Edinburgh Research Explorer

Plasticity facilitates sustainable growth in the commons

Citation for published version:
Cavaliere, M & Poyatos, JF 2013, Plasticity facilitates sustainable growth in the commons. in Interface. 81
edn, vol. 10, The Royal Society. https://doi.org/10.1098/rsif.2012.1006

Digital Object Identifier (DOI):
10.1098/rsif.2012.1006

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Interface

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75} ACCESS

Download date: 03. Dec. 2022


https://doi.org/10.1098/rsif.2012.1006
https://doi.org/10.1098/rsif.2012.1006
https://www.research.ed.ac.uk/en/publications/68983d4b-846a-4c14-9748-c689edde777a

Downloaded from http://rsif.royalsocietypublishing.org/ on April 8, 2015

JOURNAL

OF

Interface

rsif.royalsocietypublishing.org

RESea rCh 8 CrossMark

click for updates

Cite this article: Cavaliere M, Poyatos JF.
2013 Plasticity facilitates sustainable growth
in the commons. J R Soc Interface 10:
20121006.
http://dx.doi.org/10.1098/rsif.2012.1006

Received: 6 December 2012
Accepted: 10 January 2013

Subject Areas:
biocomplexity, computational biology

Keywords:

sustainability, tragedy of commons,
bounded rationality, microbial cooperation,
ecological rationality

Author for correspondence:
Juan F. Poyatos
e-mail: jpoyatos@cnb.csic.es

Electronic supplementary material is available
at http://dx.doi.org/10.1098/rsif.2012.1006 or
via http://rsif.royalsocietypublishing.org.

%-’Royal Society Publishing

Informing the science

Plasticity facilitates sustainable growth
in the commons

Matteo Cavaliere and Juan F. Poyatos

Logic of Genomic Systems Laboratory (CNB-CSIC), Madrid, Spain

In the commons, communities whose growth depends on public good, indi-
viduals often rely on surprisingly simple strategies, or heuristics, to decide
whether to contribute to the shared resource (at risk of exploitation by
free-riders). Although this appears a limitation, we show here how four
heuristics lead to sustainable growth when coupled to specific ecological
constraints. The two simplest ones—contribute permanently or switch
stochastically between contributing or not—are first shown to bring sustain-
ability when the public good efficiently promotes growth. If efficiency
declines and the commons is structured in small groups, the most effective
strategy resides in contributing only when a majority of individuals are also
contributors. In contrast, when group size becomes large, the most effective
behaviour follows a minimal-effort rule: contribute only when it is strictly
necessary. Both plastic strategies are observed in natural scenarios across
scales that present them as relevant social motifs for the sustainable
management of public goods.

1. Introduction

In many biological, social and economic systems, there exists a continuous
interplay between individual actions and collective dynamics [1-3]. This inter-
play becomes particularly significant when the individual decisions on how to
contribute to a public resource ultimately determine the sustainability of the
whole. The choice of contributing—that implies personal costs—favours not
only community growth but also promotes the appearance of free-riders.
These agents take advantage of the public good (PG), spread in the population
and can eventually bring its collapse [4].

This predicted scenario does not correspond however with many obser-
vations. Stable communities whose growth is based on PG are indeed
observed at all scales; from microbial aggregates, e.g. biofilms depending on
the individual contribution of extracellular substances, e.g. [5,6], to human
commons, e.g. fisheries, forests, etc. (note that in some of these cases the
choice is not so much to contribute but to make appropriate use of a shared
resource) [7,8]. These findings triggered the interest in understanding
the type of behavioural strategies that could be adopted by individuals to
help avoid collapse and how such outcomes could further depend on specific
structural features characterizing the community.

Notably, the adoption of simple strategies appears to be efficient enough to
promote sustainability [9]. Simple rules contrast the idea of elaborated beha-
viours that allow individuals to optimally maximize benefits, a null model
particularly extended in studies of human commons. In this context, the rel-
evance of elementary strategies (or heuristics) was first investigated by
Herbert Simon who also pioneered the essential connection between heuristics
and the particular environment where they are to be applied [10] (see
also [11-13]). In a broader perspective, heuristics—sometimes interpreted as
behavioural ‘limitations’—can then represent effective strategies to deal with
complex ecological constraints—a consideration that applies to bacterial,
animal and human decision-making circumstances [7,9,14-16].

© 2013 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/, which permits unrestricted use, provided the original
author and source are credited.
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Figure 1. Individuals as plastic producers. (a) A plastic producer can contribute (producer state, P) or not (non-producer state, nP) to the PG. This choice is made
after each interaction and is conditioned to the specific group composition experienced, i.e. the ratio between the number of Ps and the total number of individuals
in the group. If this ratio is bigger, or equal, than a particular threshold value 6, an agent becomes nP with probability g~ (if the ratio is smaller, it becomes nP
with g). Cheaters (Ch), i.e. agents that are permanently in the nP state, arise from plastic producers by mutation. (b) Following this, a constitutive producer
corresponds to the case g~ =q—=0, while a stochastic producer exhibits non-zero g~ = g—. Positive plastic producers (i) are characterized by a relatively
large 6. This implies that they hardly become nP if the group they experienced was mostly constituted by Ps (as they are also defined by a small g-.); if
not, they express nP with high probability (large g—). In contrast, negative plastic producers (i) present a fairly small 6. This means that they express nP
with high probability (as they are also defined by a large g~.) unless they were part of groups with few Ps, in which case they hardly express nP (small
g). Note that the number of individuals (#indiv.) can be less or equal than the group size (V).

In this manuscript, we examine how simple strategies,
which exhibit limited information processing (figure 1a),
can nevertheless be adjusted to exploit certain environmental
constraints to attain sustainable growth. We modify these
constraints by changing core structural factors characterizing
the community, such as the size of its constituent groups (N)
or the resource characteristics, i.e. PG efficiency (r). To this
aim, we model the commons by means of a stylized ecologi-
cal PG model in which a finite population of agents is
organized in groups where they are involved in a PG game,
and the supply of PG determines population density
(a model originally introduced in [17] for infinitely large
populations).

We first find that permanent production of PG works
when its creation efficiently induces growth and the com-
mons is structured in relatively small groups. We then
observe that a simple strategy that stochastically alternates
between contribution and non-contribution enlarges the
range of commons where its adoption leads to sustainability
(when compared with the previous case). Finally, we dis-
cover two opposite plastic heuristics—in which a simple
sensing mechanism is at work (figure 1b)—to be effective in
two contrasting environmental situations. While positive
plasticity (contribute only when most individuals in the pre-
vious interaction group were contributing) works for low
efficiency and small groups, negative plasticity (contribute
merely when it is strictly necessary, i.e. individuals in the
past group hardly contributed) does it for high efficiency
and large groups.

2. Results

2.1. Constitutive production and the risks of the
commons

We first examined the consequences of the simplest possible
strategy: permanent and indiscriminate production of PG.
This strategy maximizes growth but additionally favours
the emergence of cheaters (that arise by mutation from an
allP population). Cheaters rapidly invade a resident popu-
lation but also cause its decline, because of the coupled
decay in PG (less Ps) that limits growth (figure 2a).

The population cascade associated with cheater expansion
can unexpectedly lead to its recovery. This is linked to the
group structure of the interactions in the commons. Sulffi-
ciently small density causes the appearance of groups
primarily composed of only Ps or only cheaters (figure 2a,b)
that multiplies the replication of constitutive P and reduces
that of cheaters, both processes contributing to the recovery
of the population (when enough inter-group composition var-
iance is generated, in what is known as the Simpson'’s paradox,
an effect associated with the metapopulation dynamics [17,18],
see also the electronic supplementary material).

However, this recovery dynamics includes an added risk,
since the low density could precipitate population extinction
by stochastic demographic effects [19], figure 2a,c. Risk is
raised when the population repeatedly exhibits critical cas-
cades, i.e. declines in density below a particular minimal
value. The final outcome between recovery and extinction is
strongly determined by the intrinsic properties of the com-
mons. Constitutive production reveals in this way as a
successful strategy when the PG efficiently determines
growth (r sufficiently high, figure 2d-f; the influence of r
was also studied in the deterministic model [17]) or when
groups within the commons are relatively small (controlling
for r, electronic supplementary material, figure S2).

2.2. Stochastic production can reduce the risks

We analysed a second strategy in which individuals choose
randomly whether to contribute or not to the PG (i.e. they
can sometimes decide to free ride). Specifically, agents pre-
sent a nP state with probability g~ (or, conversely, an P
state with 1—g-; figure 1). Therefore, stochastic producers
are totally unable to sense the composition of their interaction
group (the amount of available PG).

A homogeneous population of stochastic producers gener-
ates a constant sub-population of nPs that decreases PG levels
with two consequences. It can reduce not only the chances of
cheaters to replicate (which favours sustainability), but also
drive the system to extinction even without any cheater pre-
sent—by causing severe PG reduction. We quantified this
trade-off by computing the number of critical cascades, as
before, and their duration (i.e. number of consecutive steps
below the minimal density threshold). Increasing g~ reduces
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Figure 2. Growth based on constitutive producers is not sustainable for weakly efficient public good. (a) Recovery and extinction in a population composed by
constitutive Ps and cheaters (colour code as in figure 1; total population in black). (b,c) Each group in the population (squares) is coloured in different blue tones in a
recovery (b) (around 1 in (a)) or an extinction () (around 2 in (a)) event. Group composition ranges from all P (dark blue) to all cheaters (light blue); white denotes
empty groups. Note the enrichment of groups with only P immediately after each population decay. Unsuccessful replication of these initial groups causes population
collapse. (d) Frequency of extinctions (solid line) and median number of critical cascades (dashed line) as a function of r. (e,f ) Characteristic trace of regimes with
low (e) and high () r. The population crosses more often the critical density region (highlighted in grey) at low r for an equivalent time window. A critical cascade
is observed when the population crosses the critical density threshold, fixed to 30 (i.e. = k/10). Each point in (d) is the median (and 25/75% percentiles) of the
average number of critical cascades obtained by considering all simulations that did not go extinct in 1000 independent runs of 6 x 10° steps. Parameters: k =
300, N=10,v=5x10"% 6§=02 c=1 (all panels); (abc) r=4, () r =46 and (f) r = 65.

the number of critical cascades but steadily increases cascade
duration (that reflects the delay in the appearance of all P
groups associated with population recovery).

This trade-off indicates an optimal g~ that minimizes the
frequency of extinctions and defines the exact stochastic rate
for a successful strategy (figure 3a,b). When agents follow
this optimal stochastic heuristic, cheater replication is limited
even for high densities (generally below 50%, figure 3c,d),
population oscillations are damped and extinction risks
reduced. This dynamics contrasts with the constitutive heur-
istics scenario in which cheater replication can reach very
high values in dense populations (see the electronic
supplementary material, figure S3).

Sustainability is thus attained in a wider range of
commons (in terms of ¥ and N) when agents followed a sto-
chastic strategy. However, this range is still limited. A relative
decrease in r (electronic supplementary material, figure S4) or
an increase in N (see the electronic supplementary material,
figure S5) once more implies an increment in the number of
critical cascades and in this way of extinctions. Alternative
strategies are required in those commons.

2.3. Plastic cooperation favours sustainable growth

To analyse whether the addition of some basic information-
processing features could direct to more effective heuristics
(in commons where growth is unsustainable with the use of
constitutive or stochastic production), we examined a third
strategy that includes a simple sensing mechanism. This sen-
sing permits agents to evaluate the relative abundance of Ps in

the group where they most recently played the game (this can
be estimated by means of the amount of PG received).

If the PG obtained in the previous interaction is above
(below) a particular threshold 6, individuals exhibit the nP
phenotype with probability g~ (7). This defines a general
plastic producer (figure 1a). We then studied the dynamics
of a population of individuals exhibiting different plastic
heuristics (distinct g-, g, 6) in a range of commons (charac-
terized by r and N). By using an exhaustive analysis (of all
possible strategies and commons conditions, see electronic
supplementary material), we were able to identify two
specific plastic heuristics that lead to sustainable growth in
a wider range of commons.

2.3.1. Positive plasticity is the most effective strategy for small

groups and low efficiency

The most valuable heuristic in commons characterized by
small groups and low PG efficiency r consists of contributing
to PG only if most members of the agent’s recent interaction
group were also contributing. Individuals that follow this
heuristic (positive plastic producers) immediately react to
the presence of nP (or cheaters) in their past interaction,
becoming nP themselves (formally, they present a small g-,
but a large g and 6, figure 1b). The appearance of cheaters
in a population of positive plastic producers (in state P) con-
sequently originates an immediate decrease of PG in each
group which triggers the remaining Ps to stop contributing
and switch to nP (figure 4a).
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Figure 3. Stochastic producers can reduce extinctions. (a) Frequency of extinctions as a function of the probability g~ to stochastically express a nP state (¢~ = g,
see figure 1). There exists an optimal g~ that reduces extinctions by decreasing the number of critical cascades (solid line in (b)) trading-off for their duration
(dashed line in (b)). (c,d) Characteristic dynamics of a stochastic producer with optimal switching rate (g~ =0.55, colour code as in figure 1, black curve denotes
total population). Note the limited replication rate of cheaters (generally below approx. 50%) even when population is high. Cheater advantage is stronger when
agents constitutively produce PG (electronic supplementary material, figure S3). A critical cascade is observed when the population crosses the critical density
threshold, fixed to 30 (i.e. = k/10), while the duration of a critical cascade is the average number of consecutive steps the population stays below the critical
density threshold. Each point in (b) is the median (and 25/75% percentiles) obtained by considering all simulations that do not go extinct in 1000 independent
runs with 6 x 10° steps. Parameters: k =300, N=10,r=4,c=1,6=102
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Figure 4. Positive and negative plastic producers include a sensing mechanism. (a) Positive plastic producers expressing a P state quickly switch to nP as response to
cheaters. This causes a fast reduction of Ps overall (arrow thickness in inset cartoons denotes preferred individual decisions). After cheater invasion is stopped, the
population exhibits coexistence of P and nP to finally evolve to an all P scenario (b) (for better visualization we show only a limited part of the coexistence). Shading
areas in (a,b) denote the relative amount of groups composed by only Ps. (c) A population of negative plastic producers is characterized by its permanent low
density favoured by the constant presence of nP which helps controlling cheaters invasion. (d) Positive plasticity transiently modifies the inter-group variance to
control cheaters and stop the emergence of nPs. This contrasts with the relatively constant variance observed in a population of negative plastic producers (variances
correspond to time series (b) and (c), respectively). Plastic producer definitions and colour code as figure 1, with g~ =0, g-=0.7 and 6 = 1 for positive plasticity
and g~ = 0.7, g— = 0 and @ = 0.1 for negative; black curve describes total population. Parameters: k = 300, N =10, § =02, c=1, v =75 x 10" ° (all
panels); (a,b) r=2 and (¢) r = 2.2.
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As the population declines, the number of groups exclu-
sively formed by the residual plastic individuals in the P
state increase (shading in figure 4a,b). This situation drives
the system to the ‘recovery regime’ where inter-group variance
makes the Simpson’s paradox decisive once more (figure 4d).
Note that this recovery dynamics, characteristic of the structure
of commons, is enhanced by the heuristic at work: P individ-
uals that experienced groups of only Ps keep contributing
with high probability. The whole process stops the creation of
nPs, expels cheaters and takes the population back to an allP
regime, an absorbing state of the system (figure 4b). Once the
population is uniquely constituted by Ps, it remains in this
homogeneous state until new cheaters arise.

If groups are relatively large, the mechanisms just
described fail. While the reaction to cheater invasion is simi-
lar, the enrichment of allP groups is delayed. Only when the
population level becomes very low, these groups start to arise
but, as we discussed earlier, this regime increases the chance
of demographic extinctions. These collapses are not totally
avoided in commons displaying higher r. In these cases,
large group size N and large efficiency 7, we identified an
alternative plastic heuristic that can assist sustainable growth.

2.3.2. Negative plasticity is the most effective strategy for large
groups and high efficiency

Individuals following a minimal-effort (plastic) heuristic are
the ones that most strongly bring sustainability in commons
structured in large groups, and where the supply of PG effi-
ciently determines growth. These negative plastic producers
present a nP state unless the amount of PG in their latter
interaction group is below a minimal threshold that could
in the end impede growth (formally, they exhibit a large
g-, but small g and 6, see figure 1b). Thus, a population con-
stituted by negative plastic producers is constantly at low
density, independently of the presence of cheaters.

The low-density regime is maintained as a dynamical
equilibrium in which an excess of Ps makes individuals to
become nP, since many Ps are observed in each group,
while the successive lack of PG (and of Ps in the groups) is
compensated by showing again the P state. In this scenario,
the emergence of cheaters by mutation is indirectly controlled
by the high abundance of nP already in the resident popu-
lation, which in turn reduces cheater presence and chance
of invasion (figure 4c).

As negative plasticity strongly relies on the abundance (by
default) of nP agents, this heuristic requires that the PG pro-
duced by those that contribute must transform very
efficiently into growth. For this reason, negative plasticity is
successful only when r is above a certain minimal value. The
abundant presence of nP agents implies in this way that the
resistance to cheaters is obtained by paying the price of a lim-
ited growth. When compared with a population of positive
plastic producers, the mechanisms of recovery do not rely so
much on the temporal increase of inter-group variance (that
brings the ‘recovery regime’) but on the presence of a relatively
constant and adequate inter-group diversity (figure 4d).

3. Discussion

Communities whose growth depends on a PG contributed by
their members present a fundamental instability associated
with the emergence of free-riders (cheaters) that do not

contribute but use the accessible PG. This instability—at its
core a problem of maintenance of cooperation—produces
direct ecological consequences, i.e. the collapse of the
population.

This ecological scenario immediately defines a character-
istic ‘environment” in which individuals following simple
strategies are to ‘solve” a precise task: to attain the sustainable
growth of the collective. We analysed this situation by con-
sidering limitations upon the decision-making capacities
(figure 1) and also modifications of the specific attributes of
the environment (r and N) where decisions are taken [10].
Our work then links bounded rationality [10], heuristics on
public-good settings [7] and ecological rationality [12].

The analysis of the simplest heuristic, constitutive pro-
duction of PG, reveals the core ecological dynamics
(figure 2a, see also [17] for an analysis of this dynamics in
infinite populations). By avoiding production costs, cheaters
can spread in a population of (constitutive) Ps consequently
reducing population density owing to PG depletion. The
resultant low densities induce the formation of between-
group differences (groups dominantly constituted by Ps or
cheaters, figure 2b,c). This high inter-group variance causes
individuals in groups dominantly composed by Ps to receive
larger payoffs, i.e. present higher replication rates. Differen-
tial growth leads to population recovery, as P agents are
the ones strongly contributing to the next generations,
figure 2a,b, an application of the Simpson’s paradox to multi-
level selection, [18]. Low densities help then to promote Ps
(i.e. cooperation) in such structured populations.

Low densities originate a complementary ecological
effect, when populations undergo demographic extinc-
tions [19] instead of recovery. We captured these processes
by quantifying the number of critical cascades—the number
of times that the population is below a minimal density
threshold. A decrease in r or an increase of N increases the
number of critical cascades and the frequency of extinctions
if PG is constitutively generated (figure 2d and electronic
supplementary material, figure S2). Hence, permanent pro-
duction of PG does not always drive sustainable growth.

We identified two additional heuristics. The simplest one,
in which no external information is processed, consists of
switching stochastically between contribution and non-
contribution, i.e. individuals decide randomly to free-ride.
This behaviour (defined by an opportune optimal switching
rate, figure 3a,b) is generally more effective than constitutive
production, but fails again when r becomes smaller or N
larger (see the electronic supplementary material, figures S4
and S5).

The third heuristic is based on conditional contribution.
This is implemented by means of a simple sensing mechanism
that allows individuals to estimate the composition of their
recent interaction group and alter their behaviour accordingly.
Modifying the two key structural attributes of the commons
lets us identify two contrasting conditional strategies.

For low r (and sufficiently small group size N) positive
plasticity is the most advantageous strategy (figure 5a). This
is related to its highly reactive response to cheaters. In fact,
positive plastic producers stop producing PG when few chea-
ters (or few nPs) are detected in their earlier interaction group.
This response immediately directs to minimal densities
(figure 4a) and a successive strong recovery to the population
carrying capacity (figure 4b). Interestingly, the reaction to chea-
ters invasions (consisting in the rapid increase of nPs) is
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Figure 5. Individual strategies differentially manage sustainability in the commons. Extinction frequencies observed by individuals exhibiting constitutive (black),
stochastic (blue) and positive/negative (dark/light green) plasticity in a population structured in small ((a), N = 10) or large ((b), N = 60) groups (as a function of
). We considered 1000 independent runs with 6 x 10° steps (electronic supplementary material, figures S8 and S9 considered a different k and longer time series,
respectively). For the curves corresponding to positive, negative plasticity and stochastic producers, the values plotted correspond to the minimal extinction frequency
obtained by considering all possible instances of positive, negative and stochastic producers, respectively (see electronic supplementary material, figures S5—S7 for

details). Other parameters are k =300, c=1, 6 =102, v=75 X 1076,

promptly interrupted as a result of the feedback between the
threshold-like decision and group assortment of Ps (created
by the combination of low density and small group size,
figure 4a). This example emphasizes how heuristics associated
with limited information processing (the limitation corre-
sponds in this case to the inability of individuals to
distinguish the presence of cheaters from that of plastic produ-
cers in the nP state) are still efficient owing to the specific
ecological structure where they are applied [10-13].

Positive plasticity does not work when the commons is
structured in large groups. In this case, negative plasticity
emerges comparatively as a better strategy (figure 5b). This
minimal effort behaviour [20] maintains the population in a
dynamical equilibrium with the largest possible frequency
of nPs that minimizes cheaters advantage but is compatible
with population growth. Negative plasticity is in this sense
an advanced version of stochastic production with the
individual ability to switch back to a P state when population
density reaches critical values. Either strategy could become
unnecessarily detrimental for growth in the absence of cheaters.

Thus, the use of different decision-making strategies clearly
causes divergent sustainability outcomes when controlling for
community structure (i.e, when both N and r is fixed, figure 5).
One could further ask whether these strategies are observed in
natural scenarios (characterized by a PG dilemma). We suggest
that this is the case. One of these scenarios corresponds to the
ample use of PGs by microbes that include extracellular
enzymes, antibiotics, siderophores and quorum-sensing mol-
ecules [21,22]. In this context, phenotypic noise, similar to
the stochastic production strategy, is present as a broad form
of bet hedging [23] or in the stochastic expression of virulence
factors, e.g. [24]. Moreover, in many instances, production of
PGs is activated/terminated at high cell densities [25];
expression of bacteriocins is reduced when the population
density is low by a quorum-sensing system [26], as in the dis-
cussed positive plasticity. On the other hand, negative
plasticity resembles the notion of facultative cheating [27], a
cellular strategy implemented by different molecular mechan-
isms: generation of iron-scavenging pyoverdin molecules—

iron being an essential PG in some environments—is reduced
when enough molecules are already in the environment mini-
mizing in this way the ability of cheaters to invade [28];
production of invertase, a PG necessary to hydrolyse glucose,
is also repressed when not needed [27]. Constitutive and plas-
tic strategies are now also being studied with synthetic
bacterial communities [29,30].

At a very different scale, the proposed ecological model
suggests a link between individual heuristics and plastic
cooperation in human commons. Recent studies have dis-
cussed the use of heuristics in PG games [31], together with
various forms of plastic cooperation with a variable degree
of individual investment linked to group size [9,32-34]
and to the amount of contributing individuals in the
group [35,36]. Interestingly, experiments with PG games dis-
covered the presence of plastic strategies [36] similar to those
found to be successful for the sustainability of the commons:
conditional cooperation where individuals contribute if
others do so, resembling our positive plasticity, and hump-
shaped cooperators that contribute only up to a maximum,
resembling the presented negative plasticity.

That all the situations above correspond to very separate
scenarios indicates that these heuristics could be fundamental
building blocks in the assembly of this type of social arenas
and, more broadly, in the maintenance of cooperation in struc-
tured populations. Overall, these findings stress that beyond
the importance of structural factors, like PG efficiency and
group structure, the sustainability of the commons should
be understood as the appropriate integration of ecological
dynamics and individual information-processing abilities.

4. Methods
4.1. Public good games

PG games are used to model social dilemmas in which the
optimal behaviour of the individual conflicts with the best
outcome of the collective [3]. The simplest of these models
is the one-shot PG game [37] in which agents can contribute
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(cooperators) or not (defectors) to the PG in groups of size N.
Contributing implies a cost ¢ to the agents. Group contri-
butions are then summed, multiplied by a reward factor r
(that determines the efficiency of the investments and the
attractiveness of the PG) and redistributed to all group
members, irrespectively of their contribution.

This implies that in a group (of size N) with i cooperators,
defectors would receive icr/N as payoff while cooperators
would obtain icr/N —c. It is always better to defect than to
cooperate, regardless of the number of cooperators in the
group, since defection is associated with a higher payoff. In the
framework of evolutionary game theory where payoff is equated
to fitness, defectors reproduce faster and outcompete coopera-
tors. This would lead ultimately to a limiting scenario of a
population with only defectors and zero payoffs, i.e. popula-
tion collapse. Cooperators will only be maintained if specific
mechanisms that enforce their assortment are present. One
of these mechanisms considers a population of cooperators and
defectors structured in randomly formed groups in which PG
interactions take place (Hamilton’s group selection model [38]).

4.2. Computational model
We used a computational model based on Hamilton’s group
selection model that incorporates ecological dynamics and indi-
vidual decision-making (individuals are able to choose
dynamically their future phenotype, i.e. cooperator or defector,
according to their previous experience). The associated PG
game is characterized by the parameters N, r and ¢ (group size,
efficiency and cost of the PG, respectively, where we fixed
¢ =1 without loss of generality). Since cooperation/defection
involves the production/non-production of a PG we termed
cooperators as producers (P) and defectors as non-producers
(nP); cheaters express constitutively the 1P state, see figure 1a.
Every simulation starts with an initial population consti-
tuted by a common pool of k identical plastic agents in the
P state, where k is the maximal population size (carrying
capacity), to be updated in a sequential way as follows: (i)
the common pool is divided in randomly formed groups of
size N (i.e. N is the total number of individuals and empty
spaces in each group). The number of formed groups is
then |k/N|. (ii) In each one of the (non-empty) groups, a
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