* on the growth and health of *B. juncea* was monitored weekly for 6 weeks after planting. Plant height was similar in all treatments until week 3, when the growth of plants exposed to Zn started to lag behind the control plants, particularly the uninoculated ZnSO$_4$-treated plants which displayed mild yellowing of leaves from week 4. Plant growth results at the end of the experiment in week 6 are shown in Fig. 1. Inoculation with *R. leguminosarum* and Zn exposure each had significant effects on plant height (GLM: r^2 (adjusted) = 50.6%, $p = 0.048$ and 0.005, respectively), with significantly greater plant height in the bacterial inoculation than in the uninoculated treatments. The control plants were significantly taller than those exposed to Zn, but there was no significant difference in plant height between the ZnSO$_4$ and ZnS treatments (Fig. 1a). *B. juncea* root length was the plant growth parameter most adversely affected by Zn exposure.
after 6 weeks growth (Fig. 1b, Fig. S1). The GLM (r^2 (adjusted) = 80.2%) showed that bacterial inoculation and Zn exposure each had significant effects on root length ($p = 0.001$ and <0.001, respectively). Roots in the *R. leguminosarum* treatments were significantly longer than in the uninoculated treatments. In the uninoculated plants exposed to Zn, roots were significantly shorter compared to the control plants, but root lengths in the inoculated plants exposed to Zn did not differ from those of the uninoculated control plants. *B. juncea* shoot dry biomass at the end of the experiment was an order of magnitude greater than root dry biomass (Fig. 1c-d). Separate GLMs for shoot and root biomasses (r^2 (adjusted) = 39.3% and 49.5%, respectively) showed that they were both significantly affected by Zn exposure ($p = 0.021$ and 0.004, respectively) but not by bacterial inoculation. Tukey multiple comparisons between Zn treatments (not shown) showed significantly lower shoot biomass in the ZnSO$_4$ plants compared to the control and ZnS treatments which were not significantly different, whereas root biomasses in both the Zn-exposed treatments did not differ and were significantly lower than in the control plants.

Overall, across all individual treatments, plant height, root length, shoot and root biomass were significantly lower in the uninoculated ZnSO$_4$ treatment compared to the inoculated control, whilst the only significant difference in plant growth parameters in the ZnS treatments compared to the control plants was shorter root length in the uninoculated ZnS treatment (Fig. 1b). This is consistent with ZnSO$_4$ being more toxic to plants than Zn nanoparticles-amended soil, attributable to the higher solubility of ZnSO$_4$, with dissolved Zn impairing plant metabolism and interfering with the absorption of essential elements (Rout and Das, 2009). Dissolution of ZnS nanoparticles is generally dependent on particle size.
(Zhang et al., 2010). Thus, differences in solubility between ZnS and ZnSO_4 would have been amplified by the aggregated state of the nanoparticles in our study (Fig S1), effectively increasing their hydrodynamic particle size and reducing their surface energy (Eskelsen et al., 2018). Bacterial inoculation compensated for the negative effect of Zn on *B. juncea* growth, increasing plant height in the inoculated ZnSO_4 treatment and root length in both Zn treatments so that they were not significantly different from those of uninoculated control plants (Fig. 1a-b). Whilst the GLMs showed that bacterial inoculation and Zn exposure individually had a significant effect on nearly all plant growth parameters in the experiment, their interaction terms in all GLMs were non-significant (*p* >0.05), indicating no significant interaction effect of bacterial inoculation and Zn exposure on *B. juncea* growth. The plant growth experiment results are consistent with our previous studies (Adediran et al., 2015; Adele et al., 2018). In those studies, bacteria were demonstrated to induce changes in the speciation of Zn, predominantly through the appearance of sulfhydryl forms, and we will explore this aspect through XAS analysis in section 3.4.

3.2 Zn concentration in plant biomass and soil

Zinc concentrations in shoots, roots and bulk and rhizospheric soil at the end of the 6 week-growth experiment are presented in Fig. 2. As expected, negligible Zn was detected in plant tissues and soils from the control treatments, consistent with the low Zn content of the topsoil. Zn concentrations were higher in shoots than in the respective roots of all Zn treatments (Fig. 2a-b). Inoculation with *R. leguminosarum* and Zn exposure each had significant effects on shoot Zn concentration (GLM: *r*^2^ (adjusted) = 99.7%, *p* <0.001 both factors), with shoot Zn concentration greater in the bacterial inoculation than the uninoculated ZnS treatments (Fig. 2a). Shoot Zn concentration was significantly different between all of the Zn treatments and was in the order: ZnSO_4 > ZnS > no Zn control. The
GLM showed a significant interaction effect on shoot Zn concentrations between bacterial inoculation and Zn exposure ($p = 0.003$). In conjunction with Fig. 2a, this indicates that bacterial inoculation increased shoot Zn concentrations more in the Zn-exposed treatments than in the control, where the potential for Zn uptake in plant tissues is limited due to the low Zn content of the topsoil. Root Zn concentrations were more variable between duplicate bulked samples for the Zn treatments (Fig. 2b), attributed to the small masses digested for some samples reducing data reliability. Consequently there was no significant detectable effect of bacterial inoculation, Zn exposure or their interaction on root Zn concentration (GLM: r^2 (adjusted) = 15.6%, $p >0.05$ both factors and their interaction).

The concentration of Zn was analysed separately in bulk and rhizospheric soils following plant harvest (Fig. 2c). Soil Zn concentrations at the end of the experiment in the Zn-amended treatments (mean values 233-502 mg kg$^{-1}$) were lower than the initial Zn content (600 mg kg$^{-1}$), mainly attributed to leaching rather than Zn uptake by *B. juncea* which was estimated at 1-5 mg Zn per pot at the end of the experiment. The three factors tested in the GLM - soil type (bulk vs. rhizospheric), bacterial inoculation and Zn exposure - each had a significant effect on soil Zn concentration (GLM: r^2 (adjusted) = 99.7%, $p = 0.016$, 0.012 and <0.001, respectively). Zinc concentrations were significantly higher in the rhizospheric compared to the bulk soil and in the bacterial inoculation than in the uninoculated treatments. Soil Zn concentrations were significantly higher in the Zn-amended soils than in the uncontaminated control, but were not significantly different between the ZnSO$_4$ and ZnS treatments. The GLM showed significant interaction effects on soil Zn concentration between the factors bacterial inoculation and soil type ($p = 0.005$) and between all three factors (Zn...
exposure, bacterial inoculation and soil type, \(p = 0.005 \). In conjunction with Fig. 2c, this was
interpreted as indicating that in the Zn exposure treatments, bacterial inoculation results in
decreased Zn concentrations in bulk soil and higher Zn concentrations in rhizospheric soil,
i.e. a transfer of soil Zn occurs from the bulk soil to rhizospheric soil. This soil Zn
fractionation effect in response to bacterial inoculation did not occur in the control treatments
due to the low Zn content of the topsoil.

R. leguminosarum is a known rhizosphere bacteria associated with leguminous plants
(Adediran et al., 2015; Glick, 1995; Reeve et al., 2010), eliciting growth promotion in plants.
Hence, inoculated plants showed some recovery in plant height and root length growth
parameters, despite higher tissue Zn concentrations, suggesting that bacteria alleviated the
inhibitory effects caused by Zn on plant growth. Most studies interpret such effects as being
mediated by synthesis of phytohormones (Brigido and Glick, 2015; Goswami et al., 2016),
including indole acetic acid (IAA) (Spaepen and Vanderleyden, 2011) and 1-
aminocyclopropane-1-carboxylate (ACC) deaminase (Annapurna et al., 2016; Glick et al.,
2007), which alter plant metabolism resulting in healthier plants (Adediran et al., 2015; Ma et
al., 2015a,b). However, our data show that shoot tissue Zn concentrations were higher in
inoculated plants (Fig. 2a), possibly due to bacterially enhanced solubilisation of Zn through
production of siderophores and other metal-chelating substances (Verma et al., 2010). We
have previously attributed this apparent paradox of healthy plant growth and increased Zn
accumulation to bacterially-mediated changes in Zn speciation, including through
complexation with histidine (Adediran et al., 2016b; Medas et al., 2019; Yadav, 2010),
organic acids and thiols (Adediran et al., 2015, 2016a; Adele et al., 2018; Grill et al., 1985).
Although plants naturally produce these metal detoxification ligands even in the absence of
bacterial inoculation (e.g. Kuhnlenz et al., 2016), complexation with them is expected to be
consistently higher in plant tissues in inoculated treatments, particularly in the presence of the more toxic ZnSO$_4$ species. Moreover, in our experiment we note that rhizospheric soil has higher Zn concentration in the bacteria inoculation treatments, especially when plants are challenged with ZnS (Fig. 2c, different lowercase letters for Zn concentrations in the rhizospheric soil between the uninoculated and inoculated ZnS treatments). This suggests that bacteria also elicit accumulation of Zn around plant roots, which may help to drive Zn into roots via diffusional gradients. Finally, our result is in agreement with the observation of Whiting et al. (2001) who reported less Zn accumulation in a Zn hyperaccumulating plant species grown in ZnS-enriched soil than soil amended with other Zn forms (Zn sulfate, Zn phosphate and Zn oxide). Although their ZnS was not in nanoparticulate form, the aggregation observed in our prepared ZnS nanoparticles suggests a similar bioavailability mechanism.

3.3 Soil pH

Soil pH has a dominant effect on solubility, availability and phytotoxicity of metals (Rengel, 2015), by controlling the speciation of metals in soil (Alloway, 1995). The secretion of protons and exudates, including organic acids, by plant roots or microbes may contribute to greater acidity of the rhizosphere (Hinsinger et al., 2009; Zeng et al., 2018) relative to the bulk soil, by amounts that are dependent on plant species and soil factors (Marschner, 1995). An increased rhizosphere acidity will also increase metal solubility and eventually metal accumulation in plants (Li et al., 2010). For a typical Brassica species, the optimal soil pH for growth is 6.5 (Zaurov et al., 1999). Thus, to help identify the possible mechanism by which bacteria mobilise Zn from the bulk soil, pHs of rhizospheric and bulk soils measured separately after plant harvest are compared (Table 1).
Table 1 here

Bulk soil pH increased in all treatments between the start and end of the experiment, with the smaller changes in bulk soil pH in the Zn-amended due to buffering through zinc hydrolysis which generates protons. After plant harvest, the rhizospheric soils were significantly (paired t-test, $p = 0.008$) more acidic than bulk soils by 0.09-0.39 pH units within each treatment. Whilst the differences in pH between bulk and rhizospheric soils at the end of the experiment were generally small, in the Zn-exposed soils the magnitude of pH decrease was approximately double in the inoculated treatments compared to the uninoculated treatments. This suggests that soil pH changes in the rhizosphere provide an additional mechanism by which bacteria increase Zn bioavailability to plant roots, although the mechanism driving pH changes was not resolved in our study.

3.4 XAS analysis of Zn speciation and distribution in roots and bulk and rhizospheric soils

XAS was employed to investigate Zn speciation in the bulk soil, the rhizospheric soil and the roots of *B. juncea* grown in soil amended with the Zn treatments 6 weeks after planting. Zinc K-edge XANES spectra and the Zn composition revealed from LCF for roots, bulk and rhizospheric soils are shown for the ZnS nanoparticles treatments in Fig. 3 and for the ZnSO$_4$ treatments in Fig. 4.

In the ZnS nanoparticles treatments (Fig. 3), Zn in the bulk and rhizospheric soils occurred predominantly as ZnS in both the uninoculated and inoculated treatments, ranging from 78 to 92%, showing that only a small fraction of the applied ZnS nanoparticles was transformed in
the soil during the 6-week growth experiment, partly due to their tendency to aggregate, resulting in reduced surface energy and solubility (Eskelsen et al., 2018). The remainder was associated with cysteine (1-12%, apart from bulk soil in the uninoculated treatment), phytate (5-8%), sulfate (~3% in the uninoculated treatments only) and polygalacturonate (5%, only in bulk soil in the inoculated treatment). In contrast, the speciation of Zn in the roots in the ZnS treatments was markedly different from that in the soils. In the uninoculated treatment, the fraction of Zn occurring in the roots as ZnS was much lower (45%) and the remaining root Zn was associated with phytate (33%), citrate (16%) and sulfate (7%) (Fig. 3d). In the inoculated ZnS treatment, ZnS was not apparent in root material, with root Zn predominantly associated with phytate (37%), cysteine (31%) and citrate (28%), and also formate (4%), but Zn sulfate was absent (Fig. 3h).

The predominance of ZnS nanoparticles in bulk and rhizospheric soils is entirely consistent with the low solubility of ZnS in water (~10^{-9} molar based on compilations of Zn salt solubility data (Clever et al., 1992) at the circumneutral pH measured in soils at the end of the experiment). Nevertheless, the presence of other species, namely Zn phytate, Zn cysteine and Zn sulfate, is evidence of some dissolution-mediated transformations. In principle, the production of root exudates should acidify the rhizosphere and help to solubilise Zn (Dessureault-Rompré et al., 2008), although the measured reduction in pH in the rhizospheric compared to the bulk soil during the experiment was small in the ZnS treatments (≤ 0.2 pH units, Table 1). These small changes also imply that oxidative dissolution (which can promote faster acidification) was minimal, although the presence of Zn sulfate in soils and root materials in the uninoculated ZnS treatment indicates the occurrence of this mechanism (Fig. 3d), and other studies have reported the oxidative dissolution of ZnS by plants (Panfili et al., 2005; Voegelin et al., 2011). Finally, the presence of ZnS in roots in the uninoculated
treatment indicates that plants can take up metals in both soluble and nanoparticulate forms, consistent with previous studies (e.g. Adele et al., 2018; Lin et al., 2008; Lv et al., 2015).

The transition from rhizospheric soil to plant root tissue was characterised by a marked drop in the proportion of ZnS (from 78 to 45% and 92 to 0% in the uninoculated and inoculated treatments, respectively), accompanied by a steep increase in Zn phytate and the appearance of Zn citrate. A notable difference between the ZnS inoculated and uninoculated treatments was the presence of Zn formate in roots in the inoculated treatment. Formate accumulation in plant roots has previously been attributed as a response to aluminium and pH stress (Lou et al., 2016). Similarly, Zn phyate and Zn citrate are known major species in plant tissues growing in Zn-contaminated environments (Kopittke et al., 2011; Salt et al., 1999).

The XANES spectra for bulk and rhizospheric soils and roots of B. juncea grown in ZnSO₄-amended soil (Fig. 4) differed from those for the ZnS nanoparticle treatments, most notably in the appearance of Zn histidine in all soil and root samples in the ZnSO₄ treatments. As in the ZnS treatments, the Zn speciation in bulk and rhizospheric soil samples in both uninoculated and inoculated ZnSO₄ treatments was similar, though it was dominated instead by Zn carbonate (22-40%), with the remaining Zn in the form of sulfate (20-29%), histidine (18-27%) and phytate (14-20%). Similarly, Zn speciation in roots in the ZnSO₄ treatments differed markedly from that in the soils, particularly in the inoculated treatment. The best LCF fit for uninoculated roots showed Zn was in the form of histidine (38%) > carbonate (24%) > citrate (18%) > phytate (16%) (Fig. 4d), while root Zn in the inoculated treatment was associated (to 2 significant figures) with histidine (64%), cysteine (14%), formate (13%).
and oxalate (11%) (Fig. 4h). As with the ZnS treatments, Zn formate appeared in plant roots in the inoculated treatment (Fig. 4h).

A steep increase in the proportion of Zn histidine between the rhizospheric soil and the root tissue was observed in both uninoculated and inoculated ZnSO₄ treatments. The higher proportions of secondary species (other than ZnSO₄) reflects the greater solubility of ZnSO₄ compared to ZnS, allowing the dissolved Zn to complex with other ligands. In particular, the high proportion of Zn carbonate likely reflects the high affinity of Zn for elevated dissolved CO₂ driven by plant root respiration as well as microbial metabolism (Perdrial et al., 2015).

On the other hand, the absence of ZnS in the ZnSO₄ treatments indicates that the soil did not attain sufficiently reducing conditions to induce sulfate reduction in the 6-week growth period, although this is unlikely given the relatively low organic matter content of the experimental soil (15%), even if sulfate reducing bacteria were present.

The most significant changes in Zn speciation, in both ZnS and ZnSO₄ treatments, occurred between the rhizospheric soil and the root and generally involved an increase in the proportion of Zn associated with organic acids and thiols. In the ZnS treatments, the main organic acid species occurring in roots were Zn phytate and Zn citrate, with Zn formate appearing in the inoculated treatment. In the ZnSO₄ treatments, organic acid complexation of Zn in roots was dominated by histidine and citrate in the uninoculated treatment, with the appearance of Zn associated with formate, cysteine and oxalate in the inoculated treatment, but the disappearance of Zn citrate. The most prominent similarity in Zn speciation in roots from the ZnSO₄- and ZnS nanoparticles-amended soils was the presence of Zn formate in the
bacterial inoculated treatments. Formate accumulation in plant roots has previously been attributed as a response to toxic metal stress (Lou et al., 2016).

Phytate, also called myoinositol hexakisphosphate, is the most abundant organic phosphate species in soils (Turner et al., 2012), originating from plant residues and animal manure (Annunziata, 2007). Thus, the presence of Zn phytate in the bulk and rhizospheric soil implies either the presence of organic phosphorus in soil or a long range diffusive influence of plant roots. Based on the observed increase in the proportion of Zn associated with phytate between rhizosphere and roots in the ZnS treatments, and the relatively low organic matter content of the experimental soil, we infer the latter is the more likely control on Zn phytate distribution across the different compartments. Indeed, the formation of Zn phytate is a well-known process for Zn immobilisation in roots, possibly as a detoxification mechanism (Adediran et al., 2015; Adele et al., 2018; Kopittke et al., 2011; Terzano et al., 2008; Van Steveninck et al., 1994).

Citrate is an important organic anion secreted by plant roots as a mechanism for nutrient acquisition from soil, especially under phosphate-deficient conditions (e.g. Jones, 1998; Pearse et al., 2007), as in the experimental soil (0.31 mg g\(^{-1}\) P). In our study, citrate appeared as a significant Zn ligand within plant roots but not in soil samples, indicating that, unlike phytate, it does not appear to have a long range diffusive influence in the bulk soil. Although one study ruled out organic acid complexation of Zn in root tissue (Medas et al., 2015), citrate complexation has been estimated to account for 30% of Zn occurring in rhizosphere solution (Dessureault-Rompré et al., 2008), and citrate binding of metals has been identified in other plant tissues, including Zn in shoots of *Thlaspi caerulescens* (Salt et al., 1999).
Histidine is an essential amino acid with a positively charged imidazole functional group (Chakrabarti, 1990; Gluster, 1991; Gramlich et al., 2013). The occurrence of Zn histidine in the roots in the ZnSO$_4$ treatments in the present study agrees with previous studies of Zn hyperaccumulator species (Adediran et al., 2016b; Lasat et al., 1998; Salt et al., 1999). Metal tolerance and hyperaccumulation via histidine complexation has been demonstrated in studies involving Ni (Salt et al. 1999) and histidine has been implicated in Cu and Zn toxicity responses (Sharma and Dietz, 2006). Salt et al. (1999) showed that histidine was part of the root exudate pool produced as a response to Ni exposure that led to increased Ni concentrations in both accumulating and non-accumulating species of *Thlaspi caerulescens*. In our study, Zn histidine was only detected in ZnSO$_4$ treatments with similar gradients across the bulk soil to rhizosphere to roots between inoculated and uninoculated treatments. We found higher proportions of Zn histidine complexes in roots than in the bulk and rhizospheric soils, where the proportions were approximately equal. Therefore, like phytate, we interpret the observed gradient as reflecting histidine production in the form of root exudates (see also Adediran et al., 2016b) but with long range transport into the rhizospheric and bulk soil. Finally, this study confirms the importance of Zn cysteine complexation in roots of bacteria inoculated plants challenged with ZnS and ZnSO$_4$, as reported previously for ZnSO$_4$ (Adediran et al., 2015, 2016a; Adele et al., 2018), and further that the transformation occurs within the plant (epidermal) tissue and not in the rhizoplane (Adediran et al., 2016a). The formation of cysteine in roots of plants is closely linked to sulfate metabolism, in which sulfate is first converted to sulfide, which combines with O-acetylserine to form cysteine (Adediran et al., 2016a; Leustek, 2002; Leustek and Saito 1999). The limited occurrence of Zn cysteine complexes in compartments of the uninoculated ZnS treatment, alongside the
presence of Zn sulfate suggests that the inoculated bacteria play a role in triggering formation of cysteine from sulfate.

Conclusions

We hypothesised that the rhizosphere should be a zone of active changes in metal speciation during growth of plants in metal-contaminated soils, and that bacteria exert a primary control on the type of metal species formed. We used *B. juncea* growing in Zn-contaminated soil with and without bacterial inoculation to test our hypotheses, employing XAS to determine Zn speciation in bulk soil, rhizospheric soil and roots. Broadly, we found that: (i) within the soil (bulk and rhizospheric) environment, speciation depended on the form in which Zn was introduced to the soil (ZnS vs. ZnSO₄), (ii) Zn speciation in the root was dominated by organic acids (phytate, citrate and histidine) and thiols (cysteine), and (iii) bacteria enhanced transformations across the rhizosphere towards organic acid and thiol complexation of Zn in the root. Differences in Zn speciation between ZnSO₄ and ZnS nanoparticles treatments in the rhizosphere-root interface indicate different uptake mechanisms of different Zn forms by *B. juncea*. Our investigation suggested that *R. leguminosarum* induced speciation changes across the rhizosphere and plant root depending on the form of Zn in soil. These mechanisms have direct implications for the speciation and mobility of Zn in Zn-contaminated soil. Thus, this study clearly indicates that Zn form is a strong factor influencing its speciation in the rhizosphere-root interface, rather than the total Zn concentration in soil. XAS analysis enables the speciation of Zn to be determined at the low concentrations often prevalent in plant tissues, aiding the understanding of fate of Zn in both the soil and plant.

Acknowledgements
The authors are grateful for the financial support of the Rivers-State Sustainable Development Agency, Nigeria, and the Diamond Light Source, UK, for providing synchrotron beamtime through grant SP10429. The support of staff in the laboratories and glasshouses at the University of Edinburgh is also acknowledged.

Supplementary Material. Characterisation of the experimental soil (S1). Details of plant growth experiment materials, set-up and conduct (S2). Details of X-ray absorption spectroscopy studies on soils and plant roots (S3).

Table 1. Mean pH (bold) of rhizosphere and bulk soils after 6 weeks growth of *B. juncea* in soils amended with 600 mg of Zn kg\(^{-1}\) of different Zn species with and without inoculation with *R. leguminosarum*. Mean pH of the bulk soils after amendment but before seed sowing are also shown. pH values are means of two subsamples of each treatment shown in parentheses.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Before sowing</th>
<th>After 6 weeks plant growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bulk soil</td>
<td>Bulk soil</td>
</tr>
<tr>
<td>Control</td>
<td>6.25</td>
<td>7.75</td>
</tr>
<tr>
<td></td>
<td>(6.20, 6.30)</td>
<td>(7.75, 7.75)</td>
</tr>
<tr>
<td>Inoculated Control</td>
<td>6.20</td>
<td>7.55</td>
</tr>
<tr>
<td></td>
<td>(6.20, 6.20)</td>
<td>(7.55, 7.55)</td>
</tr>
<tr>
<td>ZnSO(_4)</td>
<td>6.51</td>
<td>6.90</td>
</tr>
<tr>
<td></td>
<td>(6.50, 6.52)</td>
<td>(6.90, 6.91)</td>
</tr>
<tr>
<td>Inoculated ZnSO(_4)</td>
<td>6.50</td>
<td>6.81</td>
</tr>
<tr>
<td></td>
<td>(6.50, 6.50)</td>
<td>(6.81, 6.81)</td>
</tr>
<tr>
<td>ZnS</td>
<td>7.45</td>
<td>7.64</td>
</tr>
<tr>
<td></td>
<td>(7.45, 7.45)</td>
<td>(7.65, 7.64)</td>
</tr>
<tr>
<td>Inoculated ZnS</td>
<td>7.46</td>
<td>7.62</td>
</tr>
<tr>
<td></td>
<td>(7.46, 7.46)</td>
<td>(7.62, 7.61)</td>
</tr>
</tbody>
</table>
Fig. 1. Measures of growth of *B. juncea* in uninoculated and inoculated with *R. leguminosarum* treatments 6 weeks after planting in uncontaminated (control) and Zn-contaminated (600 mg Zn kg\(^{-1}\)) topsoil: (a) plant height, (b) root length, (c) shoot dry biomass, (d) root dry biomass. Values are means of three pots and error bars are standard error. Note different y-axis scales. Different lowercase letters above the bars indicate significant differences in the growth measure between treatments (*p* < 0.05, following Tukey multiple comparison tests in the GLMs).
Fig. 2. Zn concentrations in *B. juncea* (a) shoot biomass, (b) root biomass and (c) bulk and rhizosphere soil, 6 weeks after planting in uncontaminated (control) and Zn-contaminated (600 mg Zn kg\(^{-1}\)) topsoil in uninoculated and inoculated with *R. leguminosarum* treatments. Values are means of duplicate subsamples composited across all three pots for each treatment, and error bars are standard error. Different lowercase letters above the bars indicate significant differences in Zn concentration between treatments (*p* < 0.05, following Tukey multiple comparison tests in the GLMs). No letters are shown in (b) as there was no significant difference in root Zn concentration between treatments.
Fig. 3. Zinc speciation results from XAS for *B. juncea* exposed to 600 mg kg\(^{-1}\) ZnS nanoparticles in uninoculated treatments (upper row) and inoculated treatments (lower row). Zn K-edge XANES spectra for bulk soil (a, e), rhizospheric soil (b, f) and root (c, g) samples. XANES spectra for each sample and its LCF model fit are the blue and red lines, respectively. R-factor shown for each LCF fit. Where duplicate samples were analysed (b, c, f, g), spectra and R-factor are shown for one replicate. Zn compound composition (%) of bulk soil, rhizospheric soil and soil obtained from LCF (d, h). ZnS, ZnS nanoparticles; ZnPhy, Zn phytate; ZnSO\(_4\), Zn sulfate; ZnCys, Zn cysteine; ZnCit, Zn citrate; ZnForm, Zn formate; ZnPGA, Zn polygalacturonate. Error bars are standard error of duplicate rhizospheric soil and root samples analysed in inoculated and uninoculated treatments.
Fig. 4. Zinc speciation results from XAS for *B. juncea* exposed to 600 mg kg$^{-1}$ ZnSO$_4$ in uninoculated treatments (upper row) and inoculated treatments (lower row). Zn K-edge XANES spectra for bulk soil (a, e), rhizospheric soil (b, f) and root (c, g) samples. XANES spectra for each sample and its LCF model fit are the blue and red lines, respectively. *R*-factor shown for each LCF fit. Where duplicate samples were analysed (f, g), spectra and *R*-factor are shown for one replicate. Zn compound composition (%) of bulk soil, rhizospheric soil and soil obtained from LCF (d, h). ZnS, ZnS nanoparticles; ZnPhy, Zn phytate; ZnSO$_4$, Zn sulfate; ZnCys, Zn cysteine; ZnCit, Zn citrate; ZnForm, Zn formate; ZnPGA, Zn polygalacturonate. Error bars are standard error of duplicate rhizospheric soil and root samples analysed in the inoculated treatment.