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Abstract Recent studies have aroused concerns over the potential for ice draining the Weddell Sea
sector of West Antarctica to �gure more prominently in sea level contributions should buttressing from
the Filchner-Ronne Ice Shelf diminish. To improve understanding of how ice stream dynamics there evolved
through the Holocene, we interrogate radio echo sounding (RES) data from across the catchments of
Institute and Möller Ice Streams (IIS and MIS), focusing especially on the use of internal layering to
investigate ice-�ow change. As an important component of this work, we investigate the in�uence that the
orientation of the RES acquisition track with respect to ice �ow exerts on internal layering and �nd that this
in�uence is minimal unless a RES �ight track parallels ice �ow. We also investigate potential changes to
internal layering characteristics with depth to search for important temporal transitions in ice-�ow regime.
Our �ndings suggest that ice in northern IIS, draining the Ellsworth Subglacial Highlands, has retained
its present ice-�ow con�guration throughout the Holocene. This contrasts with less topographically
constrained ice in southern IIS and much of MIS, whose internal layering evinces spatial changes to the
con�guration of ice �ow over the past ~10,000 years. Our �ndings con�rm Siegert et al.’s (2013) inference
that fast �ow was diverted from Bungenstock Ice Rise during the Late Holocene and suggest that this may
have represented just one component of wider regional changes to ice �ow occurring across the IIS and
MIS catchments as the West Antarctic Ice Sheet has thinned since the Last Glacial Maximum.

1. Introduction
Many ice streams draining the West Antarctic Ice Sheet (WAIS) rest on beds below current sea level that
deepen inland, rendering them vulnerable to rapid retreat [e.g., Schoof, 2007; Joughin and Alley, 2011;
Ross et al., 2012; Favier et al., 2014]. Dynamic instability is further evinced by observations that some ice
streams experience spatial migration [Echelmeyer and Harrison, 1999; Catania et al., 2005], dramatic
decelerations or “shutdowns” [Retzlaff and Bentley, 1993; Catania et al., 2006], and �ow switching or ice
stream piracy between neighboring systems [Jacobel et al., 1996; Conway et al., 2002; Vaughan et al.,
2008]. These phenomena require improved understanding and representation in next generation ice
sheet models as they aim toward better forecasts of ice sheet response to climatic forcing [cf., Vaughan
et al., 2013]. An outstanding limitation concerns our observational database of WAIS ice stream histories,
which remains relatively sparse both in terms of spatial extent and temporal coverage. Most dynamic
phenomena have been observed for ice streams draining either to the Ross Sea, via the Siple Coast and
Ross Ice Shelf, or to the Amundsen Sea. By contrast, the dynamics of ice streams draining to the Weddell
Sea, via the Filchner-Ronne Ice Shelf (FRIS), remain largely unknown. The primary reason for this has
been a dearth of survey data. Ice streams in the Weddell Sea sector (WSS) have not been highlighted
as regions of potential major ice loss by satellite altimetry [Pritchard et al., 2009; McMillan et al., 2014];
the conventional assumption being that inland ice is protected from external forcing by the FRIS.
However, several recent studies now collectively suggest that the WSS may be far more dynamic than
previously thought.
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One signal of this potential for change in the WSS is provided by the short-term behavior of the grounding
zone and the recent evolution of ice plains there. Brunt et al. [2011] used repeat ICESat laser altimetry to
show that much of the grounding zone between Institute Ice Stream (IIS; 81.5°S, 75°W), Möller Ice Stream
(MIS; 82.5°S, 71°W), and Foundation Ice Stream (83°S, 60°W; Figure 1) includes three ice plains at the point
of �otation. Reanalysis of the WSS grounding zones using Lagrangian �ltering further reveals thinning
concentrated around the FRIS grounding line [Moholdt et al., 2012]. Should these presently grounded zones

Figure 1. Location and con�guration of RES data acquired in 2010/2011 and used in this paper (black lines). The
background shows the satellite-derived surface ice-�ow velocities from MEaSUREs [Rignot et al., 2011] superimposed
over MODIS satellite imagery [Haran et al., 2006]; the white line is the ASAID grounding line [Bindschadler et al., 2011]. The
inset depicts location in Antarctica. The elevation of the sea�oor below the Filchner-Ronne Ice Shelf is shown as contours
derived from Bedmap2 [Fretwell et al., 2013]. BI = Berkner Island, BIR = Bungenstock Ice Rise, EM = Ellsworth Mountain
Range, ESH = Ellsworth Subglacial Highlands, FIS = Foundation Ice Stream, FISh = Filchner Ice Shelf, IIS = Institute Ice Stream,
MIS = Möller Ice Stream, PH = Patriot Hills, RIS = Rutford Ice Stream, and RSB = Robin Subglacial Basin.
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thin further and become ungrounded—a feasible prospect should warm oceanwater access the subshelf
cavity and induce basal melting—ice dynamics could progressively change inland, as witnessed elsewhere in
the WAIS [e.g., Flament and Rémy, 2012; Pritchard et al., 2012]. Recent oceanographic modeling by Hellmer
et al. [2012] supports this possibility, showing that a redirection of the coastal current into the Filchner Trough
(Figure 1) and underneath FRIS would lead to increased movement of warm waters into the deep southern
ice-shelf cavity. Inland from the WSS grounding line, several investigations reveal an environment in which
ice stream dynamism is possible. Scambos et al. [2004] inferred from a combination of satellite-acquired optical
and radar remote sensing observations that the bed of IIS is composed of weak material, and Bingham and Siegert
[2007] used reconnaissance radio echo sounding (RES) data from the 1970s to quantify bed roughness and
demonstrate that marine sediments were likely distributed widely throughout the lower IIS and MIS catchments.
With more comprehensive RES data acquired in 2010/2011, it was recognized that the beds of both IIS and MIS
deepen steeply inland to the Robin Subglacial Basin (Figure 1), making them susceptible to ice stream retreat
should FRIS buttressing diminish [Ross et al., 2012]. Further inland, several tectonically controlled subbasins are
present [Jordan et al., 2013]. Analysis of bed roughness across the catchment suggests that the Robin Subglacial
Basin is �lled with sediments, likely of marine origin [Rippin et al., 2014], and is similar in characteristics to ice sheet
beds reported from elsewhere that are associated with ice sheet change [e.g., Anandakrishnan et al., 1998;
Tulaczyk et al., 2000; Peters et al., 2006]. Indeed, Siegert et al. [2013] have recently presented evidence that the
Bungenstock Ice Rise (BIR; Figure 1) may have transitioned from hosting fast ice �ow to its present, slow-�ow
“ice-rise” state, as recently as 400 to 4000 years ago, requiring signi�cant modi�cations to the ice �ow upstream.

In this paper, we examine the spatial and temporal stability of ice �ow across IIS and MIS using aerogeophysical
data gathered over the region during the 2010/2011 austral summer season. A particular focus is the analysis
of internal layering patterns across the catchments with the objective of extracting from these evidence of
past changes in ice �ow. Our analyses suggest that inland ice in upstream IIS and across MIS, being relatively
unconstrained by topography, has experienced recon�guration during the Holocene that is expressed by
disruption to internal layering patterns.

2. Methods
2.1. Data

The primary data set used in this paper comprises >25,000 line kilometers of RES data acquired as part of an
aerogeophysical survey of the IIS and MIS catchments during the austral season 2010/2011 (Figure 1). Data
were collected with the British Antarctic Survey Polarimetric-radar Airborne Science INstrument (PASIN);
survey speci�cations are detailed in Ross et al. [2012], and further technical details of the instrumentation are
given in Corr et al. [2007].

We applied 2-D “synthetic aperture radar” (SAR) processing to all the data. SAR processing removes off-nadir
re�ections and refocuses received energy to its original location. It can also be used to reduce clutter and
extraneous hyperbolae often present in areas of rough subglacial topography. Further details of the processing
as applied to PASIN acquisition are supplied in Hélière et al. [2007] and T. Newman (Application of synthetic
aperture techniques to radar echo soundings of the Pine Island Glacier, Antarctica, unpublished PhD thesis,
Univ. Coll. London, London, 2011). The use of SAR processing is particularly important when the primary
objective is to pick the basal interface for input into digital elevation models [e.g., Ross et al., 2012; Fretwell et al.,
2013] and analyses of bed roughness [Rippin et al., 2014]. SAR processing allows precise examination (including
tracing) of internal layering as it declutters hyperbolae arising from re�ectors that are points directly beneath
or near-horizontal linear features perpendicular to the �ight track (T. Newman, unpublished PhD thesis, 2011).

RES pro�les were generated at a data rate of 13 Hz giving a spatial sampling interval of ~10 m and written to
seismic standard SEG-Y format. The bed was picked semiautomatically using PROMAX seismic processing
software, and ice thickness was determined using a radio wave travel speed of 0.168 m ns�1 offset by a
nominal value of 10 m travel at airspeed to correct for the �rn layer [Ross et al., 2012]. Error due to this
assumption is estimated at ±3 m.

Although we do not have dating control on the ice across IIS/MIS, age-depth modeling at BIR, in the lower
catchment, suggests that ice at 40% of ice thickness is ~4000 years old [Siegert et al., 2013], suggesting that
the deepest ice in many parts of the catchment extends well beyond the Holocene.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003291
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2.2. Analysis of Internal Layering

Multiple internal (also known as englacial) layers are present in all the RES pro�les acquired across IIS and MIS
(Figure 2). They represent boundaries in the dielectric properties of the ice, off which a small fraction of
the radar signal re�ects. Most of these likely arise from paleoaccumulation-derived contrasts in ice acidity
[e.g., Hempel et al., 2000] but nearer the surface may re�ect density contrasts [e.g., Moore, 1988]. Deeper
internal layers may result from anisotropic ice crystal fabric [Siegert and Kwok, 2000; Siegert and Fujita,
2001; Eisen et al., 2007]. Internal layers may not always represent single physical layers in the ice itself:
rather, they are radiological interference phenomena which may at different times represent single layers
or groups of closely spaced layers and whose speci�c characteristics will vary according to the radar
system being used to detect them. Crucially, none of these considerations rules out the treatment of

Figure 2. (a) Gross internal layering properties mapped across IIS and MIS. ILCI plotted here is calculated using 100 trace moving windows along RES �ight tracks,
with the result gridded at 2.5 km2 resolution using ArcGIS “Topo-to-Raster.” The background is from MODIS imagery [Haran et al., 2006], and the black contours
mark 25 m a�1 surface ice-�ow velocities [Rignot et al., 2011]. The same ILCI result, plotted along �ight tracks, is given in Figure S1 in the supporting information.
(b–d) The color bar gives the ILCI result for the layering behavior that can be viewed qualitatively in the radargrams. Flight tracks AA�, BB�, and CC�, whose 2-D SAR
radargrams are depicted in Figures 2b–2d, respectively, are annotated in panel (a). (e) A-scope (left) and absolute value of the gradient of the A-scope (right) for a
trace from pro�le CC� characterized by disrupted layering. The gray line depicts the whole trace, while overlaid in black is the section used for calculation of ILCI.
(f ) Same as in Figure 2e but for a trace from pro�le CC� characterized by continuous internal layering. Note the generally higher oscillations for this trace through
strong layers, which will ultimately contribute toward a higher ILCI indicative of continuous layering.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003291

BINGHAM ET AL. ©2015. The Authors. 4



internal layers as isochrones; it is this property that makes internal layers vital and often the only
records of past ice accumulation and ice-�ow histories [e.g., Jacobel et al., 1993; Siegert and Payne, 2004;
Waddington et al., 2007; Neumann et al., 2008; MacGregor et al., 2009; Leysinger Vieli et al., 2011; Karlsson
et al., 2014].

Of especial focus here, internal layers can record information about the locations and �ow dynamics both of
current and past ice streams and ice stream tributaries. Previous examinations of RES data sets from several
regions of Antarctica have demonstrated that in ice streams, and the tributaries that feed them, internal
layering becomes disrupted or “buckled” due to increased englacial stress gradients caused by differential
and/or convergent �ow, and �ow around subglacial obstacles [e.g., Jacobel et al., 1993; Rippin et al., 2003;
Siegert et al., 2003; Ng and Conway, 2004; Bingham et al., 2007; Hindmarsh et al., 2007; Ross et al., 2011].
Recently, Karlsson et al. [2012] developed an “Internal Layering Continuity Index” (hereafter ILCI), which is
useful in characterizing, with relative rapidity, regions of apparently continuous versus disrupted internal
layering from large-volume RES data sets. Here we follow earlier convention [Rippin et al., 2003; Siegert
et al., 2003] in using the phrase “disrupted layering” to refer to ice where the layering diverges signi�cantly
from the ice bed and/or surface and the term “continuous layering” to refer to ice wherein the layers
predominantly follow the surface and bed. Examples of apparently continuous and disrupted layering,
associated with their derived ILCI values, are shown in Figure 2. The method is introduced in Karlsson et al.
[2012], and we provide further details, and advice pertaining to appropriate deployment conditions, in the
supporting information of this paper. Our primary use of the ILCI here is to target regions of internal layering
disruption from the large data set. These regions can then be studied in more detail, with supplementary
evidence such as subglacial topography and contemporary ice-�ow patterns, to diagnose possible changes
to ice �ow across the IIS/MIS catchments.

3. Results and Analysis
3.1. Regional Internal Layering Properties

Figure 2a illustrates a regional view of the gross internal layering properties across IIS and MIS derived using
the ILCI method. Speci�cally, Figure 2a depicts ILCI calculated from 100 trace moving windows (equating
to ~1 km or 0.5–1 ice thicknesses), applied to the middle three �fths of the full ice column, and then gridded
to 2.5 km2. The decision to use this combination of moving window size and grid resolution represents
the conclusion of sensitivity testing concerning the effects on ILCI of varying these parameters across
the IIS/MIS data set and comprises the optimal balance between capturing too much local (in this case
subkilometer) detail versus overly smoothing regional trends (see section S1.3 in the supporting information).
The application to the middle three �fths of the ice column is based on previous experience discussed in
Karlsson et al. [2012] and in section S1.1 in the supporting information of this paper. Importantly, these
choices need to be made in applying ILCI to any RES data set; hence, both caution and judgment are
required when comparing ILCI results between different regions/data sets; see further discussion in the
supporting information.

Figure 2a shows spatial coherence in internal layering properties across IIS and MIS. In the main trunk of IIS,
and within the dissected terrain draining from the Ellsworth Subglacial Highlands, high ILCI corresponds with
slow ice �ow and low ILCI with tributary and ice stream (faster) �ow. Further inland, in the upstream IIS
catchment and across MIS, internal layering (as represented by ILCI) also appears spatially organized, but
notably, the patterning in the ILCI does not match the current surface ice-�ow con�guration. In some
previous studies, a mismatch between internal layering properties and contemporary ice dynamics has been
taken as evidence for a change in regional ice-�ow regime [e.g., Bingham et al., 2007; Woodward and King,
2009]. Before being able to reach such a conclusion with con�dence, it is necessary to consider possible
effects on internal layering imposed by the direction of RES data acquisition (section 3.2) and subglacial
topography. The latter objective is achieved by considering the internal layering patterns alongside
supplementary data sets (section 4.1).

3.2. Effect of Ice-Flow Direction on Internal Layering Properties

In RES data such as those analyzed here, radargrams containing internal layers represent two-dimensional
snapshots of three-dimensional �elds, which we expect to be in�uenced fundamentally by the anisotropic nature
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of ice stream �ow. There is therefore a
cause to expect that the direction of a
RES acquisition track relative to the
direction of ice �ow may in�uence the
properties observed in the RES data, as
noted by Ng and Conway [2004] and as
has been observed both quantitatively
and qualitatively in intersecting RES
pro�les [e.g., Bingham et al., 2007,
Figure S1a in the supporting
information to this paper]. This possible
directional bias has been addressed in
recent RES data analyses of ice sheet
bed roughness [Bingham and Siegert,
2009; Gudlaugsson et al., 2013],
including the analysis of bed roughness
from the RES survey central to this
paper [Rippin et al., 2014]. However,
prior to this study, we are unaware of
any systematic investigation of the
in�uence of RES acquisition track
relative to ice-�ow direction having
been conducted on internal
layering data.

We �ltered two subsets of RES data
from the original data set—one
containing only RES tracks “parallel” to
ice �ow and the other containing solely
tracks “perpendicular” to ice �ow.
Here parallel is de�ned as being within
10° of the direction of ice �ow and
perpendicular to within 10° of normal
to the direction of ice �ow; ice-�ow
directions being taken from the
National Snow and Ice Data Center
MEaSUREs database of satellite-derived
ice surface velocities (based on satellite

Figure 3. Analysis of ILCI results relative
to ice-�ow direction, with background
imagery and contours as in Figure 2a.
(a) Flight tracks within 10° of being parallel
(white) and perpendicular (yellow) to ice
�ow. The red polygon demarcates region
of interest where a high concentration of
�ight tracks ful�lls the above criteria and is
hence used for further panels. (b and c) ILCI
results for all RES data. Figure 3b shows the
�ight tracks used to generate the result.
(d and e) ILCI results generated only from
perpendicular-to-�ow RES data. Figure 3d
marks the analyzed tracks. (f) Plot of parallel-
to-�ow ILCI minus perpendicular-to-�ow ILCI
where orthogonal RES pro�les intersect
(proportional circles); the background result
is repeated from Figure 3c.
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data acquired in spring 2009 [Rignot et al., 2011]). Subsetted data sets are depicted in Figure 3a. In some parts
of the IIS/MIS catchments, the �ltering by ice-�ow direction leaves few RES pro�les to analyze, but a high
concentration of RES tracks with the required directional criteria was acquired in the higher-elevation (southern)
region of the survey zone (red outline in Figure 3a). We therefore focus analyses on data from this zone.

Figures 3d and 3e show ILCI results derived over 100 trace windows for RES �ight tracks perpendicular to
ice �ow. The result is gridded at 2.5 × 2.5 km resolution and presented alongside the equivalent results
produced from analyzing all RES �ight tracks, regardless of direction, across the same region (Figures 3b
and 3c). The most striking aspect of comparing Figures 3b–3e is their similarity: with the exception
of a few isolated areas, the behavior of internal layers recovered from only analyzing RES pro�les
perpendicular to ice �ow is similar to that which we would interpret from analyzing all pro�les regardless
of their direction.

For the equivalent analysis of ILCI calculated from the �ight tracks paralleling ice �ow, there are
insuf�cient data points to grid the output meaningfully. Hence, in Figure 3f, for each location where
there are coincident results both from the “perpendicular-only” and “parallel-only” experiments, i.e., at
�ight-track crossovers where the respective RES pro�les tracked perpendicular or parallel to ice �ow, we
plot the sum of the parallel-only minus the perpendicular-only results. This allows us to compare the
effect of �ight-track direction with respect to ice �ow on the ILCI calculated at each crossover. In many
cases, the result of this summation is close to zero; i.e., ILCI does not change with �ight-track direction.
However, concentrated where ice �ow is fastest, there are some instances where “parallel-to-�ow”
ILCI exceeds “perpendicular-to-�ow” ILCI (Figure 3f), i.e., where we would interpret disrupted layering
perpendicular to �ow but continuous layering along �ow. Our explanation for this is summarized in
Figure 4 and is an extension of reasoning presented by Ng and Conway [2004]. Disruptions to internal
layering, i.e., patterns of internal layering that diverge signi�cantly from the ice bed and/or surface
across any ice-�ow route, are most often features that are inherited from ice-�ow effects that have
occurred further upstream. In most cases, they result from changes to the internal strain �eld as it passes
across the margins between slower- and faster-moving ice and becomes channeled into an ice stream
�ow path; in some cases, the strain �eld is disrupted by passage of the ice over particularly large
subglacial protuberances [e.g., Hindmarsh et al., 2007; Bell et al., 2011; Ross et al., 2011]. Regardless of the
speci�c process involved in generating the disruptions, each is directional and produces a primary axis
of buckling with maximum amplitudes transverse to �ow but orthogonal to which layers can appear
to remain undisrupted (Figure 4 (this paper); see also Ng and Conway [2004]). The end result is that
if one follows internal layers directly along an ice stream, one may observe “continuous” (undisrupted)

Figure 4. Schematic diagram to demonstrate the in�uence of ice-�ow direction on ILCI results. The left-hand �gure depicts
the plan view of pro�les relative to an ice stream �anked by two slow-�owing margins. Along the top row, schematic
radargrams A-A� to E-E� show hypothetical internal layering recovered by radar pro�les acquired at progressively lower
angles to ice �ow across the ice stream. The corresponding lower graph shows the magnitude of ILCI measured in a
moving window spanning each pro�le. Importantly, the diagram shows that low ILCI, and hence disrupted internal
layering, will be diagnosed at most angles, until the orientation of the pro�le approaches the direction of ice �ow.
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internal layering, even though RES pro�les
acquired in any other direction over the ice
stream would show �ow-disrupted internal
layering. Importantly, the transition from
maximum disruption across �ow to minimum
disruption along �ow is nonlinear, such that one
can still observe large disruptions to internal
layering in RES pro�les acquired only mildly
oblique to ice �ow (Figure 4). For the purposes
of our study, this explains why there are
occasional instances where parallel-to-�ow ILCI
differs from perpendicular-to-�ow ILCI and why,
when this occurs, it is the parallel-to-�ow tracks
in which we most often observe the higher
ILCI (consistent with apparently continuous
internal layering) and the perpendicular-to-�ow
ones in which we most often observe the lower
ILCI (consistent with disrupted internal layering).

The critical conclusion to make is that once we
discount the results from the parallel-to-�ow RES
tracks, the particular direction of a �ight track
with respect to ice �ow exerts a minimal
in�uence on the ILCI result obtained. In other
words, from any given site of internal layering
disruption, the ILCI value will be similar whether
the �ight track crosses the site perpendicular or
oblique to ice �ow. Only if the �ight track
parallels ice �ow (very few cases) would the ILCI
method fail to identify disruption to layers.

3.3. Variation of Internal Layering Properties
With Depth

So far, we have considered the generation of
single-ILCI results for each “column” of ice
represented by one window of depth soundings.
However, it is also possible to derive results for
different depth ranges, which may be useful in
searching for rapid past transitions in ice-�ow
regime. Evidence in support of relatively sudden
changes in ice �ow, as recorded by englacial
features, has been reported in several cases.
Notable examples are the buried crevasses
underlying continuous layering in Kamb Ice
Stream, evincing its stagnation ~150 years ago
[Retzlaff and Bentley, 1993; Catania et al., 2006],
distinctive folding overlain by continuous layers

Figure 5. ILCI results from 100 trace moving windows
partitioned by depth ranges (or “layers,” abbreviated as
“lyr”) throughout the ice column (see text, section 3.3).
(a–e) Results derived progressively downward through
�fths of the ice. Background imagery and ice velocity
contours as in Figure 2a. IIS = Institute Ice Stream,
BIR = Bungenstock Ice Rise, and MIS = Möller Ice Stream.
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interpreted as evidence for an ice-�ow direction change upstream of Byrd Station in central West Antarctica
[Siegert et al., 2004] and buckled layering beneath continuous layers across the Bungenstock Ice Rise (BIR)
[Siegert et al., 2013]. To examine whether such features occur in the study region, we set up a number of
experimental runs, wherein we calculated ILCI for speci�c ice depths.

Figure 5 shows depth-speci�c ILCI results for each �fth of the ice column in each 100 trace window. In Figures 5a
and 5e, we plot, respectively, those lower and upper �fths of the ice column which we discarded in earlier
analyses. Although some variations in internal layering in the upper �fth of the ice are discernible in Figure 5a,
the overall signal is “washed out” by generally high ILCI results. These are, in fact, biased by operating the
algorithm across the uppermost part of the ice column, where PASIN poorly resolves layers and produces an
interference-based series of �at layers (equal to high ILCI) some way down into the ice. In Figure 5e, although
a small amount of variation attributable to ice-�ow processes is again discernible, this time the signal is
degraded by the dominance of background noise, which has the effect of producing an apparent low ILCI. In
effect, Figures 5a and 5e depict the justi�cation for neglecting at least a proportion of the upper and lower
sections of ice when applying the ILCI method, at least with PASIN-derived data.

From Figures 5b–5d, which represent ILCI in the upper two �fths, middle �fth, and lower two �fths of the
ice column, respectively, the internal layering continuity across large parts of the region does not change
signi�cantly with depth. Notably, however, both in the BIR and the upstream combined IIS/MIS source
tributary (~82.5°S, 80°W), there is a particularly large change from high ILCI (equal to apparently continuous
layering) in the upper ice (Figures 5b and 5c) to low ILCI (equal to more disrupted layering) in the lower ice
(Figure 5d). These areas therefore warrant further investigation to which we apply further analysis and discuss
in the following section.

4. Discussion
4.1. Synthesis of Internal Layering and Supporting Data

From the geochronologically determined exposure times of several locations along major WSS ice stream
�anks, it has been argued that ice across the western WSS has thinned steadily since the Last Glacial
Maximum (LGM) [Bentley et al., 2010]. Such thinning might conceivably lead to ice stream recon�gurations
through impacting on subglacial hydrological routing [cf., Retzlaff and Bentley, 1993; Catania et al., 2005;
Vaughan et al., 2008]. Within the downstream reaches of our study area, Siegert et al. [2013] interpreted a
change in internal layering characteristics with depth across BIR as one line of evidence to argue that BIR may
have hosted enhanced �ow. This ice was probably sourced from the Ellsworth Subglacial Highlands, as part
of an expanded ice sheet earlier in the Holocene. This section uses the regional internal layering database,
and supporting data, to assess the extent to which this may have affected the con�guration of ice �ow across
the much wider region encompassed by the IIS/MIS catchments.

Figure 6 presents a synthesis of depth-averaged internal layering properties, current surface ice velocities, ice
thickness, and bed roughness. Across the northern reaches of the IIS catchment, encompassing the terrain
dissecting the Ellsworth Subglacial Highlands, internal layering variability tends to correspond directly with
the current ice-�ow con�guration, with low ILCI (disrupted layering) occurring where ice �ow is fastest and
high ILCI (apparently continuous layering) where ice �ow is slow (Figure 6a). This supports the contention
that ice �owing out of the Ellsworth Subglacial Highlands (generally north of 81.5°S) is highly topographically
constrained and has thus maintained its spatial con�guration throughout the Holocene (and possibly earlier).
By contrast, much of the rest of the territory south of 81.5°S yields a weak to negligible correspondence
between internal layering patterns and ice �ow (Figure 6a). Assuming that most of the disruptions to the
internal layering are initiated through enhanced �ow processes, this might be taken as evidence of an
extensive recon�guration of ice �ow relative to the present, such that regions currently experiencing slow
�ow contain disrupted layer signatures of paleo�ow below the surface [cf., Bingham et al., 2007]. However, a
mitigating issue is the presence of several signi�cant subglacial mountains in the study domain (expressed in
extreme cases by nunataks, e.g., Pirrit Hills and Martin-Nash Hills), which may also act to disrupt internal
layering as we now discuss.

Hindmarsh et al. [2007] demonstrated that where ice is thin relative to subglacial topography, internal
layering can become warped as a consequence of ice passage over or around signi�cant subglacial obstacles.
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Figure 6. ILCI results compared with ice-�ow velocity, ice thickness, and bed roughness. All maps include MODIS imagery [Haran et al., 2006] and 25 m a�1 surface ice
velocity contours from MEaSUREs [Rignot et al., 2011]. (a) ILCI applied over 100 trace (~1 km) moving window, result gridded at 250 m resolution. (b) Surface ice velocity
distribution across the catchment from measurements in 2009 [Rignot et al., 2011]. (c) ILCI versus ice speed for all soundings. (d) Ice thickness map. The red points
mark “unusual” locations where low ILCI (here we use ILCI < 0.03) corresponds with low ice speeds (<5 m a�1)—these are typically in the lee of nunataks or large
subglacial mountains. (e) Distribution of total bed roughness, after Rippin et al. [2014]. (f) Bed roughness versus ILCI. Note the changing relationship between the
two either side of the threshold roughness value log10(�2.2) = 0.006. (g) The color scale shows longitudinal strain rate (a�1), highlighting “�ngers” of greatest
strain along ice stream and tributary margins. The blue points mark unusual locations where high ILCI (here we use ILCI > 0.12) corresponds with high ice speeds
(>25 m a�1)—most are found in the central “IMIST” region.
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Most of the slow-�owing regions where we retrieve “unusually” low ILCI in our study domain (red points in
Figure 6d) coincide with, or are located just downstream of, signi�cant bed perturbations such as nunataks
and subglacial mountains (Figure 6d). It is also notable that at, or just downstream of, locations where bed
roughness is highest (Figure 6e), the ILCI is low. Indeed, the main locations where low ILCI is measured in
tandem with high bed roughness match those of low ILCI/low ice �ow (Figure 6d) and are associated with
internal layering being warped over or around signi�cant subglacial protuberances. We would therefore
exclude layering measured in the lee of any of the major mountain ranges, i.e., those areas characterized by
cluster of red points in Figure 6c, from any interpretation of ice dynamical changes from the layer properties.

The in�uence on internal layering disruption of subglacial topography (as opposed to ice dynamic-induced
effects) can be gauged by plotting ILCI recovered from IIS/MIS against co-located bed roughness values
(Figure 6f ). Here, by bed roughness, we refer to normalized total roughness values derived by Fast-Fourier-
Transform analysis along sections of �ight track ~320 m in length—we do not take physical meaning from
the values themselves but rather pay attention to the variation between roughness values across the
region [see Rippin et al., 2014]. Figure 6f shows that for our study region, there is a threshold roughness
value above and below, which the relationship between bed roughness and the degree of disruption to
internal layering changes sign. (The roughness value at this threshold is ~0.006, but the value has no
physical meaning; rather, it is the fact that there is a threshold value that is important.) Above this
threshold, the mean ILCI falls (internal layering disruption increases) as bed roughness rises. For these
points, we contend that ILCI is most strongly in�uenced by internal layering disruption as a consequence of
ice �ow over a rough bed. Below the threshold, mean ILCI falls with bed roughness, such that ILCI is
predominantly in�uenced by internal �ow effects—where variations in roughness are related inversely to
the speed of overlying ice �ow and, hence, also to the propensity for internal layering to become buckled
under englacial stress gradients. Overall, the correspondence between slow ice �ow/high ice �ow, high
bed roughness/low bed roughness, and continuous internal layering (high ILCI)/disrupted layering (low
ILCI), reported from elsewhere [cf., Bingham et al., 2007] generally also holds true here. However, an
important conclusion from this study is that care must be taken �rst to discount the counter relationship
caused by direct topographic disruption to internal layering. If using internal layering disruption as an
indicator of ice dynamics, therefore, one should remove from consideration those regions clearly
downstream of major subglacial topographic protuberances.

We also note here that we witness generally high ILCI in slow-�ow areas and interstream ridges, lower ILCI in
the ice streams, but the lowest ILCI is measured at the ice stream margins rather than in the centers of the
ice streams where �ow is fastest. This �nding tallies with RES imaging of other ice streams [e.g., Raymond
et al., 2006; King, 2011], where while it is common to see disruption to internal layering across the entire width
of ice streams, the greatest disruption to the layers is viewed across lateral shear margins, where the strain
rate is greatest. It has been proposed that disruption, or buckling, of internal layering observed at any
given location in an ice stream is inherited from upstream and, therefore, earlier in time [Jacobel et al., 1993;
Ng and Conway, 2004]. Convergent �ow then often causes the inherited disruption to pervade toward
the center of the fast-�ow feature. However, where ice streams are suf�ciently wide and relatively
unconstrained by subglacial topography, ice �ow along more or less a straight �ow path can enable
internal layering in the central trunk to remain relatively undisrupted over long distances. The latter
scenario may explain the apparent “preservation” of unusually high ILCI in the central, >80 km wide IIS/MIS
source tributary, hereafter IMIST, depicted in Figure 6g. The IMIST is currently derived from an upstream
basin characterized by thick ice (Figure 6d) and a smooth bed (Figure 6e), also likely conducive to the
preservation of internal layering.

4.2. Changes to Internal Layering Properties With Depth: Evidence for Ice-Flow Recon� guration

Figure 7 displays results from depth-partitioning ILCI through tenths of the ice column. Using this
partitioning, and neglecting those areas in the lee of major topographic protuberances (for the reasons
discussed in section 4.1), we discriminate four styles of internal layering changes with depth across
IIS/MIS as follows:

1. Low ILCI found throughout the ice column, diagnostic of enhanced �ow disrupting internal layering. In such
cases, the modern enhanced �ow has disrupted layering throughout the ice column, leaving it impossible
to tell whether ice �ow was signi�cantly different in the same locations previously. This category is primarily
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Figure 7. Results from calculating ILCI across 10 depth ranges across IIS and MIS. (a) Map of ILCI from layer 3 (relatively close to the ice surface). (b) Map of ILCI from
layer 9, close to the ice bed. (c) Difference map of ILCI between layer 3 and layer 9. Cerise highlights the regions where internal layering nearer the surface is
considerably less disrupted than at depth, yellow the opposite trend. (d–j) Graphs of ILCI variation with depth for 100 consecutive along-track measurements at
selected locations. These span the four categories of ILCI behavior with depth discussed at the start of section 4.2, and their locations are annotated onto Figure 7c. In
Figures 7d–7j, depth ranges are numbered from the ice surface downward, such that, for example, lyr 3 represents ice closer to the ice surface than lyr 9. Results
for layers 1 and 10 are omitted due to noise effects discussed in section 3.3. (j) Radargram from one of the regions where deeper ice yields signi�cantly higher ILCI
than nearer-surface ice; pro�le location X-Y is given in Figure 7c.

Journal of Geophysical Research: Earth Surface 10.1002/2014JF003291

BINGHAM ET AL. ©2015. The Authors. 12



found in the ice streams and tributaries draining the Ellsworth Subglacial Highlands and the main trunk of IIS
(e.g., Figures 7d and 7e).

2. High ILCI found throughout the ice column, diagnostic of little disruption to either modern or paleolayering,
hence indicative that no change has occurred to the ice �ow. The clearest examples are found in
intertributary areas of the Ellsworth Subglacial Highlands (e.g., Figures 7f and 7g).

3. High ILCI found near the surface, lower ILCI deeper into the ice column, diagnostic that enhanced �ow
previously occurred where there is slow �ow today. A prominent example is BIR, where ILCI attains
very high values in the upper three and four tenths of the ice but then falls away to lower depths
(Figure 7h), supporting Siegert et al.’s [2013] observation of a distinct change in internal layering
character at ~40% of ice depth. In the upper parts of the IIS and MIS catchments, and especially in the
IMIST, we also observe slightly higher ILCI in upper layers than in the deeper layers (e.g., Figure 7i);
however, the range of ILCI values is much smaller than observed across BIR, and nowhere is the
decline in ILCI with depth as large as it is across BIR.

4. Low ILCI found near the surface, higher ILCI deeper into the ice column. These cases are primarily found in
lower MIS, the upland regions between MIS and Foundation Ice Stream, and over subglacial mountains
northwest of IIS’s main trunk and are discussed further below (e.g., Figure 7j).

Of the above, case 3 is the most informative in terms of providing empirical evidence for changes in
ice-�ow con�guration across IIS/MIS. The englacial patterns recovered across the study region are
consistent with the Late Holocene shutdown of ice �ow over BIR hypothesized by Siegert et al. [2013] and
hint at the wider impacts the attendant recon�guration of ice �ow has had across much of IIS and MIS. Only
the northern sector of IIS, being topographically constrained as it �ows through the Ellsworth Subglacial
Highlands, shows no evidence of a major recon�guration of �ow paths, with disrupted internal layering
at all depths in its ice stream tributaries. It is very likely that higher-than-present ice �ux passed through
these tributaries, notably the Ellsworth Trough Tributary, earlier in the Holocene [Bentley et al., 2010; Ross
et al., 2011; Siegert et al., 2013] and drove the enhanced �ow across BIR. Ice from this sector is today
directed northeastward to the FRIS via IIS’s main trunk before reaching BIR. It is therefore probable that
activation of IIS’s main trunk occurred as BIR stagnated, in turn inducing switches in ice �ow routing
throughout the upper regions of IIS and MIS, especially in the IMIST region. The observed transition in
some parts of IMIST from more disrupted layering at depth to more continuous layers nearer the surface
(e.g., Figure 7i) could have occurred as ice stream tributary boundaries migrated to accommodate this
new connection to the FRIS. Future work underpinned by catchment-wide tracing of internal layers, and
potentially the linking of some of these layers with dated horizons linked to ice cores, is required to
constrain the timing of these changes.

The instances of higher ILCI ice underlying lower ILCI ice, exempli�ed by ice in lower MIS, the upland regions
between MIS and Foundation Ice Stream, and over subglacial mountains northwest of IIS’s main trunk
(Figures 7c and 7j), are less explicable through ice dynamic considerations. In most of the radar pro�les
where this trend is identi�ed, the lower ice displays a notably different character to the upper ice, being
characterized by a distinct transition in the brightness of internal layers at ~60% of ice depth (e.g., Figure 7k).
The cause of this phenomenon is a topic for further investigation but, we suggest, is likely linked to ice fabric.
One possibility is that the lower ice package manifests ice with preferred crystal orientations developed
during passage over signi�cant subglacial obstacles [Siegert and Kwok, 2000; Ross and Siegert, 2014]. Another
is that the transition re�ects contrasting physical properties associated with the palaeoclimatic switch from
glacial to interglacial accumulation-driven ice-crystal formation [cf., Paterson, 1991; Durand et al., 2007;
Kennedy et al., 2013; Montagnat et al., 2014].

5. Conclusions
We have analyzed in detail the patterns of radio echo-sounded internal ice sheet layering within the Institute
and Möller Ice Streams (IIS and MIS), West Antarctica. We identi�ed spatial organization in the properties of
internal layering across IIS and MIS, yet the overall correspondence with current ice-surface velocities as
recovered from satellite data, and ice-bed roughness, is not straightforward. A correspondence between
internal layering continuity/disruption, slow �ow/fast �ow, and high/low bed roughness is found in the ice
draining through well-de�ned troughs from the Ellsworth Subglacial Highlands to IIS. Analysis of internal
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layering properties with respect to different ice depths suggests that this situation has prevailed there
throughout at least the Holocene. Further south and east, in the upper reaches of IIS and MIS, variation of
internal layering with depth occurs in a manner inconsistent with modern (surface) ice �ow. The internal
layering continuity often changes with depth across these upstream regions, frequently with more disrupted
layering being overlain by more continuous layering nearer the surface. Our results provide support for the
assertion that major ice-�ow pathways feeding IIS and MIS have been subjected to substantial dynamic
and/or directional changes during the Holocene, enabled by a lack of signi�cant controlling topography
south of the Ellsworth Subglacial Highlands. The Late Holocene deceleration of �ow across the Bungenstock
Ice Rise previously inferred by Siegert et al. [2013] may therefore represent just one relatively local component
of wider regional changes to ice �ow that have occurred across the IIS/MIS catchments as the WAIS has
thinned since the LGM.

A useful next stage to the work presented here would be to investigate possibilities for implementing dating
control to the internal layering across IIS and MIS, using radar layers tied to the nearest ice core age-depth
pro�les [e.g., West Antarctic Ice Sheet Divide Project Members, 2013], thereby to investigate the catchment-wide
timing of the dynamic recon�guration(s). Such efforts will support the wider goal of reconstructing the
Holocene glacial history of the Weddell Sea sector [e.g., Hillenbrand et al., 2014].
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