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Abstract: Degradation of lithium-ion cells with respect to increases of internal resistance (IR) has1

negative implications for rapid charging protocols, thermal management of cells and power output.2

Despite this, IR receives much less attention than capacity degradation in Li-ion cell research. Building3

on recent developments on ‘knee’ identification for capacity degradation curves we propose the new4

concept of ‘elbow-point’ and ‘elbow-onset’ for IR rise curves, and a robust identification algorithm5

for those variables. We report on the relations between capacity’s knees, IR’s elbows and end of life6

(EOL) for the large dataset of the study. We enhance our discussion with two applications. We use7

Neural Network techniques to build independent State of Health capacity and IR predictor models8

achieving a MAPE of 0.4% and 1.6%, respectively, and an overall RMSE below 0.0061. A relevance9

vector machine (RVM) using the first 50-cycles of life data is employed for the early prediction of10

elbow-points and elbow-onsets achieving a MAPE of 11.5% and 14.0% respectively.11

Keywords: lithium-ion battery; internal resistance; elbow-points; early prediction; parameter12

identification13

1. Introduction14

Sales of electric vehicles (EVs) and energy storage systems are undergoing a marked growth as15

battery costs continue to fall and the introduction of increasingly strict regulations on CO2 and NOx16

emissions, deadlines on the decommissioning of fossil fuel power stations, and bans on the sale of17

internal combustion engines. Lithium-ion (Li-ion) batteries are widely deployed in EVs and energy18

storage systems due to their outstanding characteristics such as lower maintenance requirements,19

higher Coulombic efficiency and market-leading energy density. However, in operation, Li-ion batteries20

undergo over-charging/discharging, high current stresses, over-temperature and under-temperature.21

Even being cycled within moderate operating conditions, solid-electrolyte interphase (SEI) layer22

growth on anodes gradually consumes active material, leading to poor cyclability. Extreme operating23

conditions will further accelerate ageing processes, potentially resulting in high-risk failure scenarios24

such as gassing, mechanical cracking of electrodes, internal short circuits and thermal runaway [1–9].25

Further, the degradation rates of identical chemistry cells differ due to disparities in manufacturing26

quality and operating conditions [2,10–12]. The accurate prognosis of cell degradation within the27

battery pack is therefore imperative. This is referred to as the State of Health (SOH) of the cell, and28

can be defined with respect to its capacity or its internal resistance (IR). A cell’s capacity fades as its29

calendar and cycle age increase, and degradation mechanisms take place within the cell that reduce30

the available lithium inventory and accessible active material in the electrodes [13,14]. Conversely,31

as the cell is cycled, IR increases due to the thickening formation of the SEI, and the consumption of32

electrolyte and lithium in this process [1,2].33

Given the importance of driving range, capacity is the primary SOH measurement for pure EVs.34

However, capacity based SOH measurement is less important for hybrid electric vehicles (HEVs), since35

HEVs demands high operating current to drive a heavier load than pure EVs. With the increase of36
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IR, the current deliverability of a cell is diminished, making IR a key SOH measurement for hybrid37

vehicles. With the increases of IR, cell voltage will raise sharply in the charging phase, and vice versa.38

As a result, the imposed current must be taped down to avoid the battery voltage from exceeding39

its maximum limit, leading to extended charging times and poor rapid charging ability [9,15–18]. In40

addition, the growth of IR values will incur more heat generation for given loads. As a result, the41

thermal management system of EV has to work harder to keep cells cool. To the best of our knowledge,42

the majority of EV manufacturers only provide a battery warranty securing that the capacity shall43

remain above 70% of its initial value, but ignore a battery warranty based on IR. With a greater44

understanding of expected IR growth, such warranties could be provided. There is thus significant45

value to be gained from the prognosis of IR growth trends. However, the prediction of IR degradation46

using data from early cycles remains largely unexplored. There is substantive research e.g. [19,20]47

conducted for early prediction of capacity but not for IR.48

As discussed in-depth in [20], a cell’s capacity does not degrade linearly throughout the cell’s49

lifetime, degradation is path dependent [21], and a strong association exists between capacity and50

internal resistance [22]. Whilst the cell’s capacity typically starts to degrade in a linear manner over the51

cell’s cycle life, there eventually comes a point, called the ‘knee-point’, after which the rate of capacity52

degradation increases considerably [23–29]. In [20], one can find a review of knee-point identification53

methods in data [23,27,29], but crucially, the additional variable ‘knee-onset’ is introduced (along with54

an alternative identification mechanism) to provide a useful indication of the beginning of a sharp55

increase in the capacity degradation trend. The corresponding notion of ‘knee-point’ and ‘knee-onset’56

in IR degradation curves is, to the best of our knowledge, absent from the literature. In this paper, we57

bridge this gap by addressing the IR rise curve and the corresponding change points: the ‘elbow-onset’58

for when the IR curve starts being nonlinear, and the midpoint of the accelerated IR increase which we59

call the ‘elbow-point’.60

There are three main contributions of this work. Firstly, at a data preprocessing level, we create61

an accurate IR predictor utilising machine learning Convolutional Neural Network (CNN) techniques,62

this predictor used to complete the dataset of [30] for which no IR readings were logged. Secondly,63

underpinned by the completed dataset, the concepts of elbow-point and elbow-onset points for IR64

rise curves are proposed along with corresponding identification methods. Thirdly, we showcase a65

working example of using the predicted and real IR data for the early prediction of elbow-point and66

elbow-onset in the style of [20] using only the first 50-cycles of the cell’s lifespan data.67

The rest of this paper is organised as follows. Section 2 introduces the data pool and the data68

pre-processing approach addressing a missing IR data problem by employing a machine learning69

approach to predict the missing data. In Section 3, we propose the elbow-onset and -point concept and70

identification algorithms concluded by a study of the numerous relationships between these quantities.71

Section 4 presents the relevance vector machine (RVM) based machine learning approach for the early72

prediction of elbows. Results, contributions and future work are summarised in Section 5.73

2. Battery data framework and data pre-processing procedures74

2.1. Data description75

We mainly work with the datasets of [19] and [30]. The data, its description and experimental76

details can be found at https://data.matr.io/1 (first and second blocks, respectively). Throughout this77

text, we will refer to the combination of these two datasets as the ‘A123 dataset’. The data pool consists78

of high-throughput cycling data for eight batches of commercial lithium iron phosphate (LFP)/graphite79

cells cycled under fast-charging conditions: [19] provides data for three batches of approximately 4880

cells each, here referred to as batches 1 to 3 (124 cells in total); [30] provides data for five batches of81

cells (233 cells in total), of between 45 and 48 cells each (here referred to as batches 4 to 8); batch 8 has82

45 cells. Cell code Notation: across the 8 batches of cells in the A123 dataset, we refer to cell Y of batch X83

as bXcY.84

https://data.matr.io/1
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All cells in batches 1, 2 and 3 are cycled to, or close to, their EOL, defined as 80% of initial capacity,85

in a temperature-controlled environment with a variety of charge/discharge profiles. It is important to86

note that for each individual cell, its charge/discharge profile was kept constant from cycle to cycle.87

Batches 4-7 were only cycled for 100-120 cycles and do not exhibit ’knees’ nor reach EOL. Cells in88

batch 8 were cycled beyond their EOL. The dataset contains both in-cycle and per-cycle measurements.89

Discharge capacity, temperature, current and charge are logged at an in-cycle level, and per-cycle90

measurements of capacity, IR and charge time are provided. Data is recorded consistently from the91

second cycle. Contrary to batches 1–3, batches 4–8 contain no internal resistance measurements. The92

IR measurements provided are taken at a consistent Ah level of 80% state-of-charge (SOC) relative93

to nominal capacity. Throughout, we refer to this measurement as the IR of a cell. We note that the94

IR measurements for batches 1–3 contain a large amount of noise. [19] noted issues with their data95

logging equipment that affected some tests96

2.2. Data pre-processing via a machine learning approach: completing the missing IR data97

Our first goal, to increase the scope of our analysis, is to address the missing IR data of batch 8.98

We draw on machine learning techniques and build an IR prediction model (on the data from batches99

1–3) to predict the missing IR data of batches 4-8. Increasing the number of matched capacity-IR curves100

from 124 pairs to 357(=124+233). Of these 357 pairs 169(=124+45) contain measurement up to or past101

the EOL. This will enhance our later analysis comparing elbows, knees and the EOL, as well as the102

early prediction of elbows. For statistical reasons we build a simple yet accurate capacity predictor to103

test for distributional dissimilarity between batches 1–3 and batches 4–8.104

2.2.1. Pre-processing and modelling pipeline105

We split the cells of the dataset into training and test sets, grouping by batch so that our test set106

contains an equal percentage of cells from each batch. As an input, our models take voltage, current107

and SOC data (the integral of the current, from one full cycle). This data was cleaned, standardised to108

have values between 0 and 1, interpolated using the SciPy [31] function interp1d to one measurement109

every four seconds and zero-extended so that the data for each cycle of each cell was of equal length110

and consistent time step. The median filter, averaging five nearest time instants, was applied to smooth111

the measurements of capacity and IR data prior to prediction.112

To design our models for IR and capacity prediction, we utilised K-fold cross validation. A113

validation set of cells was chosen at random from the training set. Our models were fitted to the114

remaining training set, and evaluated on the validation set throughout training. This step was then115

repeated K-times with a new validation set and corresponding model. The average performance of116

the validation sets was used to optimise model design and choice of hyper-parameters. K-fold cross117

validation is particularly useful when working with small datasets, mitigating the risk of over-fitting118

a particular validation set [32]. After settling on the model’s architecture and hyper-parameters119

(described next), a copy of the model was fitted to the whole training set and then evaluated on the120

test set.121

2.2.2. Model for IR prediction122

We propose a model consisting of a convolutional ‘feature extraction’ block followed by two123

densely connected layers displayed in Fig. 1 and described in Table 1. Our model was implemented124

in Python using TensorFlow via the Keras API [33]. All layer names given in Table 1 refer to the125

corresponding Keras layers. The model was trained on the data from batches b1–b3, using the adam126

optimiser for 50 epochs with a batch size of 526, and the mean absolute error, Eq. (1), as its loss function.127
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Figure 1. Schematic of machine learning model for IR prediction.

layer name input size hyper-parameters output size

conv1d_1 926× 3 12, 3, ReLU 924× 12
max_pooling_1 924× 12 2 462× 12
conv1d_2 462× 12 32, 3, ReLU 460× 32
conv1d_3 460× 32 32, 3, ReLU 458× 32
max_pooling_2 458× 32 2 229× 32
conv1d_4 229× 32 32, 3, ReLU 227× 32
conv1d_5 227× 32 32, 3, ReLU 225× 32
max_pooling_3 225× 32 2 112× 32
flatten_1 112× 32 - 3584
dropout_1 3584 0.5 3584
dense_1 3584 64, ReLU 64
dropout_2 64 0.3 64
dense_2 64 1, linear 1

Table 1. Proposed architecture of CNN model for prediction of IR. Hyper-parameters are given in
the format: filters, kernel size, activation for conv1d layers; pool size for max_pooling; dropout for
dropout; nodes, activation for dense layers.

Machine learning performance scores selected for this work are the mean absolute error (MAE), mean
absolute percentage error (MAPE) and root mean square error (RMSE) defined as follows, for y the
vector of true values and ŷ the vector of predicted values:

MAE(y, ŷ) =
1

nsamples

nsamples

∑
i=1

|ŷi − yi| , MAPE(y, ŷ) =
100%

nsamples

nsamples

∑
i=1

|ŷi − yi|
yi

, (1)

and RMSE(y, ŷ) =

√√√√ 1
nsamples

nsamples

∑
i=1

(ŷi − yi)2 . (2)

Our model’s performance metrics for IR prediction can be found in Table 2. We are unaware of128

works using the A123 dataset for IR estimation. Nonetheless, as mentioned, the estimation of IR has129

been addressed [34,34–40]. We obtain a RMSE of 0.00035 and MAPE of 1.6% for IR (Table 2) which is130

low (if nominally compared with capacity estimation accuracy in the literature).131

RMSE MAPE (%)
Train Test Train Test

IR 0.00029± 6.2e−5 0.00035± 5.0e−5 1.19± 0.22 1.60± 0.24

Table 2. Average performance of model to predict IR, with 95% prediction intervals.



Version February 15, 2021 submitted to Journal Not Specified 5 of 16

2.2.3. Validation step via a model for capacity prediction132

We have shown that our model for IR prediction is effective on batches 1 – 3. To see if we can trust133

the predictions this model makes on batches 4 – 8 we check for non-similarity between the datasets.134

We do this by extrapolating on capacity, a variable present for all batches. This is a standard process135

in imputation (simple or multiple). To this end, we utilised a simple feed-forward neural network,136

consisting of three densely-connected layers. The first two layers containing 32 neurons with the137

rectified linear unit (ReLU) activation function, and the final layer consisting of a single neuron with138

a linear activation. The model was trained for 100 epochs with a batch size of 512, using the adam139

optimiser and the mean squared error as its loss function. During training, a dropout of 0.2 was utilised140

between the middle and last layer. Trained on all of the data from batches 1 – 3 and tested on batches 4141

– 8 the model obtained the performance metrics displayed in Table 3 with an MAPE of 0.51%. This test142

gives us confidence that both datasets [19] and [30] are indeed not-dissimilar.143

RMSE MAPE (%)
Train Test Train Test

Capacity 0.0053± 4.2e−3 0.0095± 4.6e−3 0.37± 0.30 0.51± 0.26

Table 3. Average performance of capacity model trained on batches 1-3 tested on batches 4-8, with 95%
prediction intervals.

The prediction of capacity (and SOH) is of wider interest than our discussion of elbows so we144

briefly compare these results with those found in the literature. We point to [41, Table 1] (MAPE and145

RMSE error given) and [42, Table 2] (error type not given) for a review/comparative work on capacity146

estimation. We cannot directly compare our results as the data is different. However, from a strictly147

numerical point of view, our RMSE of 0.0095 and MAPE 0.51% errors for capacity (Table 3) are lower148

than the values of [41, Table 1] – for a fair comparison one would need to test the varying approaches149

on a common dataset.150

2.2.4. Predicting the missing IR data151

In order to address the missing data issue, we trained the IR model on batches 1–3 multiple152

times and an ensemble of these models was used to predict on batches 4–8. This predicted IR data153

is available at https://doi.org/10.7488/ds/2957. Fig. 2 shows the IR for sample cell b8c4 and we154

strongly emphasise to the reader that the extrapolation of the IR data past EOL (80% capacity) is, as155

fully expected, not reliable: this stems from the limitation of the training dataset (batches 1–3) with156

data only up to the EOL point. Prediction outside that range of input data is not reliable as can be seen157

in Fig. 2 where we observe a strong widening in the prediction intervals1 past the EOL.158

2.2.5. Algorithmic framework159

The proposed algorithmic framework can fully take advantage of machine learning-based160

approaches to solve the missing IR data problem in the raw data pool and allows the generation161

of artificial IR data to complete the life cycle data. The predicted IR data can be used for elbow-point162

and -onset identification and is able to assist the early prediction of the elbow-point and elbow-onset163

in IR curves.164

The schematic framework of the employed algorithms is illustrated in Fig.2, where Section165

2 introduces the data pre-processing procedure. In this regard, a CNN based predictor has been166

1 Prediction intervals provided throughout this text are calculated in a frequentist manner. A given model is fitted to data
multiple times and performance metrics/predictions recorded. The empirical average and variance-value of predictions
are calculated and under the assumption of normality one uses those values to produce prediction intervals (at any given
probability quantile level q, e.g. in Fig. 2 we have q = 95% and q = 80%).

https://doi.org/10.7488/ds/2957
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Figure 2. The predicted IR data for cell b8c4 is given by the black continuous line and is formed from
the average of 20 predictions. We display 80% and 95% prediction intervals. Beyond the intuition of
extrapolation, these intervals show that predictions past the EOL (capacity) should not be trusted.

trained on the data from batches 1–3 to predict the IR. In order to validate the CNN based predictor’s167

application to batches 4–8, a separate model was trained on data from batches 1–3 to predict the168

capacity and tested on the measured capacity values for batches 4–8. Afterwards, the established169

predictor is used for IR predictions, completing the missing IR for batches 4–8. In Section 3, the170

completed life cycle data can be thus used for the identification of knee/elbow-point and -onset. By the171

analysis of the obtained knee/elbow-points and -onsets, we confirm the significant linear relationships172

between knee/elbow-points, -onsets and EOL. Further tests are carried out in Section 4 relating to the173

early prediction of elbow-points and -onsets based on our completed life cycle data with predicted174

IR. In particular, the straightforward Relevance Vector Machine (RVM) based quantitative method is175

applied to that completed battery dataset and produces the early predictions.176

Full life cycle data 
(missing IR data)

CNN model to predict 
missing IR 

ANN model to predict 
capacity for validation 

Completed life cycle data 
with capacities and IR  

Data pre-processing procedure

Completed life 
cycle data Bacon-Watts 

models 

Double Bacon-
Watts models 

IR curve fitting
Elbow-points

Elbow-onsets
Linear regression 

model (elbow, 
onsets, EoL)

Identification of elbows-points and –onsets, and their relations

Completed first 
50 life cycle data

RVM method for 
quantitative prediction of 
elbow-points and -onsets

Early prediction of elbow-points and -onsets

Elbow-points, elbow-onsets, temperature 
(T), capacity (Q), voltage (V), current (I), IR

Figure 3. Graphical abstract for the proposed algorithmic framework
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3. Identification of elbows, knees and their relations177

3.1. Methodology178

Fermin et. al. [20] proposed the use of the Bacon-Watts (Eq. (5)) and the double Bacon-Watts model179

(Eq. (6)) for identification of knee-point and knee-onset respectively. We will use the same methodology,180

with the addition of several steps to account for noise in the data and potential sigmoid behaviour.181

This noise, see Fig. 4a and Fig. 5a, prevents the Bacon-Watts model from neatly fitting the data as in182

[20] and this is overcome via a smoothing step as described in Algorithm 1 (block 1) below. We report183

that this noise also causes issues for the alternative knee identification methods proposed in [20,23,27],184

see Fig. 5. In addition, we observed sigmoid-type capacity fade curves for some cells in batch 8, and185

hence, we employ a subroutine to isolate the knee/elbow identification from the right-most plateau.186

We present first the algorithm and afterwards reason its several steps.187

Algorithm 1 ’Smoothed Bacon-Watts’: Identification of knee/elbow-point and -onset
Block 1: Data smoothing

1. Fit isotonic regression to (capacity/IR degradation) lifespan data (across the full curve).
2. Determine data-truncation cycle-point n∗:

(a) Fit (3) (Asymmetrical sigmoidal) to isotonic regression curve,
(b) Find cycle-number, n∗; cycle at which 2nd derivative of fitted (3) changes sign, else last

cycle in series.
3. Fit (4) (line-plus-exponential) to isotonic regression curve up to cycle n∗.

Block 2: Identification
4. Fit Bacon and Watts model (5) to (4). Identify knee/elbow-point.
5. Fit Double-Bacon and Watts model (6) to (4). Identify knee/elbow-onset.

The isotonic regression step, Step 1, solves several issues: it annuls the behaviour of capacity increase188

or IR decrease across the first few cycles and removes the influence of sharp movements where the IR189

decreases or increases due to measurement errors. From first principles, our choice reflects the fact190

that the electrochemical degradation mechanisms within the cell are irreversible. For a given load and191

set of ambient conditions, IR increase may be caused by the thickening of the SEI on the anode, which192

irreversibly consumes lithium and electrolyte. Additionally, IR increase can be caused by loss of anode193

and cathode material, which can be caused by many factors including electrode particle cracking and194

loss of electrical contact as a result of mechanical expansion and contraction upon cycling; corrosion195

of current collectors at low cell voltage; and binder decomposition at high cell voltage. These same196

mechanisms also lead to an irreversible reduction in capacity and, as such, the monotonicity of the197

model is also reflective of the real-world evolution of a cell’s capacity over its lifespan. The isotonic198

regression is performed using the Scikit-learn Python package [43] and the procedure is described in199

[44].200

The Asymmetrical sigmoidal fitting step, Step 2. The Asymmetrical sigmoidal (‘as’) model is described
by Eq. (3)

Yas = d +
a− d[

1 +
( x

c
)b
]m + εas, (3)
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where εas denotes the residuals2 , and a, d associate to the top and bottom plateau of the curve201

respectively, b controls the slope between plateaus and m controls the level of asymmetry, lastly,202

c determines the inflexion point. For given data, the constants are estimated by straightforward203

least-squares estimation (also throughout the work for other models).204

In several cells from batch 8 we observe a sigmoid-type capacity fade curve where, after passing205

the knee and then degrading linearly for some time, the degradation approaches a plateau (e.g. cell206

b8c4). To isolate the detection of knees/elbows from this behaviour we propose the fitting of the207

asymmetrical sigmoidal model to then truncate the data before said plateau (point n∗) via the 2nd208

derivative truncation rule.209

The final smoothing step, Step 3, involves fitting the parametric line-plus-exponential (‘le’) model of
Eq. (4) to the isotonic data (from Step 2) up to cycle n∗. This idea can be traced back to [45, Section
2.2.1] under the name of Exponential/linear hybrid model – [37,46] discuss other parametric models. The
line-plus-exponential is described by the following model:

Yle = β0 + β1x + β2 exp(λx− θ) + εle, (4)

where εle denotes the residuals, and β0, β1 and β2 control the intersection point, and slope of the line210

and the size of the exponential, respectively. The quantity λ controls the ‘speed’ of the exponential and211

θ controls where the impact of the exponential starts. The main motivation for model (4) is that for212

many cells the degradation of IR is very close to linear (including the zero-slope case) until close to the213

elbow-onset followed by a sharp elbow-point.214

For the Bacon-Watts methodology, Step 4 & 5, [20, Eq. (1)] describe the Bacon-Watts (‘bw’) model (5),
as a two straight-line relationships around the transition point x1:

Ybw = α0 + α1(x− x1) + α2(x− x1) tanh{(x− x1)/γ}+ εbw, (5)

where εbw denotes the residuals α0, α1 and α2 control the slopes of the intersecting lines and the215

intercept-weigh of the leftmost segment respectively, and γ controls the abruptness of the transition.216

γ is fixed as a small value to obtain an abrupt transition. After optimisation, the fitted value of x1 is217

defined as the knee/elbow-point.218

The identification of the knee/elbow-onset is done via the double Bacon-Watts model (‘dbw’) (6)
(also [20, Eq. (2)]) by modifying Bacon-Watts to identify two transition points, concretely:

Ydbw = α̂0 + α̂1(x− x0) + α̂2(x− x0) tanh{(x− x0)/γ̂}+ α̂3(x− x2) tanh{(x− x2)/γ̂}+ εdbw, (6)

as in equation (5), εdbw denotes the residuals, the parameters α̂i and xj are estimated, and γ̂ is chosen219

as a small value to produce abrupt transitions at x0 and x2. The knee/elbow-onset is defined as the change220

point x0.221

Fig. 4 displays the output of Algorithm 1 applied to the IR curve of cell b1c29 (non-predicted222

data). Elbow-point and its onset are identified, and the smoothing steps are illustrated showing the223

fitted isotonic regression and line-plus-exponential model against the input data (for this cell, Step 2224

yields n∗ as the final cycle number). Fig. 5 displays the performance of other known algorithms for225

knee identification applied to the elbow identification problem, finding that [20,23,27]’s algorithms are226

too sensitive to noise to provide consistent identification results. Our approach addresses the noise227

issue, allowing for coherent elbow identification throughout all curves. From a statistical point of228

view, any identification approach will be affected by the noise in the data. Thus, the identified elbows229

will be less exact than the knee identification where the data is much smoother. For comparison,230

2 Throughout the manuscript, the generic ε· denotes the errors/residuals of its associated model and is a normal random
variable with zero mean and finite (but unknown) variance.
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the non-parametric bootstrap procedure was used to calculate 95% confidence intervals (CI) for the231

knee/elbow-points and -onsets identified by Algorithim 1. The average CI’s width was 24 cycles232

for the elbow-point, 4 cycles for the knee-point, 35 cycles for the elbow-onset and 5 cycles for the233

knee-onset; this difference is a direct consequence of the noise present in the IR data. Finally, Algorithm234

1 applied to knee identification recovers fully the results of [20]; we omit these results.235
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Figure 4. Steps of Algorithm 1 applied to the internal resistance degradation curve of cell b1c29 in the
A123 dataset (non-predicted data). a, step 1. b, step 3. c, step 4. d, step 5. Step 2 is omitted as it has
no impact here since n∗ is chosen as the final cycle number. The width of the 95% confidence interval
(computed by the non-parametric bootstrapping procedure) for the elbow-point of this curve is 23
cycles, and for the elbow-onset it is 38 cycles.
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Figure 5. a, Comparison of elbow-points obtained with Algorithm 1, [20]’s Bacon-Watts, maximum
curvature and slope changing ratio methods on a sample of cells from the A123 dataset (from left to
right b2c34, b1c30, b3c15, b3c1, b1c3). b, Comparison of elbow-points for all cells in the A123 dataset.
One expects to see a linear relationship between EOL and elbow-point; of the methods compared only
Algorithm 1 and the algorithm of Satopaa et. al. [2011] recover a linear relationship reliably, however,
by examining plot a we see that Satopaa’s algorithm selects the end point as the elbow.
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Zhang et al [29] report for a dataset of nickel-manganese-cobalt cells that the knee-point appeared236

at between 90 - 95% nominal capacity; in [20] it was reported that the knee-point for batches 1 to 3 of237

the A123 dataset, appeared on average at 95% nominal capacity and the knee-onset at 97.1% nominal238

capacity, with an average gap of 108 cycles between the knee and its onset. In this work, we report239

that, for the A123 dataset Batches 1, 2, 3 & 8, on average, the elbow-onset appears at 103.0% initial240

IR (93.6% nominal capacity) and the elbow-point at 104.7% initial IR (91.3% nominal capacity), with241

the elbow-onset and its point on average 52 cycles apart; on average both elbows appear after the242

knee-point. These reported figures are calculated from the smoothed exponential curve as described in243

Algorithm 1.244

3.2. Linear relations245

Figure 6 illustrates the strong linear relationships observed between the calculated246

knee/elbow-points and the EOL. Making it possible to estimate each point given a measurement or247

prediction of another point(s). These linear relations are obtained using a standard linear regression248

model Y = c0 + c1x + ε where Y denotes the dependent variable, x the independent variable, ε249

representing the residuals, and c0 and c1 control the intercept and slope of the linear model. The250

obtained coefficient values along with their confidence intervals are presented in Table 4, where the251

knee relations agree with those found in [20, Table 1].252

We present the linear relationships obtained when including the predicted IR data. From viewing253

Fig. 6, comparing the green squares and black circles, the reader will appreciate that their inclusion did254

not significantly influence the linear relationship obtained. This observation lends a second layer of255

credibility to the predicted IR data, in that the elbows displayed in the predicted IR match closely with256

what one would expect given the linear relationships observed on batches 1–3.257

(a) knee-point to EOL

Coefficient Estimate p-value

Intercept (β0) 17± 21
Slope (β1) 1.26± 0.04 4.0× 10−148

EOL = 1.26× knee-point + 17

(b) elbow-point to EOL

Coefficient Estimate p-value

Intercept (β0) 121± 11
Slope (β1) 0.97± 0.02 4.5× 10−162

EOL = 0.97× elbow-point + 121

(c) knee-point to elbow-point

Coefficient Estimate p-value

Intercept (β0) −103± 28
Slope (β1) 1.30± 0.05 3.6× 10−147

elbow-point = 1.30× knee-point− 103

(d) knee-onset to elbow-onset

Coefficient Estimate p-value

Intercept (β0) −143± 42
Slope (β1) 1.51± 0.08 4.5× 10−112

elbow-onset = 1.51× knee-onset− 143

Table 4. Coefficients of four linear regression models relating the knee-point (a) and the elbow-point
(b) to the End of life, the knee-point to the elbow-point (c) and the knee-onset to elbow-onset (d)
respectively. The p-values for β1 were computed using the Wald test, and the small values allow the
rejection of the null hypothesis that a linear relationship does not exist. The 95% confidence intervals
for the estimated coefficients are calculated via bootstrapping. The coefficient of determination, R2, of
these linear regression models is (a) 0.9822, (b) 0.9896, (c) 0.9818 and (d) 0.9520; all close to 1, showing
that the fitted models explain well the observed data.

4. Early prediction of elbows258

A real-word challenge is how to predict the trajectory of IR growth, e.g. the elbow points in IR259

curves as to detect early signs of unacceptable degradation. For example, to filter out cell production260

lots that exhibit poorer IR/capacity degradation trends. We complement the previous section in scope261
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Figure 6. a, Linear regression models linking the knee-point to End of life. b, Linear regression model
linking elbow-point to End of life. c, Linear regression model linking knee-point to elbow-point. d,
Linear regression model linking knee-onset to elbow-onset. Every linear model is presented with a
95% confidence band on the plotted regression line, all linear relations here are calculated from the
A123 dataset enriched with the predicted IR data for batch 8. Elbow points derived from the predicted
IR data are highlighted as open black circles, the reader will appreciate that their inclusion did not
significantly influence the linear regression results obtained.

of the findings of [20, Section 3]. We apply the quantitative knee prediction algorithm developed there262

to the early prediction of elbows without any additional optimization, i.e. ‘as is’. A full description of263

the model and feature extraction process can be found in [20] and supplementary material, however,264

we provide a brief overview. It is outside the scope of this paper to revisit the early prediction of265

knees.266

The quantitative prediction of the elbows is performed by a Relevance Vector Machine (RVM) [47],267

a type of linear regression mechanism, taking features extracted from the early life of the cells. The268

feature extraction process takes as input the first 50-cycles of the available per-cycle and in-cycle269

measurements (capacity, IR, charging-times, voltage, current, temperature) and draws on time-series270

analysis to calculate a vast collection of summary statistics without input from domain expertise (see271

[20, Supplementary Fig. 5]). Then, a sequential feature selection funnel is deployed to select around272

100 features to train the RVM [20, Supplementary Figs. 6 and 7]. When using batch 8, the input IR is273

the predicted IR from Section 2.2.4 – the cases, with/without batch 8, are distinguished. The model is274

trained on data from all but one cell and tested on the remaining cells (leave-one-out framework), this275
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process is independently repeated such that each cell is used for testing once. The performance metrics276

displayed in Table 5 are the average of the test performances.277

The resultant early predictions are reported in Table 5 where two points should be made salient.278

Firstly, on elbows vs knees prediction when comparing to [20], the model performs worse predicting279

elbows than when predicting knees: MAPE 13.8% vs 12.0%, elbow-onset vs knee-onset, and MAPE280

10.7% vs 9.4%, elbow-point vs knee-point – overall, the elbow prediction is up to 2% worse if compared281

with knee prediction. This lower accuracy in elbow (vs knee) prediction was expected as the input IR282

measurements are much noisier than the capacity measurements, and hence, as argued in Section 3.1,283

the identification of elbows is inherently less exact 3 which turn affects the predictive performance.284

Secondly, on using the predicted IR data, its inclusion leads to a marginally worse average performance285

of our model: the MAPE worsens by 0.2% for the elbow-onset prediction and by less than 0.8% for the286

elbow-point prediction, see Table 5. This critically showcases that the generated IR data may be used287

for the prediction of elbows, which we emphasise was an input feature to the RVM.288

(a) elbow-onset prediction

With b8? Metric Score CI (α = 0.1)

No MAE (cycles) 89.1 [77.0, 101.8]
MAPE (%) 13.8 [12.4, 15.3]

Yes MAE (cycles) 91.3 [79.4, 104.0]
MAPE (%) 14.0 [12.6, 15.5]

(b) elbow-point prediction

With b8? Metric Score CI (α = 0.1)

No MAE (cycles) 76.3 [64.5, 88.6]
MAPE (%) 10.7 [9.5, 12.0]

Yes MAE (cycles) 83.4 [72.8, 94.6]
MAPE (%) 11.5 [10.4, 12.8]

Table 5. Result of RVM regressor for elbow-onset (a) and elbow-point (b) when predictions are made
from the first 50 cycles. The 90% confidence intervals (CI) were calculated via bootstrapping. The entry
‘With b8?’ refers to results computed with (‘Yes’) and without (‘No’) the inclusion of the artificially
predicted IR data of batch 8.

From a methodological point of view, we employed the simple RVM algorithm of [20] in a direct289

manner without any additional optimisation to take into account the noisier IR data or the predicted290

IR data. This was a choice to prove that the generated IR data can be used for early prediction. There291

is indeed room for future improvements in the early prediction of IR elbows and such is left for future292

research. Lastly, increasing the number of cells displaying elbows by prediction to 169(=124+45) will293

benefit approaches which are highly dependent on the size of a dataset.294

5. Conclusions and future work295

In this original work the IR rise curve of Li-ion cells is characterised by the novel concept of296

‘elbow-point’ and ‘elbow-onset’. A generalist identification algorithm is then proposed. In this regard,297

the proposed approach is able to handle not only measurement noises but also sigmoid-type patterns298

in capacity fade and IR rise curves. The findings highlight a strongly significant linear relationship299

between EOL, capacity knee-point/IR elbow-point as well as capacity knee-onset/IR elbow-onset for300

the data under study.301

Two machine learning related goals were achieved. The first, part of the data pre-processing step,302

draws on Neural Network techniques to build independent IR and capacity SOH predictors achieving303

a small MAPE of 1.6% and 0.4% respectively, these results are of wider general interest. The proposed304

IR estimator was deployed to complete an existing cell cycling dataset with missing IR measurements,305

resulting in a well-rounded life cycle dataset encompassing capacity and IR data. The generated data306

is publicly available. Such datasets can be used for both identification and early predictions of the307

3 As demonstrated in Section 3.1, the confidence intervals for the elbow identification are significantly wider than those for
the knees. Due to this higher noise in the elbows, when predicting elbows from input data the relationship between input
data and elbows will be weaker/noisier than when predicting the knees.
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elbows in IR curves. We provide an illustrative example for such an early predictor of IR elbows.308

Furthermore, the cells with predicted IR are shown to be usable for the early prediction of elbows,309

resulting in only slightly worse average performance than when they are excluded (the MAPE worsens310

by less than 0.8%).311

The methods of elbow identification and prediction, in this work, have commercial value to312

battery manufacturers, as well as end users such as fleet managers and energy storage utility operators.313

Accurate early forecasting of the elbow (and knees) will allow manufacturers to set appropriate314

performance and lifetime warranties for their products. Additionally, elbow forecasting allows battery315

users to accurately and conveniently schedule battery servicing and replacement, or adjust the duty316

cycle to accommodate the reduced performance of the battery pack as it degrades.317

In future, the accuracy of the early prediction will be enhanced. Multiple dimensions of inputs318

encompassing the predicted IR data and other measurements will be used to train the model with an319

improved tolerance for noisy data. Overall, elbow-identification and elbow early prediction can be320

used to influence the design of the thermal management system, accounting for the additional heat321

dissipated by cells as they approach their EOL. The early prediction of the IR elbow and onsets points322

in IR rise curves would determine the moment to taper down charging current in rapid charging323

protocols4. In addition, a fuller study comparing the relations between knee/elbow-onset and -point324

across more datasets is left for future work.325
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