

Edinburgh Research Explorer

Towards an Authorization Framework for App Security Checking

Citation for published version:
Hallett, J & Aspinall, D 2014, Towards an Authorization Framework for App Security Checking. in
Proceedings of the 2014 ESSoS Doctoral Symposium co-located with the International Symposium on
Engineering Secure Software and Systems (ESSoS 2014), Munich, Germany, February 26, 2014..
<http://ceur-ws.org/Vol-1298/paper10.pdf>

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the 2014 ESSoS Doctoral Symposium co-located with the International Symposium on
Engineering Secure Software and Systems (ESSoS 2014), Munich, Germany, February 26, 2014.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 19. May. 2022

http://ceur-ws.org/Vol-1298/paper10.pdf
https://www.research.ed.ac.uk/en/publications/4f5a632e-b733-4c72-8b63-db1598c59c45

Towards an authorization framework for app
security checking

Joseph Hallett and David Aspinall ?

University of Edinburgh

Abstract. Apps don’t come with any guarantees that they are not ma-
licious. This paper introduces a PhD project designing the authorization
framework used for App Guarden. App Guarden is a new project that
uses a flexible assurance framework based on distribution of evidence,
attestation and checking algorithms to make explicit why an app isn’t
dangerous and to allow users to describe how they want apps on their
devices to behave. We use the SecPAL policy language to implement a
device policy and give a brief example of a policy being used. Finally
we use SecPAL to describe some of the differences between current app
markets.

1 Introduction

App stores allow users to buy and install software on their devices with a min-
imum of fuss. Users trust the app stores not to supply them with malware but
sometimes this trust is misplaced. A survey of the various different Android
markets revealed some malware in all of them—including Google’s own Play
Store [13]. Malware on mobile platforms typically steals user information and
monetises itself by sending premium rate text messages [10]. Sometimes malware
on mobile platforms isn’t intentional: developers are not security specialists and
sometimes make poor security decisions such as signing apps with the same
key [2] which can lead to permission escalation on Android or by requesting
excessive permissions [7].

Both Google and Apple (who operate the two biggest app markets) check
apps submitted to them for malicious code, however neither states exactly what
they check for. There is expectation amongst users that these markets check for
and are free from malware, but this trust is misplaced [6]. Attempts to reverse
engineer the checking procedures for Google’s store suggest that they incorporate
static and dynamic analysis as well as manual checking by a human being [9].
They offer no guarantees however that any check was actually run.

Digital evidence [11] can be used to confirm the results from static analyses;
it is similar to older techniques [8] and allows us to split the inferring of a static
analysis result (which may be computationally expensive) from the checking the
evidence (which should be efficient). This allows us to verify the results of static
analyses for security properties without having to fully run the analysis.

? With thanks to Martin Hofmann and Andy Gordon for their time and advice.

Static analysis checks used to create digital evidence could include taint anal-
ysis tools to check where sensitive information is being leaked between apps [5],
or a security proof based on the architecture of the machine [3].

The App Guarden project aims to use digital evidence to provide apps with
guarantees that the app cannot act maliciously. This will allow us to make ex-
plicit the checks made on an app. With explicit checks users will be able to
write policies which describe what kinds of apps they will allow on their devices,
and what level of trust they require in these checks for an app to be considered
installable. We aim to create an enhanced app store that uses inference services,
and assurance logics on a modified Android to increase trust in devices.

Figure 1 shows an App Guarden store. It provides apps with evidence gen-
erated by an inference service. Devices can check the evidence using a trusted
checking service, or rely on their trust that the store believed the app to be safe.
The SecPAL Engine on the phone is used to check the assertions made by the
store and the checker service and enforce a device policy.

Checker

Service

Inference

Service

Generates

Checks

Supplies

Trusts

Trusts

App Guarden

Store

EvidenceApps

SecPAL

Engine

App Guarden

Phone

Apps

Fig. 1: The architecture of App Guarden.

2 Aims and Objectives

Our aim is to create a modified Android ecosystem where apps come with digital
evidence for security and where users can say how they want apps to behave on
their device. To do this we will:

– Show how an authorization logic can specify a policy for how a device be-
haves. This will use ideas such as proof checking and inference, and show
how trust can be distributed between principals.

– Show how to use the logic to specify a device policy. We will use digital
evidence, and assertions between trusted principals and show how the trust

relationships can be propagated between devices. We show how we can use
these statements to build confidence that an app is secure.

– Describe the differences between current app markets using the logic and
show how they manage access to special resources (such as the address book
or a user’s photos). This will allow us to compare App Guarden to other
systems and allow comparison between other different schemes.

– Put the logic in a real device and app store and see how the system behaves
with real malware and how they interact with device policies. We will look
for ways to attack devices with our framework and explore it’s limitations.

3 SecPAL and App Guarden

Suppose a user has a mobile device. They might wish that:

“No app installed on my phone will send my location to an advertiser,
and I wont install anything that Google says is malware.”

We call this their device policy. It says what the user will allow on their
device for an app to be installable. To formally write the device policies we use
the SecPAL authorization language [4]. The device policy is show in (3). SecPAL
is designed for distributed access control decisions. It was designed to be human
readable which makes it ideal for our application as we would like users to be
able to understand (if perhaps not write) their own device policies. Another
advantage is that it lets us separate the constraint solving (the digital evidence
checking) from the authorization logic. This means there is no restriction on
having the digital evidence be in the same format and logic as the assurance
framework (as is the case with other authorization logics such as BLF [12]); this
increases our flexibility for implementation as we can re-purpose existing logic
solvers.

SecPAL is designed to be extensible. Authorization statements take the form
of assertions made by principals. Statements can include predicates which are
defined by the SecPAL program, as well as constraints (as seen in (9)) that can
be checked as sub-procedures for the main query engine. We add the following
statements:

eevidence shows eapp meets epolicy (1)

eapp meets epolicy (2)

The shows . . . meets predicate in (1) tells us that some evidence could be
checked to show that an app satisfies a security policy; an example of which can
be seen in (9) bellow (and which also uses a constraint). The plain meets in (2)
is an assertion that an app meets a policy whilst offering no actual evidence that
the app is secure. The shows statement is stronger than the meets statement
as anyone who says that some evidence shows an app meets a policy suggests

they would also say the app meets policy. We can write this in SecPAL with the
assertion: “Phone says app meets policy if evidence shows app meets policy.”

We also add an is installable statement to indicate an app is installable on a
device and a requires statement to say an app needs a permission to run.

SecPAL allows for attestation of said statements with the can say statement:
these come with a delegation depth. A delegation depth of zero (as shown in (5))
means the statement must be spoken by the principal and given to us directly in
the assertion context. A delegation depth of infinity (as in (6)) means that the
statement might not be given to us directly but rather inferred from a statement
by different principal but with several can say phrases linking it back to the
required principal.

To evaluate the device policy and decide whether a specific app is installable
SecPAL requires a set of assertions called the assertion-context. An example
assertion-context and the proof, using two of SecPAL’s evaluation rules from the
original paper [4]. To illustrate a usage of SecPAL we give an example where a
user wishes to decide whether an app Game can be installed. To do this we use
the assertion context bellow:

AC := {
Phone says app is installable

if app meets NotMalware,

app meets NoInfoLeaks. (3)

anyone says app meets policy if evidence shows app meets policy. (4)

Phone says NILInferer can say0 app meets NoInfoLeaks. (5)

Phone says Google can say∞ app meets NotMalware. (6)

Google says AVChecker can say0 app meets NotMalware. (7)

AVChecker says Game meets NotMalware. (8)

NILInferer says Evidence shows Game meets NoInfoLeaks

if LocalNILCheck(Evidence,Game) = true. (9)

}

We evaluate it using the SecPAL rules shown in the cond (10) and can
say (11) rules. The cond rule is SecPAL’s equivalent to the modus ponens rule.
Whereas can say is similar to speaks for relationships [1]: if a first principal
says a second principal can say something and the second does say it then the
first says it too. AC represents the assertion context, D is the current delegation
level. From these rules and the assertion context we can prove an assertion that
“Phone says Game is installable.”

{A says fact if fact1, . . . , factn, c} ∪AC,D |= A says fact1, . . . , factn

|= c

vars(fact) = ∅
{A says fact if fact1, . . . factn, c} ∪AC,D |= A says fact

cond
(10)

AC,∞ |= A says B can sayD fact AC,D |= B says fact

AC,∞ |= A says fact
can say

(11)

4 Comparing different devices

We can use the SecPAL language to describe the differences between various
app markets and devices. The two most popular operating systems are Google’s
Android, and Apple’s iOS. Apple’s offering is usually considered to be the more
restrictive system as it doesn’t allow the use of alternate market places, whereas
an Android user can choose to relax the restrictions and install from anywhere.

For example on iOS an app is only installable on an iPhone if Apple has said
the app can be installed (12). In contrast on Android any app can be installed
if the user says so (14). The user also trusts any app available on Google’s Play
Store (15), but the zero delegation-depth means that the user will only believe
the app is installable if Google provides the assertion directly whereas the user
in (14) is free to delegate the decision because of the infinite delegation depth.

iPhone says Apple can say∞ app is installable. (12)

(13)

AndroidPhone says AndroidUser can say∞ app is installable. (14)

AndroidUser says Google can say0 app is installable. (15)

Similarly comparisons can be made when apps try to access resources. When
accessing components like the address book or photos; on iOS this is only allowed
when the user has explicitly okayed it. Other operating systems such as Win-
dows Mobile also follow this pattern. On Android, however, an app can access
any resource it declared itself as requiring it when it was installed.

iPhone says User can say0 app can access resource. (16)

(17)

AndroidPhone says app can access resource

if app is installable,

app requires resource. (18)

This is a brief comparison of the implicit device policies in current markets. It
shows however that SecPAL is capable of describing the various difference. This
could be extended in future to allow proper comparisons of different markets.

5 Conclusion and future directions

We have given a brief introduction to App Guarden and the SecPAL language
used to describe policies. Using the SecPAL language we described some of the

differences between current systems. The PhD work here is at an early stage.
Next steps will include porting the SecPAL language to Android and using it to
find what kinds of device policies are most effective at stopping dangerous apps,
without overly inconveniencing the user. From here we will build an enhanced
app market with its own set of policies where apps come with digital evidence
to allow users to trust apps further.

Mobile devices are a growing target for malware, and with app stores appear-
ing in conventional computers the differences between mobile and traditional
computing environments are blurring. The App Guarden will help give users
greater assurance their software is secure; and provide a new security mecha-
nism to compliment access control and anti-malware techniques.

References

1. M. Abadi. Logic in access control. 18th Annual IEEE Symposium on Logic in
Computer Science, pages 228–233, 2003.

2. D. Barrera, J. Clark, D. McCarney, and P.C. van Oorschot. Understanding and
improving app installation security mechanisms through empirical analysis of an-
droid. In Security and Privacy in Smartphones and Mobile Devices, pages 81–12,
New York, New York, USA, 2012. ACM Press.

3. G. Barthe, L. Beringer, P. Crégut, B. Grégoire, M. Hofmann, P. Müller, E. Poll,
G. Puebla, I. Stark, and E.ric Vétillard. MOBIUS: Mobility, Ubiquity, Security.
Trustworthy Global Computing, 4661(Chapter 2):10–29, 2007.

4. M.Y. Becker, C. Fournet, and A.D. Gordon. SecPAL: Design and semantics of a
decentralized authorization language. Technical report, Microsoft Research, 2006.
MSR-TR-2006-120.

5. W. Enck, P. Gilbert, B.G. Chun, L.P. Cox, and J. Jung. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy Monitoring on Smart-
phones. OSDI, 2010.

6. W. Enck and P. McDaniel. Not So Great Expectations. Secure Systems, pages
1–3, September 2010.

7. A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. Android permissions
demystified. Computer and Communications Security, pages 627–638, October
2011.

8. G.C. Necula and P. Lee. Proof-Carrying Code. Technical report, Carnegie Mellon
University, January 1996.

9. J. Oberheide and C. Miller. Dissecting the android bouncer. SummerCon, 2012.
10. A. Porter Felt, M. Finifter, E. Chin, and S. Hanna. A survey of mobile malware in

the wild. Proceedings of the 1st Workshop on Security and Privacy in Smartphones
and Mobile Devices, CCS-SPSM11, 2011.

11. I. Stark. Reasons to Believe: Digital Evidence to Guarantee Trustworthy Mobile
Code. In The European FET Conference, pages 1–17, September 2009.

12. N. Whitehead, M. Abadi, and G. Necula. By reason and authority: a system for
authorization of proof-carrying code. In Computer Security Foundations Workshop,
2004. Proceedings. 17th IEEE, pages 236–250. IEEE, 2004.

13. Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market:
Detecting malicious apps in official and alternative android markets. Proceedings
of the 19th Annual Symposium on Network and Distributed System Security, 2012.

