Incremental graph pattern matching

Citation for published version:

Digital Object Identifier (DOI):
10.1145/1989323.1989420

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Incremental Graph Pattern Matching

Wenfei Fan 1,2 Jianzhong Li² Jizhou Luo² Zijing Tan³ Xin Wang¹ Yinghui Wu¹
¹University of Edinburgh ²Harbin Institute of Technology ³Fudan University
{wenfei@inf., x.wang-36@sms., y.wu-18@sms.) ed.ac.uk
{lijzh, luojizhou} @hit.edu.cn zjtan @fudan.edu.cn

Abstract

Graph pattern matching has become a routine process in emerging applications such as social networks. In practice a data graph is typically large, and is frequently updated with small changes. It is often prohibitively expensive to recompute matches from scratch via batch algorithms when the graph is updated. With this comes the need for incremental algorithms that compute changes to the matches in response to updates, to minimize unnecessary recomputation. This paper investigates incremental algorithms for graph pattern matching defined in terms of graph simulation, bounded simulation and subgraph isomorphism. (1) For simulation, we show that the incremental matching problem is unbounded, i.e., its cost is not determined by the size of the changes alone. (2) For bounded simulation, we show that the problem is unbounded even for unit updates and path patterns. (3) For subgraph isomorphism, we show that the problem is intractable and unbounded for unit updates and path patterns. (4) For multiple updates, we develop an incremental algorithm for each of simulation, bounded simulation and subgraph isomorphism. We experimentally verify that these incremental algorithms significantly outperform their batch counterparts in response to small changes, using real-life data and synthetic data.

Categories and Subject Descriptors: F.2 [Analysis of algorithms and problem complexity]: Nonnumerical algorithms and problems [pattern matching]

General Terms: Theory, Algorithms, Experimentation

Keywords: bounded incremental matching algorithms, affected area

1. Introduction

Graph pattern matching is a routine process in a variety of applications, e.g., computer vision, knowledge discovery, biology, cheminformatics, dynamic network traffic, intelligence analysis and social networks. It is often defined in terms of subgraph isomorphism [26, 28], graph simulation [1, 3] or bounded simulation [8]. Given a pattern graph \(P \) and a data graph \(G \), graph pattern matching is to find the set \(M(G,P) \) of matches in \(G \) for \(P \). For subgraph isomorphism, \(M(G,P) \) is the set of all subgraphs of \(G \) that are isomorphic to the pattern \(P \). For (bounded) simulation, \(M(G,P) \) consists of a unique maximum match, a relation defining edge-to-edge (edge-to-path) mappings.

Graph pattern matching is costly: NP-complete for subgraph isomorphism [11], cubic-time for bounded simulation [8], and quadratic-time for simulation [14]. In practice, a data graph \(G \) is typically large, and moreover, is frequently updated. This is particularly evident in, e.g., social networks [12], Web graphs [18] and traffic networks [4]. It is often prohibitively expensive to recompute the matches starting from scratch when \(G \) is updated. These highlight the need for incremental algorithms to compute matches.

Given a pattern graph \(P \), a data graph \(G \), the matches \(M(G,P) \) in \(G \) for \(P \) and changes \(\Delta G \) to \(G \), the incremental matching problem is to compute changes \(\Delta M \) to the matches such that \(M(G,P \oplus \Delta G) = M(G,P) \oplus \Delta M \), where (1) \(\Delta G \) consists of a set of edges to be inserted into or deleted from \(G \), and (2) operator \(\oplus \) applies changes \(\Delta S \) to \(S \), where \(S \) is a data graph \(G \) or matching results \(M \).

As opposed to batch algorithms that recompute the new output from scratch, an incremental matching algorithm aims to minimize unnecessary recomputation and improve response time. Indeed, when the changes \(\Delta G \) to \(G \) are small, the increment \(\Delta M \) to the matches is often small as well, and is much less costly to find than recompute the entire \(M(G,P \oplus \Delta G) \). While real-life graphs are constantly updated, the changes are typically minor; for example, only 5% to 10% of nodes are updated weekly in a Web graph [18].

Example 1: Figure 1 depicts graph \(G \) (excluding edges \(e_1 - e_5 \)), a fraction of FriendFeed (a social networking service http://friendfeed.com/). Each node in \(G \) denotes a person, carrying attributes such as name (Ann, Pat) and job (cto, db). Also shown in Fig. 1 are graph patterns \(P_1 \) and \(P_2 \):

1. Pattern \(P_1 \) is to find a bounded simulation relation [8],
including CTOS who are connected to a DB researcher within 2 hops and a biologist within 1 hop; moreover, the DB researcher has to reach a biologist within 1 hop and a CTOS via a path of an arbitrary length. Here \(M(P_i, G) \) is the relation \(\{(\text{CTO}, \text{Ann}), (\text{DB}, \text{Pat}), (\text{DB}, \text{Dan}), (\text{Bio}, \text{Bill}), (\text{Bio}, \text{Mat})\} \).

(2) Pattern \(P_2 \) is to find all subgraphs of \(G \) that are isomorphic to \(P_2 \). Here the set \(M(P_2, G) \) consists of a single subgraph of \(G \) induced by nodes Ann, Pat and Bill.

Suppose that the graph \(G \) is updated by inserting five edges \(e_1 \ldots e_5 \), denoted by \(\Delta G \) (see Fig. 1). Then (1) \(\Delta G \) incurs increment \(\Delta M_1 \) to \(M(P_1, G) \), containing two new pairs (CTO, Don) and (Bio, Tom). This yields the new output \(M(P_1, G \oplus \Delta G) = M(P_1, G) \cup \Delta M_1 \). (2) The new matches \(M(P_2, G \oplus \Delta G) \) is \(M(P_2, G) \cup \Delta M_2 \), where \(\Delta M_2 \) consists of the subgraph of \(G \oplus \Delta G \) induced by edges \(e_2 \ldots e_5 \).

When \(\Delta G \) is small, the increment \(\Delta M_1 \) (resp. \(\Delta M_2 \)) to the old output \(M(P_1, G) \) (resp. \(M(P_2, G) \)) is also small. When \(G \) is large as commonly found in practice, it is less costly to find \(\Delta M_1 \) (resp. \(\Delta M_2 \)) than recompute the entire \(M(P_1, G \oplus \Delta G) \) (resp. \(M(P_2, G \oplus \Delta G) \)) from scratch.

As suggested by the example, we can cope with the dynamic nature of social networks and Web graphs by computing matches once on the entire graph via a batch algorithm, and then incrementally identifying their changes in response to updates. That is, we find new matches by making maximal use of previous computation, without paying the price of the high complexity of graph pattern matching.

As argued in [22], the traditional complexity analysis for batch algorithms is no longer adequate for incremental algorithms. Indeed, it is not very informative to define the cost of an incremental algorithm as a function of the size of the input. Instead, one should analyze the algorithms in terms of \(|\text{CHANGED}|\), which indicates the size of the changes in the input and output (see Section 2 for details). It represents the updating costs that are inherent to the incremental matching problem itself. An incremental algorithm is said to be optimal if it is in \(O(|\text{CHANGED}|) \) time, which characterizes the amount of work that is absolutely necessary to perform for any incremental algorithm. An incremental matching problem is said to be bounded if there exists a bounded incremental algorithm, and unbounded otherwise.

While there has been a host of work on graph pattern matching (see [5, 10] for surveys), much less is known about the incremental matching problem.

Contributions. This work makes a first effort to investigate incremental graph pattern matching. For matching defined in terms of graph simulation, bounded simulation or subgraph isomorphism, we show that the incremental matching problem is bounded (or unbounded), and provide effective incremental algorithms. We consider unit update, i.e., a single-edge deletion or insertion, and batch updates, i.e., a list of edge deletions and insertions mixed together.

(1) For matching with graph simulation [1, 3] we show the following. (a) The incremental matching problem is bounded for unit deletions and general graph patterns, and for unit insertions and DAG patterns. Better still, we present the first optimal algorithms in these settings, in \(O(|\text{CHANGED}|) \) time. (b) In contrast, the problem is unbounded for unit insertions and general patterns. (c) Nevertheless, we provide an efficient incremental algorithm and effective optimization techniques for batch updates and general patterns.

(2) When it comes to matching based on bounded simulation [8], we show that the incremental matching problem is already unbounded for unit updates and path patterns, i.e., patterns consisting of a single path. Nevertheless, we develop an efficient incremental matching algorithm for bounded simulation and batch updates. The algorithm employs weighted landmark vectors, an extension of landmarks [19], to help us find shortest paths between node pairs in a data graph. In addition, we provide a lazy incremental algorithm that updates the landmarks only when necessary.

(3) For matching based on subgraph isomorphism, we show that the incremental matching problem is intricate: it is (a) unbounded for unit updates and path patterns, and (b) NP-complete even for deciding whether there exists a subgraph of a data graph that is made isomorphic to a path pattern by a unit update. As a first step towards incremental computation of subgraph isomorphism, (c) we develop an incremental algorithm for batch updates which, as verified by our experimental study, substantially outperforms VF2 [6, 9], a batch algorithm that is reported as the best for pattern matching with subgraph isomorphism, when changes are small.

(4) Using both real-life data (YouTube and a citation network [27]) and synthetic data, we experimentally evaluate the efficiency of our incremental algorithms. We find that for batch updates and general (possibly cyclic) patterns, our incremental algorithms perform significantly better than their batch counterparts, when data graphs are changed up to 30% for simulation, 10% for bounded simulation, and 21% for subgraph isomorphism. In addition, our algorithms consistently outperform the few known incremental algorithms for (bounded) simulation [8, 25]. We contend that our incremental techniques yield a promising method for graph pattern matching in evolving real-life networks.

Organization. Section 2 presents graph pattern matching and its incremental matching problem. The incremental matching problem for simulation, bounded simulation and subgraph isomorphism is studied in Sections 3, 4 and 5, respectively. Section 6 presents our experimental results, followed by open issues for future work in Section 7.

Related Work. Incremental algorithms have proved useful in a variety of areas (see [23] for a survey). However, few results are known about incremental graph pattern matching, far less than their batch counterparts [5, 10]. About incremental simulation algorithms we are only aware of [24, 25], which are mostly developed for verification and model checking. Incremental bisimulation is studied in [24]. In contrast to our work, it considers bisimulation on a single graph, which is quite different from incremental simulation across two graphs (a pattern and a data graph). Simulation is investigated in [25] based on HORN-SAT, which supports incremental updates on a single graph. However, (a) it does not consider whether the incremental simulation problem is bounded, and (b) its incremental techniques requires to update reflections and construct an instance of size \(O(|E|) \), where \(|E|\) is the number of edges of the graph. In contrast, our algorithms for incremental simulation do not have to maintain large auxiliary structures (Section 3).

Closer to our work is [8]. For bounded simulation, it shows
that the incremental matching problem is unbounded for batch updates and DAG patterns, and gives cubic-time incremental algorithms for DAG patterns. It differs from our work in the following. (a) We show a stronger result: the problem is already unbounded for unit updates and path patterns. (b) For possibly cyclic patterns, we provide an incremental algorithm. In contrast to the algorithm of [8] that requires an $O(|V|^2)$-space matrix, where V is the set of nodes in a data graph, our algorithm significantly reduces the space cost by using weighted landmark vectors (Section 4). As verified by our experimental study, our algorithm scales better than the algorithm of [8]. (c) We also study the incremental matching problem for simulation and subgraph isomorphism, which are not considered in [8].

Incremental algorithms have been studied for incremental subgraph search [30, 26]. An algorithm is developed in [30] to approximately determine whether a pattern is contained in graphs in a graph streams, based on an index of exponential size. An exponential-time incremental algorithm for inexact subgraph isomorphism is given in [26], which is claimed to be bounded. We show that the incremental matching problem for subgraph isomorphism is unbounded even for unit updates and path patterns, and provide a simple incremental algorithm that outperforms VF2 [6] (Section 5).

There has been work on incremental view maintenance for semi-structured data modeled as a graph (e.g., [2, 32]). Assuming that data has a tree structure, [32] maintains only the nodes of views. Incremental maintenance of view graphs is studied in [2], which generates update statements in Lorel in response to updates. There has also been a host of work on relational view maintenance (see [13] for a collection of readings). Unfortunately, as pointed out by [24], the incremental matching problem is non-monotonic in nature for simulation (similarly for bounded simulation and subgraph isomorphism), and hence cannot be reduced to incremental evaluation of logic programs with stratified negation. As a result, view maintenance techniques cannot be directly used in incremental graph pattern matching.

Our incremental algorithms for bounded simulation employ weighted landmarks, a nontrivial revision of landmarks proposed in [19]. We utilize the k-betweeness centrality metric of [31] for landmark selections in our algorithms, and develop incremental maintenance algorithms for weighted landmarks. In our experimental study we take into account the densification law [17] and relation generation models [12], which simulate the evolution of real-life networks.

2. Batch and Incremental Matching

In this section we first present data graphs and graph patterns, and then define graph pattern matching. Finally we state the incremental matching problem.

2.1 Data Graph and Graph Patterns

We start with data graphs and pattern graphs.

Data graphs. A data graph $G = (V, E, f_A)$ is a directed graph, where (1) V is the set of nodes; (2) $E \subseteq V \times V$, in which (v, v') denotes an edge from node v to v'; and (3) $f_A(\cdot)$ is a function that associates each node v in V with a tuple $f_A(v) = (A_1 = a_1, \ldots, A_n = a_n)$, where a_i is a constant, and A_i is referred to as an attribute of v, carrying the content of the node, e.g., label, keywords, blogs, rating.

We shall use the following notations for data graphs G.

(1) A path ρ from node v to v' in G is a sequence of nodes $v = v_0, v_1, \ldots, v_n = v'$ such that $(v_{i-1}, v_i) \in E$ for every $i \in [1, n]$. The length of path ρ, denoted by $\text{len}(\rho)$, is n, i.e., the number of edges in ρ. The path ρ is said to be nonempty if $\text{len}(\rho) > 1$. Abusing notations for trees, we refer to v_i as a child of v_{i-1} (or v_{i-1} as a parent of v_i), and v_j as a descendant of v_{i-1} for $i, j \in [1, n]$ and $i < j$. (2) The distance between node v and v' is the length of the shortest paths from v to v', denoted by $\text{dist}(v, v')$.

Pattern graphs. A b-pattern is a labeled directed graph defined as $G_P = (V_P, E_P, f_P, f_v)$, where (1) V_P and E_P are the set of pattern nodes and the set of pattern edges, respectively, as defined for data graphs; (2) $f_P(\cdot)$ is a function defined on V_P such that for each node u, $f_P(u)$ is the predicate of u, defined as a conjunction of atomic formulas of the form $A \text{ op } a$; here A denotes an attribute, a is a constant, and op is a comparison operator, $<, \leq, \neq, >, \geq$; and (3) $f_v(\cdot)$ is a function on E_P such that for each edge (u, u'), $f_v(u, u')$ is either a positive integer k or a symbol *.

Intuitively, the predicate $f_P(u)$ of a node u specifies a search condition. An edge (u, u') in G_P is to be mapped to a path ρ from v to v' in a data graph G. As will be seen shortly, $f_v(u, u')$ imposes a bound on the length of ρ.

We refer to G_P as a normal pattern if for each edge $(u, u') \in E_P$, $f_v(u, u') = 1$. Intuitively, a normal pattern enforces edge to edge mappings, as found in graph simulation and subgraph isomorphism.

Example 2: The social network G of Fig. 1 is a data graph, where each node has two attributes, name and job. The node (Ann, “cto”) denotes a person with (name = “Ann”, job = “cto”). The graph P_1 in Fig. 1 depicts a b-pattern. Each edge in P_1 is labeled with either a bound or *, specifying connectivity as described in Example 1. Graph P_2 is a normal pattern, where each edge is labeled 1 (not shown).

We shall also consider special patterns, such as DAGs, i.e., when the patterns are acyclic, and path patterns, i.e., when the patterns consist of a single path.

2.2 Graph Pattern Matching

We next define metrics for graph pattern matching.

Consider a b-pattern $G_P = (V_P, E_P, f_P, f_v)$ and a data graph $G = (V, E, f_A)$, we say that a node v in G satisfies the search condition of a pattern node u in G_P, denoted as $v \sim u$, if for each atomic formula `A op a' in $f_P(u)$, there exists an attribute A in $f_A(v)$ such that $v.A \text{ op } a$.

Subgraph isomorphism. For a normal pattern G_P and a subgraph $G' = (V', E')$ of G, we say that G' matches G_P, denoted as $G_P \subseteq_{\text{iso}} G'$, if there exists a bijection h from V_P to V' such that (1) $u \sim h(u)$ for each $u \in V_P$ (and (2) for each pair (u, u') of nodes in G_P, $(u, u') \in E_P$ iff $(h(u), h(u')) \in E'$.

We use $\text{Iso}(G_P, G)$ to denote the set of all subgraphs of G that are isomorphic to G_P.

Bounded simulation [8]. The data graph G matches a b-pattern G_P via bounded simulation, denoted by $G_P \subseteq_{\text{sim}} G$, if there exists a binary relation $S \subseteq V_P \times V$ such that (1) for each $u \in V_P$, there exists $v \in V$ such that $(u, v) \in S$; (2) for each $(u, v) \in S$, (a) $u \sim v$, and (b) for each edge (u, u') in E_P, there exists a nonempty path p from v to v' in G such that $(u', v') \in S$, and $\text{len}(p) \leq k$ if $f_v(u, u') = k$.

We refer to S as a match in G for G_P.
Intuitively, \((u, v) \in S\) if (1) the data node \(v\) in \(G\) satisfies the search condition specified by \(f_p(u)\) in \(G_P\); and (2) each edge \((u, u')\) in \(G_P\) is mapped to a nonempty path \(\rho\) from \(v\) to \(v'\) in \(G\), such that \(v, v'\) match \(u, u'\), respectively; and moreover, when \(f_e(u, u') = k\), it indicates a bound on the length of \(\rho\), i.e., \(v\) is connected to \(v'\) within \(k\) hops. When it is \(*\), \(\rho\) can be a nonempty path of an arbitrary length.

It has been shown in [8] that if \(G_P \subseteq_{bsim} G\), then there exists a unique maximum match in \(G\) for \(G_P\). In light of this, we refer to the maximum match simply as the match in \(G\) for \(G_P\), denoted as \(M_{\text{match}}(G_P, G)\).

Graph simulation [1, 14]. Graph simulation is a special case of bounded simulation when \(G_P\) is a normal pattern, i.e., when \(f_e(u, u') = 1\) for all \((u, u') \in E_P\). That is, it only allows edges in the pattern to be mapped to edges in the data graph. We say that \(G\) matches \(G_P\) via simulation, written as \(G_P \subseteq_{\text{match}} G\), if there exists such a match in \(G\) for \(G_P\). When \(G_P \subseteq_{\text{match}} G\), there exists a unique maximum match.

Given a pattern (\(b\)-pattern) \(G_P\) and a data graph \(G\), the pattern matching problem is to compute \(M(G_P, G)\). More specifically, for subgraph isomorphism, the batch computation is to find all the subgraphs \(G_P\) that are isomorphic to \(G_P\). For (bounded) simulation, it is to find the unique maximum match, if \(G_P \subseteq_{\text{match}} G\) (or \(G_P \subseteq_{bsim} G\)).

Example 3: To see the differences between the three matching metrics given above, consider pattern graphs \(P_3\), \(P_4\) and data graphs \(G_2\), \(G_3\) and \(G_4\) shown in Fig. 2, where a node from a data graph satisfies the condition of a pattern node if they have the same label. Observe the following.

1. \(P_3 \subseteq_{\text{match}} G_2\). In contrast, no subgraph of \(G_3\) or \(G_4\) is isomorphic to \(P_3\), i.e., \(M_{\text{match}}(P_3, G_i) = \emptyset\) for \(i \in [3, 4]\).
2. \(P_3 \subseteq_{\text{match}} G_3\) and \(P_3 \subseteq_{bsim} G_3\). Note that a simulation match is a relation that maps a pattern node to multiple nodes in a data graph, as opposed to bijective functions for subgraph isomorphism. For example, node \(C\) in \(P_3\) is mapped to the two \(C\) nodes in \(G_3\). In contrast, \(G_4\) does not match \(P_3\) via simulation, i.e., \(M_{bsim}(P_3, G_4) = \emptyset\), as the node \(A\) is not adjacent to \(C\) in \(G_4\), as required in \(P_3\).
3. All the data graphs of Fig. 2 match the \(b\)-pattern \(P_3\) via bounded simulation. Bounded simulation further relaxes edge-to-edge mappings by allowing edge-to-path mappings, subject to bounds on pattern edges. In particular, both \(C\) nodes in \(G_4\) are valid matches of the node \(C\) in \(P_4\).

2.3 Incremental Graph Pattern Matching

In contrast to its batch counterpart, the incremental matching problem takes as input a data graph \(G\), a pattern (\(b\)-pattern) \(G_P\), the matches \(M(G_P, G)\) in \(G\) for \(G_P\), and changes \(\Delta G\) to \(G\). It finds changes \(\Delta M\) to the old matches such that \(M(G_P, G \oplus \Delta G) = M(G_P, G) \oplus \Delta M\). That is, when the data graph \(G\) is updated, it computes new matches by leveraging information from the old matches.

Result graphs. The result graph of a pattern \(G_P\) in a data graph \(G\) is a graph representation of the matches \(M(G_P, G)\). It is a graph \(G_r = (V_r, E_r)\) defined as follows.

1. For subgraph isomorphism, \(G_r\) is the union of all the subgraphs \(G_P'\) of \(G\) in \(M_{\text{match}}(G_P, G)\).
2. For bounded simulation, \((a)\) For subgraph isomorphism, \(G_4\) is the union of all the nodes \(v\) in \(G\) such that \((u, v) \in M_{bsim}(G_P, G)\), i.e., \(v\) is a match of some pattern node \(u\) in the maximum match; \((b)\) for each edge \((u_1, u_2)\) in \(E_P\), there is an edge \((v_1, v_2)\) in \(E_r\) iff \((u_1, v_1)\) and \((u_2, v_2)\) are in \(M_{bsim}(G_P, G)\); and there exists a nonempty path \(\rho\) from \(v_1\) to \(v_2\) such that \(\text{len}(\rho) \leq k\) if \(f_e(u_1, u_2) = k\), and \(0 < \text{len}(\rho)\) otherwise. That is, the edge \((v_1, v_2)\) indicates the path in \(G\) to which the pattern edge \((u_1, u_2)\) is mapped.

Similarly the result graph is defined for simulation.

Example 4: Consider the \(b\)-pattern \(P_3\) and data graph \(G\) of Fig. 1. Recall that \(M_{bsim}(P_3, G)\) for bounded simulation is \{\((\text{cto}, \text{Ann}), (\text{db}, \text{Pat}), (\text{db}, \text{Dan}), (\text{bio}, \text{Bill}), (\text{bio}, \text{Mat})\}\).

Affected areas. We characterize the changes \(\Delta M\) in the matches in terms of the affected area in the result graph. Let \(G_r\) and \(G_r'\) be the result graphs of \(G_P\) in \(G\) and \(G \oplus \Delta G\), respectively. Then the affected area \((\text{AFF})\) of \(G_r\) by \(\Delta G\) is the difference between \(G_r\) and \(G_r'\), i.e., the changes in both nodes and edges (inserted or deleted) inflicted by \(\Delta G\).

Example 5: Consider the graph \(G\) and the pattern \(P_3\) of Fig. 1. When a new edge \(e_2\) is inserted into \(G\), i.e., \(\Delta G = \{e_2\}\) is the insertion of edge \(e_2\), the new result graph \(G_{r_2}\) of \(P_3\) is shown in Fig. 3. The affected area \((\text{AFF})\) includes two new nodes \(\text{Don}\) and \(\text{Tom}\), and the new edges attached to them, i.e., \((\text{Don}, \text{Pat})\), \((\text{Pat}, \text{Don})\), \((\text{Don}, \text{Tom})\) (\(\text{Don}, \text{Dan})\), and \((\text{Don}, \text{Dan})\). It represents the changes \(\Delta M\), which adds the new pairs (\(\text{cto}, \text{Don}\)) and (\(\text{bio}, \text{Tom}\)) to \(M_{bsim}(P_3, G)\).

When \(G \oplus \Delta G\) is further changed by inserting edges \(e_1, e_3, e_4\) and \(e_5\), the new result graph is \(G_{r_3}\). Here \((\text{AFF})\) contains nodes \(\text{Don}\), \(\text{Tom}\), along with all the new edges connected to them. Compared to \(G_{r_2}\), although four new edges are added, \((\text{AFF})\) is increased by only one edge (\(\text{Dan}, \text{Tom}\)).

Now consider the pattern \(P_2\) of Fig. 1, for subgraph isomorphism. The result graph of \(P_2\) in \(G\) is the left subgraph of \(G_{r_4}\) shown in Fig. 3. When \(\Delta G\) is to insert edges \(e_1, e_2, e_3, e_4\) and \(e_5\), \((\text{AFF})\) is the subgraph of \(G \oplus \Delta G\) induced by edges \(e_2, e_3, e_4, e_5\), which is made isomorphic to \(P_2\) by \(\Delta G\).

Complexity. We define \(|\text{CHANGED}| = |\Delta G| + |\text{AFF}|\), which
3. Incremental Simulation Matching

We now study the incremental simulation problem, referred to as IncSim. Given a normal pattern \(G_P \), a data graph \(G \), a result graph \(G_r \) (depicting the unique maximum simulation \(M_{sim}(G_P, G) \)), and changes \(\Delta G \) to \(G \), IncSim is to compute the changes to result graph \(G_r \), which represents \(\Delta M \) such that \(M_{sim}(G_P, G \oplus \Delta G) = M_{sim}(G_P, G) \oplus \Delta M \).

The main results of this section are as follows.

Theorem 1: The incremental simulation problem is

1. unbounded even for unit updates and general patterns;
2. bounded for (a) single-edge deletions and general patterns, and (b) single-edge insertions and DAG patterns, within an optimal time \(O(|\text{AFF}|) \); and
3. in \(O(|\text{AFF}|(G_P|\text{AFF}^1| |\text{AFF}^2|)) \) time for batch updates and general patterns.

To the best of our knowledge, Theorem 1 presents the first results for IncSim. While the problem is unbounded for batch updates and general patterns, its complexity is independent of the size of the data graph: it depends only on the size of the changes in the input and output and the size of pattern \(G_P \), which is typically small in practice.

For (1), we can verify that IncSim is unbounded for a single-edge insertion and a pattern with one cycle. Hence, IncSim is also unbounded for batch updates and general patterns. In the rest of the section we show (2) for unit updates (Section 3.1) and (3) for batch updates (Section 3.2).

3.1 Incremental Simulation for Unit Updates

We first provide optimal incremental algorithms for (a) unit deletions and general patterns and (b) unit insertions and DAG patterns. We then develop an efficient incremental algorithm for unit insertions and general patterns.

Unit deletions. The deletion of an edge from \(G \) may only reduce matches from \(M_{sim}(G_P, G) \), i.e., it leads to the removal of nodes and edges from the result graph \(G_r \). We identify those edges in the data graph \(G \) whose deletions affect \(G_r \), referred to as ss edges, as follows. (1) The match (resp. candidate) set for a pattern node \(u \in V_P \), denoted as \(\text{mat}(u) \) (resp. \(\text{can}(u) \)), is the set of the nodes \(v \in V \) that satisfy the predicate of \(u \) and can (resp. but does not) match \(u \). (2) An edge \((v', v)\) in the graph \(G \) is an ss edge for a pattern edge \((u', u)\) if \(v' \in \text{mat}(u') \) and \(v \in \text{mat}(u) \). One can verify that the result graph \(G_r \) contains all the ss edges.

It suffices to consider ss edges for edge deletions:

Proposition 2: Given a normal pattern \(G_P \) and a data graph \(G \), only the deletions of ss edges for some pattern edge in \(G \) may reduce the matches of \(G_P \).

Example 6: Consider the normal pattern \(P_2 \) and the data graph \(G \) of Example 1. Observe that \(P_2 \subseteq G \), where \(M_{sim}(P_2, G) \) is the relation \{\((\text{cto}, \text{Ann}), (\text{db}, \text{Pat}), (\text{db}, \text{Dan}), (\text{bio}, \text{Bill}), (\text{bio}, \text{Mat})\)\}. The result graph \(G_{r5} \) is shown in Fig. 4. Suppose that the graph \(G \) is updated by deleting \(e_6 = ((\text{Pat}, \text{"db"}), (\text{Bill}, \text{"bio"})) \), which is an ss edge for the pattern edge \((\text{db}, \text{Bio})\) and is also in \(G_{r5} \). When \(e_6 \) is removed, the node \((\text{Pat}, \text{"db"})\) is no longer a valid match for the pattern node db, since there is no edge from \((\text{Pat}, \text{"db"})\) to a node that can match the pattern node Bio.

Based on Proposition 2, we give an incremental algorithm for deleting an edge \(e = (u', v) \), denoted by IncMatch− and shown in Fig. 5. The algorithm first checks whether \(e \) is an ss edge for a pattern edge. If not, the result graph \(G_r \) is unchanged (line 1). Otherwise IncMatch− finds and propagates all the matches that are no longer valid due to the removal of \(e \), until the affected area AFF is identified and \(G_r \) is updated accordingly (lines 2-12). To do this, as auxiliary structures we maintain mat\((u)\) for each pattern node \(u \) as described earlier, and moreover, a matrix \(M \) such that for each pattern edge \(p_e = (u', v) \) and each node \(v' \) in mat\((u')\), \(M(e_p, v') \) is the number of the children of \(v' \) that match \(u \). More specifically, IncMatch− uses a stack eset (line 2) to store edges that may be in AFF. For each pattern edge \(e_p = (u', v) \) to which the ss edge \(e \) is mapped, it updates and checks \(M(e_p, v') \) to determine whether \(v' \) still has children to simulate \(u \) (line 4-7). If not, then \(v' \) is removed from mat\((u')\) and from \(G_r \) along with all the edges \((v', v'')\) connected to it (lines 8-10). The removed edges \((v', v'')\) may put \(v'' \) into AFF, and are pushed into eset for further checking (line 9). If there is a pattern node that has no valid matches, then \(G \setminus \{e\} \) no longer matches \(G_P \), and the result graph \(G_r \) is empty (line 10). This process continues until all the edges and nodes that may enter AFF are examined (lines 3-10).

Example 7: Recall \(P_2 \) and \(G_{r5} \) from Example 6. When \(e_6 \) is removed, IncMatch− finds that no child of node Pat can match Bio. Thus Pat is no longer a match. The edge \((\text{Ann}, \text{Pat})\), an ss edge for \((\text{cto}, \text{db})\), is then checked. Since Ann has children Dan and Bill that match db and bio, respectively, IncMatch− updates \(G_{r5} \) by removing Pat and its three edges, which constitute AFF, as marked in Fig. 4.

Correctness & complexity. (1) Algorithm IncMatch− correctly updates the result graph \(G_r \) since it only removes nodes and their edges that are no longer valid matches in \(G_r \). (2) It runs in \(O(|\text{AFF}|) \) time by leveraging index structures (not shown), because it only visits those nodes \(v' \) having a child that becomes an invalid match. Indeed, if \(v' \) is still a valid match for a node \(u' \) in a pattern edge \(e_p = (u', v) \), then matrix entry \(M(e_p, v') \) is not 0, and IncMatch− never

Table 1: Notations: Incremental matching

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<_{\text{sim}})</td>
<td>subgraph isomorphism</td>
</tr>
<tr>
<td>(\sim)</td>
<td>bounded simulation</td>
</tr>
<tr>
<td>(\sim)</td>
<td>graph simulation</td>
</tr>
<tr>
<td>(M(G_P, G))</td>
<td>matches in (G) for (G_P)</td>
</tr>
<tr>
<td>(M_{\text{sim}}(G_P, G))</td>
<td>matches in (G) for (G_P), for b-patterns</td>
</tr>
<tr>
<td>(M(\text{AFF}); \Delta)</td>
<td>matches in (G) for (\text{AFF}), for normal patterns</td>
</tr>
<tr>
<td>(</td>
<td>\text{CHANGED}</td>
</tr>
</tbody>
</table>

![Figure 4: IncSim in various updates](image-url)
Input: Pattern G_P, data graph G, the result graph $G_r = (V_r, E_r)$, and an edge $e = (v', v)$ to be deleted from G.
Output: The updated result graph G_r.
1. if $e = (v', v) \not\in E_r$ then delete e from G and return G_r;
2. stack $eset := \emptyset$; $eset.push(e)$;
3. while $eset$ is not empty do
 4. edge $e := eset.pop();$
5. for all $e_p = (u', u)$ that $e = (v', v)$ can match do
6. $M(e_p, v') := M(e_p, v') + 1$;
7. if $M(e_p, v') = 0$ then
8. for all $e' = (v'', v')$ in E_r do
9. $E_r := E_r \{ e'' \}$; $eset.push(e'');$;
10. $V_r := V_r \{ v' \}$; mat($u') := mat($u') \{ v' \}$;
11. if mat($u) = \emptyset \$e then
12. return G_r.

Figure 5: Algorithm IncMatch$^-$ processes it; otherwise IncMatch$^-$ identifies v' and visits at most all the ss edges and nodes within 1 hop of v'.

Unit insertions. In contrast to edge deletions, inserting edges into a data graph G may only add new matches to $M_{on}(G_r, G)$, i.e., it may only add new nodes and edges to the result graph G_r. There are two groups of edges, that, when added to G, may yield new matches, referred to as cc edges and cs edges. A newly inserted edge (v', v) is a cc (resp. cs) edge for a pattern edge (u', u) if $v' \in can(u')$ and $v \in mat(u)$ (resp. $v \in can(u)$). One can verify the following:

Proposition 3: (1) For a DAG pattern G_P, only insertions of cs edges into a data graph G may increase matches of G_P. (2) For a general pattern G_P, only insertions of cs or cc edges into G may add new matches of G_P. (3) Moreover, cc edges alone only add new matches for pattern nodes in some strongly connected component (SCC) of G_P.

Example 8: Consider again P_2 and G of Fig. 1. Suppose that after the deletion of edge e_e, edge e_f from Pat to Mat is inserted into G, which is a cc edge for the pattern edge (DB, Bio). This yields a new match Path for pattern node DB, and the new result graph G_r is depicted in Fig. 4.

Capitalizing on Proposition 3, below we propose incremental algorithms to process a single-edge insertion into general data graphs, denoted by IncMatch^+_dag and IncMatch^+_+dag, for DAG patterns and general patterns, respectively.

Unit insertions and DAG patterns. Algorithm IncMatch^+_dag (not shown) identifies those nodes that yield a new match upon an edge insertion, and propagates the new matches until the entire AFF is found. As opposed to IncMatch$^-$, (1) for each pattern node u, IncMatch^+_dag maintains a set $can(u)$ of candidates rather than $mat(u)$, and (2) instead of using a counter for each data node, IncMatch^+_dag maintains a small list L of pattern nodes of size $O(|V_p|)$ for each $v' \in can(u')$, consisting of the children u of u' that have no match in the children of v'. When a cc edge (v', v) is inserted, a pattern node n is removed from the list L if a child v of v' is a match of u. Once L is empty, v' becomes a match of u', reducing the list of its parents. IncMatch^+_dag propagates the new matches following a depth-first, bottom-up topological order, until the result graph G_r can no longer be changed.

One can verify that IncMatch^+_dag is correct and is in $O(|AFF|)$ time, similar to its counterparts for IncMatch$^-$.

Unit insertions and general patterns. When it comes to cyclic graph patterns, it is more challenging to process edge insertions. We present algorithm IncMatch$^+_+$ in Fig. 6.

Input: Pattern, data graph $G = (V, E, f_A)$, the result graph $G_r = (V_r, E_r)$, and an edge $e = (v', v)$ to be added to G.
Output: The updated result graph G_r.
1. $AFF_{cs} := \{(v', v)\}$ if (v', v) is a cs edge for a $(u', u) \in E_P$;
2. $AFF_{cs} := \{(v', v)\}$ if (v', v) is a cc edge for a $(u', u) \in E_P$;
3. propCS(AFF_{cs}, IncMatch$^+$, G_r);
4. propCC(AFF_{cs}, AFF$^+_+$, G_r);
5. propCS(AFF$^+_+$, AFF$^+_+$, G_r);
6. return G_r.

Procedure propCC
Input: A set AFF$^+_+$, pattern G_P, graph G, and the result graph G_r.
Output: The updated result graph G_r, AFF$^+_+$ and AFF$^+_+$.
1. construct the SCC graph G_s of G_P;
2. for each SCC scc_i of G_s do
3. $AFF_{cc} := \{(u', v')(u', v) \in cc\}$ in scc_i;
4. if $AFF_{cc} \not= \emptyset$ then
5. for each node $u \in scc_i$ do $mat'(u) := can(u)$;
6. compute the matches for subgraph scc_i in AFF$^+_+$;
7. if $mat'(u) \not= \emptyset$ then Update G_r, AFF$^+_+$ and AFF$^+_+$;
8. return G_r.

Figure 6: Algorithm IncMatch$^+_+$.

The following Proposition 3, IncMatch$^+_+$ first identifies AFF$^+_+$ and AFF$^+_+$, i.e., all the cc and cs edges that may introduce new matches when an edge e is inserted into the data graph G (lines 1-2). It then does the following. (1) It invokes procedure propCS to find all new matches added by the insertion of cs edges (line 3). Note that new matches generated in this step reduces cc edges. (2) It then uses procedure propCC to detect new matches formed in new SCCs in G_r consisting of all cc edges (line 4), which correspond to SCCs of G_P. (3) Since new cc edges may be generated in step (2), IncMatch$^+_+$ invokes propCS again to detect any new match (line 5). After these three phases no new match could be generated, and the updated result graph G_r is returned (line 6).

We next present the procedures used by IncMatch$^+_+$. Procedure propCS (omitted) is similar to IncMatch^+_dag, it first identifies new matches added by AFF$^+_+$, and then inductively checks their parents for propagation of the new matches. Procedure propCC is given in Fig. 6. It detects those new matches added only by cc edges, corresponding to SCCs in G_P. It first constructs a graph G_s for G_P, in which each node is an SCC (line 1). For each SCC node in G_s, that contains at least a pattern edge, propCC checks whether there exists a new match formed by the cc edges (lines 3-6). If new matches are found, G_r is updated by including the new nodes and edges (line 7). After each SCC in G_s is examined (lines 2-7), the updated G_r is returned (line 8).

Correctness & Complexity. IncMatch$^+_+$ adds a new match v' to pattern node u' only if each child of u' can find a match in the children of v'. Moreover, IncMatch$^+_+$ always terminates, as the candidate sets are monotonically decreasing. One can verify that IncMatch$^+_+$ is in $O(|G_r||AFF| + |AFF|^2)$ time.

3.2 Incremental Simulation for Batch Updates

We next present IncMatch, an incremental simulation algorithm for general patterns and a set ΔG of edge deletions and insertions (batch updates). Its main idea is to (1) remove redundant updates as much as possible, and (2) handle multiple updates simultaneously rather than one by one.

Algorithm IncMatch is shown in Fig. 7. It maintains matrix M and pattern node list L used by IncMatch$^-$ and IncMatch$^+_+$, respectively. It first invokes procedure minDelta to reduce updates ΔG (line 1). It then collects for each pattern edge e all its ss edges, and handles edge deletions to
Input: Pattern G_P, data graph G, the result graph G_r, and batch updates ΔG.
Output: The updated result graph G_r.
1. $\text{minDelta}(\Delta G, G_P, G)$;
2. for each pattern edge e_P and its ss edges do
 3. iteratively identify and remove invalid matches; Update G_r;
3. for each SCC in G_P and related cc and cs edges do
 4. iteratively identify and add new matches; Update G_r;
5. return G_r;

Procedure minDelta
Output: The reduced ΔG
1. for each edge e to be inserted do
2. if there is no edge $e_P \in E_P$ for which e is a cs or cc then
 3. update G and auxiliary structures; $\Delta G := \Delta G \setminus \{e\}$;
4. for each edge e to be deleted do
5. if there is no edge $e_P \in E_P$ for which e is an ss then
 6. update G and auxiliary structures; $\Delta G := \Delta G \setminus \{e\}$;
7. for each $e_P \in E_P$ and its cs and ss edges do
 8. reduce ΔG via combination and cancellation; Update G_r;
9. return ΔG;

Figure 7: Algorithm IncMatch
identify invalid matches in AFF (lines 2-3). After the invalid matches are removed from G_r, IncMatch checks new matches formed by cs and cc edges, for each SCC of G_P (lines 4-5).
Procedure minDelta reduces ΔG, as shown in Fig. 7. It first removes all updates that do not inflict changes to the result, i.e., the updates of e that are not an ss, cs or cc edge for any pattern edge e_P (lines 1-6), by leveraging M and L. It then identifies and combines updates that “cancel” each others. Those include, for each pattern edge $e_P = (u', v)$, (a) insertions and deletions of ss edges from $v' \in \text{mat}(u')$, and (b) insertions and deletions of cs edges from $v' \in \text{can}(u')$. Indeed, for the same pattern edge e_P, if ss edges (v', v_1) and (v', v_2) are inserted and deleted from G in (a), then v' remains to be a valid match of u; similar for (b). Such updates are removed from ΔG. Updates that involve the same data node are combined such that they are processed only once in minDelta and IncMatch (lines 7-8).

Example 9: Recall P_2 and G of Fig. 1. Consider batch updates ΔG, which insert edges $e_1, e_2, e_3, e_4, e_5, e_7$ and delete e_6, where e_6 and e_7 are given in Examples 6 and 8, respectively. The result graph is depicted as $G_{r,7}$ in Fig. 4. Given these, IncMatch first invokes minDelta to reduce ΔG: (1) e_1 and e_5 are removed from ΔG as they do not yield increment to matches; (2) the deletion of e_6 and the insertion of e_7 cancel each other as they are both ss edges of the pattern edge (DB, Bio) for node Pat, which remains to be a match. After minDelta, ΔG contains the insertion of e_2, e_3, e_4.
Algorithm IncMatch then identifies the new match (Don, “CTO”) generated by the insertion of cs edges e_2, e_3 and e_4, and includes it in $G_{r,7}$. Observe that (1) the affected area AFF in $G_{r,7}$ consists of the new node (Don, “CTO”), the newly inserted and deleted edges, and the edges attached to (Don, “CTO”) from other matches in $G_{r,7}$; and (2) the node (Pat, “DBB”) remains to be a match, although it is affected twice by the deletion of e_6 and the insertion of e_7 (as discussed in Examples 6 and 8, respectively); IncMatch avoids the unnecessary recomputation by canceling these updates via minDelta, rather than process them one by one.

Correctness & Complexity. IncMatch is correct because (1) minDelta removes only those updates that have no impact on the final match; and (2) IncMatch handles updates along

Figure 8: Algorithm IncBMatch*
the same line as in IncMatch$-$ and IncMatch$+$, which are shown to be correct. One can also verify that IncMatch is in $O(|\Delta G|(|G_P| |AFF| + |AFF|^2))$ time for batch updates ΔG and general pattern G_P. In practice ΔG and G_P are typically small. This completes the proof of Theorem 1.

4. Incremental Bounded Graph Simulation
We next study the incremental bounded simulation problem, referred to as IncBSim. It takes as input a b-pattern G_P, a data graph G, a result graph G_r, depicting the unique maximum bounded simulation $M_{bsim}(G_P, G)$, and changes ΔG to G. It computes the changes to G_r, which represents ΔM such that $M_{bsim}(G_P, G + \Delta G) = M_{bsim}(G_P, G) \oplus \Delta M$.

The main results of this section are as follows.

Theorem 4: The incremental bounded simulation problem
(1) is unbounded even for unit updates and pattern patterns;
(2) is in $O(|\Delta G|(|AFF| \log |AFF| + |G_P| |AFF| + |AFF|^2))$ time for batch updates and general patterns.

As opposed to incremental simulation, IncBSim has to find out changes to mappings from edges to paths of possibly bounded lengths in response to updates, and is far more challenging. For (1), one can verify that IncBSim is already unbounded for a single-edge insertion and a pattern with a single edge, by reduction from the incremental single-source reachability problem, which is unbounded [22].

To show (2), we provide an incremental algorithm with the complexity given in Theorem 1. To keep track of paths of bounded lengths, we introduce a notion of weighted landmark vectors, an extension of landmarks [19], in Section 4.1. Based on the notion we develop the algorithm in Section 4.2.

In contrast to the algorithms of [8] that only work on DAG patterns and are in cubic-time, our algorithm is able to handle cyclic patterns, and is in quadratic-time in $|AFF|$ and $|\Delta G|$, independent of the size of data graph G. As remarked earlier, $|\Delta G|$ and G_P are typically small in practice.

4.1 Weighted Landmark Vectors
A landmark vector $lm = <v_1, \ldots, v_{|lm|}>$ for a data graph G is a list of nodes in G such that for each pair (u', v') of nodes
in G, there exists a node in lm that is on a shortest path from v^o to v', i.e., lm “covers” all-pair shortest distances.

As observed in [19], we can easily use a landmark vector to find the distance between two nodes in G as follows. (1) With each node v in G we associate two distance vectors of size $|lm|$: $\text{dist}_v = \langle \text{dis}(v, v_1), \ldots, \text{dis}(v, v_{|lm|}) \rangle$, and $\text{dist}_v = \langle \text{dis}(v', v_1), \ldots, \text{dis}(v', v_{|lm|}) \rangle$. (2) The distance $\text{dis}(v', v')$ from node v' to v' in G is the minimum value among the sums of $\text{dist}_v[i]$ of v' and $\text{dist}_v[i]$ of v' for $i \in [1, |lm|]$. This can be found by a distance query, denoted as $\text{dist}(v', v', lm)$, which performs at most $|lm|$ operations. In practice $|lm|$ is typically small and can even be treated as a constant [19].

There are multiple landmark vectors for a graph G. We want to use a “high-quality” one, with a small number of nodes that are not changed frequently when G is updated.

To capture this we define the weight of a landmark v as:

$$w(v) = \frac{\text{frq}(v)}{\text{deg}(v)} \cdot B_k(v)$$

where (1) deg is the degree of the node v; intuitively, the higher the total degree of the landmarks in a vector lm is, the less nodes lm needs; (2) $\text{frq}(v)$ indicates how frequent v and its edges are changed [18]; it is known that in real-life networks, nodes with high deg are changed more frequently [16]; and (3) B_k is the k-betweenness centrality for dynamic graphs [31], which is a normalized measurement for the number of shortest paths of length less than k in G that go through the node v. We use k_{min} to denote the maximum (finite) bound on the pattern edges in a given G_p.

A weighted landmark vector lm is a landmark vector with weight on each of its landmarks. The weight $w(lm)$ of lm is the sum of the weights of the landmarks in lm. Intuitively, the less $w(lm)$ is, the shorter and more stable lm is.

Example 10: Consider the data graph G for Example 1. A landmark vector lm for G is $\langle (\text{Ann}, \text{("Cto")}), (\text{Dan}, \text{("Db")}), (\text{Pat}, \text{("Dn")}), (\text{Ross}, \text{("Med")}) \rangle$. Observe that dist_v of Dan is $<1, 0, 2, \infty>$, and dist_v of Bill is $<1, 2, 1, \infty>$. Using these we can find that the distance from Dan to Bill is 2.

Suppose that Ann frequently updates her contacts, i.e., $\text{frq}(Ann)$ is high, while Bill seldom updates his contacts. Although $\text{deg}(Ann) \cdot B_k(Ann)$ is large, Bill is a better choice for a landmark, since he is more stable and has a lower weight than Ann. Thus a better landmark vector is $\langle (\text{Bill}, \text{("Bio")}), (\text{Dan}, \text{("Db")}), (\text{Pat}, \text{("Dn")}), (\text{Ross}, \text{("Med")}) \rangle$.

This suggests that we study the following problem. Given a graph G, the problem for computing a minimum weighted landmark vector is to find a weighted landmark vector lm with the minimum $w(lm)$. The problem is, however, hard:

Proposition 5: The problem for computing a minimum weighted landmark vector is APX-hard [29].

The APX-hard class consists of problems that cannot be approximated by any PTIME algorithm within some positive constant. The result tells us that the problem is among the most difficult ones that allow PTIME approximation algorithms with a constant approximation ratio. It is verified by reduction from the weighted vertex cover problem [29].

To cope with the high complexity, we next provide an incremental algorithm to maintain weighted landmarks offline.

4.2 Incremental Matching for Bounded Simulation

Based on weighted landmark vectors, we develop incremental algorithms for IncBSim. We use the notations below.

Figure 9: Incremental bounded simulation

A pair (v', v) of nodes in a data graph G is called a cc (resp. cs) pair for a pattern edge $e_p = (u', u)$ if $v' \in \text{can}(u')$ and $v \in \text{can}(u)$ (resp. $v \in \text{mat}(u)$). It is called an ss pair if (a) $v' \in \text{mat}(u')$, $v \in \text{mat}(u)$, and (b) $\text{dis}(v', v)$ satisfies the bound of e_p, i.e., $\text{dis}(v', v) \leq k$ if $f_P(u', u) = k$, and $0 \leq \text{dis}(v', v)$ otherwise. One can verify the following.

Proposition 6: Given a b-pattern G_p, a data graph G and the result graph G_r, (1) $G_p \preceq \text{Sim} G_r$ if and only if $G \preceq \text{Sim} G_r$, and (2) only the cs and cc (resp. ss) pairs with updated distance satisfying (resp. not satisfying) the bound for a pattern edge may increase (resp. reduce) the matches of G_p.

Proposition 6 reduces bounded simulation in a data graph G to simulation in the result graph G_r. It suggests a two-step strategy for IncBSim: (1) identify all the cc and cs pairs (lines 1-2). By Proposition 6, these pairs are insertions to the result graph G_r. Hence the algorithm finds new matches by updating G_r (lines 3-4), along the same lines as the algorithms IncMatch and IncMatch (see Section 3.1).

Procedure IncBSim updates landmarks when an edge $e = (v', v)$ is inserted. It finds those nodes v_1 such that (1) v_1 are within k_{max} hops of v, where k_{max} is the maximum bound in G_p as remarked earlier; and (2) $\text{dis}(v_1, v)$ is changed (lines 1-4; see Section 4.1 for ldist queries). It updates the old landmarks and dist_v for these nodes (line 5), and propagates the changes (lines 6-7). Similarly it processes v' (line 8).

Observe that IncBSim is a “lazy” incremental method to maintain landmarks: (a) the distance vectors of the nodes are updated only if they are within k_{max} hops of the edge e and if their distances are changed; and (b) at most 2 new landmarks are inserted, while the invalid landmarks are updated later by an offline process in the background.

Example 11: Consider the b-pattern P_1 and graph G of Fig. 1. A landmark vector for G is $\langle (\text{Ann}, \text{("Cto")}), (\text{Dan}, \text{("Db")}), (\text{Pat}, \text{("Dn")}), (\text{Ross}, \text{("Med")}) \rangle$. The distance vector dist_v for (Don, “Cto”) is $<\infty, \infty, \infty, \infty>$, and dist_v for (Don, “Db”) is $<1, 0, 2, \infty>$. In G, Don cannot reach Dan.

When edge e_p is added G, the process of IncBSim is illustrated in Fig. 9. It first identifies node Don, Pat, Ann and Dan, from which the distances to Tom are changed. It inserts Don into lm as a new landmark, and updates distance vectors dist_v accordingly. Similarly, it finds nodes whose distances from Don are changed, and updates the distance vectors dist_v.

The new dist_v of (Don, “Cto”) is $<\infty, \infty, \infty, \infty, 0>$, and dist_v of (Don, “Db”) is
Single edge deletions. Similarly, when an edge \(e = (v', v) \) is deleted, we first identify node pairs \((v_1, v_2)\) for which (1) \(v_1 \) and \(v_2 \) are within \(k_m \) hops of \(v \) and \(v' \), respectively, where \(k_m \) is as given above; and (2) \(\text{dis}(v_1, v) \) or \(\text{dis}(v', v) \) is changed. For each such pair \((v_1, v_2)\), we (1) compute the distance from \(v_1 \) to \(v_2 \) following a new shortest path between them, (2) select and add a new landmark on a shortest path from \(v_1 \) to \(v_2 \) to the landmark vector, and (3) extend the distance vectors \(\text{dist}_v \) of \(v_1 \) and \(\text{dist}_v \) of \(v_2 \) with the new distances from and to the landmark, respectively. We finally collect \(s \) pairs following Proposition 6, and treat these node pairs as edges to be deleted from the result graph \(G_r \). The invalid matches are removed as in IncMatch~ (see Section 3.1), and changes to the match result \(\Delta M_{\text{sim}} \) are identified.

Incremental maintenance of landmarks. \texttt{IncLM} incrementally updates landmark vectors, by changing only those landmarks that affect matches, while leaving the rest to be adapted offline. Observe the following: (1) a landmark vector \(\text{lm} \) is valid as long as for each node pair, there is a landmark in \(\text{lm} \) that is on a shortest path between them; (2) we keep track of node pairs that \(\text{lm} \) covers, and add a landmark only when necessary; only the distance vectors of those pairs with changed distances are extended; and (3) space efficient landmark vector is rebuilt periodically via an offline process when, e.g., \(|\text{lm}| \) is approaching the number of nodes in \(G \).

Correctness & Complexity. The correctness of the incremental algorithms for \texttt{IncBSim} is assured by Proposition 6. One can verify that the incremental algorithm for batch updates is in \(O(|\Delta G||AFF|\log |AFF| + |GP||AFF| + |AFF|^2) \) time. This completes the proof of Theorem 4.

Remarks. In practice data graphs are often stored and queried in distributed/parallel settings (e.g., [15]). The incremental techniques given above can be readily adapted in distributed/parallel settings as follows: (1) graph updates are mapped to each of the distributed graph fragments (e.g., clusters [7]), which can be incrementally maintained locally, and (2) the updated matches from each fragments are combined to get the global updated match.

5. Incremental Subgraph Isomorphism

We next study incremental matching for subgraph isomorphism, denoted as \texttt{IncIsoMat}. Given a normal pattern \(GP \), data graph \(G \), matches \(M_{\text{iso}}(GP, G) \) and changes \(\Delta G \) to \(G \), \texttt{IncIso} is to find \(\Delta M_{\text{iso}} \), the set of subgraphs of \(G \) that are to be added to (or deleted from) \(M_{\text{iso}}(GP, G) \), such that \(M_{\text{iso}}(GP, G \oplus \Delta G) = M_{\text{iso}}(GP, G) \oplus \Delta M_{\text{iso}} \).

We also study the problem for deciding whether there exists a subgraph in the updated graph \(G \oplus \Delta G \) that is isomorphic to \(GP \), i.e., \(GP \sqsubseteq G \oplus \Delta G \), referred to as \texttt{IncIso}.

The main results of this section are negative:

\textbf{Theorem 7:} For subgraph isomorphism,

(1) \texttt{IncIso} is NP-complete even when \(GP \) is a path pattern and \(\Delta G \) is a unit update; and

(2) \texttt{IncIsoMat} is unbounded for unit updates, even when \(GP \) is a path pattern and \(G \) is a DAG.

It is known that subgraph isomorphism is NP-complete (see, e.g., [11]). Theorem 7(1) tells us that the incremental decision problem for subgraph isomorphism is also NP-complete. It is verified by reduction from the Hamilton Path problem, which is NP-hard (cf. [11]). The reduction only needs a pattern of a single path and a single-edge update.

Moreover, Theorem 7(2) shows that incremental matching for subgraph isomorphism is unbounded. Indeed, one can verify that it is unbounded for pattern \(GP \) in Figure 3 and a single-edge deletion or a single-edge insertion is considered.

In light of the high complexity, one might be tempted to use inexact algorithms for \texttt{IncIsoMat}. However, (1) many real-life applications require exact matches for subgraph isomorphism, e.g., structure search in bioinformatics [20]. (2) The known inexact or approximate algorithms for \texttt{IncIsoMat} also take exponential time or exponential space [26, 30].

\textbf{Algorithm.} We next outline a simple algorithm for \texttt{IncIsoMat}, just to demonstrate the benefits of incremental matching. It is based on a locality property of \texttt{IncIsoMat}.

To present the property, we first introduce some notations. (1) We use \(d \) to denote the diameter of pattern \(GP \), i.e., the length of the longest shortest path in \(GP \) when \(GP \) is treated as an undirected graph. (2) Consider a unit update \(\Delta e \) to the data graph \(G \), where \(e = (v, v') \), to be deleted from or inserted into \(G \). Let \(V(d, e) \) be the set of nodes in \(G \) that are within a distance \(d \) of both \(v \) and \(v' \) (ignoring the orientation of edges). We use \(G(d, e) \) to denote the subgraph of \(G \) induced by \(V(d, e) \), i.e., the subgraph of \(G \) consisting of nodes in \(V(d, e) \) along with edges of \(G \) connecting these nodes. (3) We use \(G(d, \Delta e) \) to denote \(G(d, e) \oplus \Delta e \), the subgraph \(G(d, e) \) updated by \(\Delta e \).

One can verify the following locality property:

\textbf{Proposition 8:} Given \(GP, G \), and a unit update \(\Delta e \), the changes \(\Delta M_{\text{iso}} \) to matches \(M_{\text{iso}}(GP, G) \) are the difference between \(M_{\text{iso}}(GP, G(d, e)) \) and \(M_{\text{iso}}(GP, G(d, \Delta e)) \).

In contrast to incremental (bounded) simulation, here an edge insertion and a deletion may both add matches to \(M_{\text{iso}}(GP, G) \) and remove matches from it. More specifically, \(M_{\text{iso}}(GP, G(d, \Delta e)) \setminus M_{\text{iso}}(GP, G(d, e)) \) is the increment to \(M_{\text{iso}}(GP, G) \), and \(M_{\text{iso}}(GP, G(d, e)) \setminus M_{\text{iso}}(GP, G(d, \Delta e)) \) is the set of matches to be removed from \(M_{\text{iso}}(GP, G) \).

By Proposition 8 we develop an incremental algorithm for \texttt{IncIsoMat} and unit updates, referred to as \texttt{IsoUnit}: (1) find the diameter \(d \) of \(GP \); (2) extract the subgraph \(G(d, e) \) from...
BatchMatch IncBMatch InsLM

By the locality property, IsoUnit reduces InclsoMat for a large graph \(G \) to the problem for small subgraphs \(G(d, \Delta e) \) and \(G(d, e) \) of \(G \). In the worst case, IsoUnit is in exponential time in the size of \(G(d, \Delta e) \), since InclsoMat is inherently exponential: there are possibly exponentially many subgraphs in \(G(d, \Delta e) \) (or \(G(d, e) \)) that are isomorphic to \(G_P \), i.e., the size of changes to the output is exponential. In practice, however, (1) patterns \(G_P \) are typically small, and hence so are their diameters \(d \); (2) one seldom finds exponentially many isomorphic subgraphs in a small graph.

Example 12: Consider the pattern \(P_2 \) and graph \(G \) of Fig. 1. The diameter of \(P_2 \) is 1. Consider \(\Delta e_2 \), which is to insert edge \(e_2 \) (from Don to Tom) into \(G \). Then \(V(d, \Delta e_2) \) consists of Dan, Don, and Tom, and \(G(d, \Delta e_2) \) is the subgraph of \(G \) induced by the three nodes. No subgraph of \(G(d, \Delta e_2) \) is isomorphic to \(P_2 \), and \(\Delta M_{iso} \) is empty.

For batch updates \(\Delta G \), one might be tempted to first compute the union \(G(d, \Delta G) \) of \(G(d, \Delta e) \) for each \(e \) in \(\Delta G \), and then compute \(M_{iso}(G_P, G(d, \Delta G)) \) along the same lines as our incremental algorithm for batch updates (Section 3). However, our experimental study shows that it often takes much longer to compute \(M_{iso}(G_P, G(d, \Delta G)) \) than applying IsoUnit to \(G(d, \Delta e) \) one by one. Indeed, it is more costly to find isomorphic subgraphs in a large graph than do it consecutively in small graphs.

This suggests a simple algorithm, denoted by IncIsoMatch, for InclsoMat and \(\Delta G \): (1) remove updates in \(\Delta G \) that cancel each other; (2) for each remaining unit update \(\Delta e \), compute \(M_{iso}(G_P, G(d, \Delta e)) \) and \(M_{iso}(G_P, G(d, e)) \) via IsoUnit; and finally, (3) compute \(\Delta M_{iso} \) by merging changes derived from each \(M_{iso}(G_P, G(d, \Delta e)) \) and \(M_{iso}(G_P, G(d, e)) \).

6. Experimental Evaluation

We next present an experimental study using both real-life and synthetic data. Four sets of experiments were conducted to evaluate: (1) the performance of IncMatch for incremental simulation, compared with (a) its batch counterpart Match [14], (b) IncMatch\textsubscript{n}, a naive algorithm that processes unit updates one by one by invoking IncMatch+ and IncMatch−, and (c) HORNSAT, the incremental algorithm of [25]; (2) the efficiency of IncBMatch, the incremental algorithm handling batch updates for bounded simulation (see Section 4), compared with (a) its batch counterpart Match\textsubscript{bs} [8], and (b) the incremental algorithm IncBMatch\textsubscript{hm} of [8] on DAG patterns, using a distance matrix; (3) the effectiveness of the optimization techniques, i.e., (a) weighted landmark vectors, (b) procedure minDelta; and finally, (4) the efficiency of InclsoMatch for incremental subgraph isomorphism, compared with (a) VF2, reported as the best batch algorithm for subgraph isomorphism [9], and (b) IsoUMatch, which computes subgraph isomorphism on the union of the affected area of each update (see Section 5).

Experimental setting. We used both real-life and synthetic graphs to evaluate our methods.

(1) Real-life data. We used two real-life datasets: (a) YouTube in which each node denotes a video with attributes length, category, age etc, and edges indicate recommendations. The dataset has 187K nodes and 1M edges, and we extracted snapshots based on the age of the nodes, each has 18K nodes and 48K edges. (b) A crawled citation network [27], where each node represents a paper with attributes, e.g., title, author and the year published, and edges denote citations. The dataset has 630K nodes and 633K edges. We extract dense snapshots based on the year of the papers, each consisting of 18K nodes and 62K edges.

(2) Synthetic data. We designed two generators to produce data graphs and updates. Graphs are controlled by three parameters: the number of nodes \(|V| \), the number of edges \(|E| \) and the average number \(|att| \) of attributes of a node. We produced sequences of data graphs following the densification law [17] and linkage generation models [12]. We used two parameters to control updates: (a) update type (edge insertion or deletion), and (b) the size of updates \(|\Delta G| \).

(3) Pattern generator. We designed a generator to produce meaningful pattern graphs, controlled by 4 parameters: the number of nodes \(|V_p| \), the number of edges \(|E_p| \), the average number \(|pred| \) of predicates carried by each node, and an upper bound \(k \) such that each pattern edge has a bound \(k' \) with \(k - c \leq k' \leq k \), for a small constant \(c \). We shall use \((|V_p|, |E_p|, |pred|, k) \) to characterize a pattern.

(4) Implementation. We implemented the following in Java:

<table>
<thead>
<tr>
<th>Problem</th>
<th>Batch</th>
<th>Incremental</th>
</tr>
</thead>
<tbody>
<tr>
<td>IncSim</td>
<td>Match</td>
<td>IncMatch, IncMatch\textsubscript{n}, HORNSAT</td>
</tr>
<tr>
<td>IncSim</td>
<td>Match</td>
<td>IncMatch, IncBMatch\textsubscript{hm}</td>
</tr>
<tr>
<td>InclsoMat</td>
<td>VF2</td>
<td>InclsoMatch, IsoUMatch</td>
</tr>
</tbody>
</table>

We used a machine powered by an Intel Core(TM)2 Duo 3.00GHz CPU with 4GB of memory, running Linux. Each experiment ran 5 times and the average is reported here.

Experimental results. We next present our findings.

Exp-1: Incremental graph simulation. We first evaluated the efficiency of IncMatch using synthetic and real life data. We generated 30 normal patterns for each of YouTube, Citation and synthetic data, with parameters (4, 5, 3, 1) for synthetic data and (6, 8, 3, 1) for real-life data.

Fixing \(|V| = 17K \) on synthetic data, we varied \(|E| \) from 78K to 108K (resp. from 108K to 78K) in 3K increments (resp. decrements). The results are reported in Figures 10(a) and 10(b), respectively. We find the following. (a) IncMatch outperforms Match\textsubscript{bs}, when insertions are no more than 30% (resp. 30% for deletions; not shown). When the changes are 11% for insertions (resp. 18% for deletions), IncMatch improves Match\textsubscript{bs} by over 40% (resp. 50%). (b) IncMatch and IncMatch\textsubscript{n} consistently do better than HORNSAT. HORNSAT does not scale well with \(|\Delta G|\), due to its additional costs for updating reflections and maintaining its auxiliary structures. (c) IncMatch does better than IncMatch\textsubscript{n}. This verifies the effectiveness of minDelta, which reduces \(|\Delta G|\), due to its additional costs for updating reflections and maintaining its auxiliary structures. (d) As opposed to Match\textsubscript{bs}, IncMatch and IncMatch\textsubscript{n} are sensitive to \(|\Delta G|\), as expected. This is because the larger \(|\Delta G|\) is, the larger the affected area is; so is the computation cost. This justifies the complexity measure of incremental algorithms in terms of the size of \(|\Delta G|\) and AFF.

Figures 10(c) and 10(d) show the results for edges inserted to YouTube and Citation datasets, respectively. Each data set has \(|V| = 18K\), and \(|E| \) as shown in the x-axis. Here the updates are the differences between snapshots w.r.t. the age (resp. year) attribute of YouTube (resp. Citation), reflecting their real-life evolution. The results confirm our observations on synthetic data. For instance, IncMatch outperforms Match\textsubscript{n} on YouTube even for 50% of changes.
Exp-2: Incremental bounded simulation. In this set of experiments, we compared the efficiency of IncBMatch against Matchba and IncBMatchm, using synthetic and real-life data. We produced 30 b-patterns for each of YouTube, Citation and synthetic data, with parameters (4, 5, 3, 3) for synthetic data, and (6, 8, 3, 3) for real-life data. To favor IncBMatchm that only works on DAG patterns, the b-patterns are DAGs although IncBMatch works well on cyclic patterns.

Fixing |V| = 17K on synthetic data, we varied |E| from 98K to 108K (resp. from 108K to 98K) by inserting edges (resp. deleting), in 1K increments (resp. decrements). The results are reported in Figures 10(e) and 10(f) for insertions and deletions, respectively. The results tell us the following. (a) IncBMatch outperforms Matchba when both edge insertions and deletions are no more than 10%. (b) IncBMatch consistently does better than IncBMatchm. The improvement is about 30% (resp. 40%) for insertions (resp. deletions) when |ΔG| = 10K. Note that IncBMatchm employs distance matrix to compute the distance between two nodes, and does not scale with large graphs. In contrast, IncBMatch uses weighted landmarks to improve the scalability. (c) For the same |ΔG|, IncBMatch needs more time to process edge insertions than deletions. As an example, it takes more than 8 second to handle 10K edge insertions, but less than 6 second to process deletions of the same size. These confirm our observation in Section 4 that edge insertions introduce more complications than deletions.

Figures 10(g) and 10(h) show the performance of the algorithm for edge insertions to YouTube and Citation datasets, respectively; in the same setting as in Exp-1. The results show that IncBMatch does even better on real-life data than on synthetic data; e.g., IncBMatch outperforms Matchba on YouTube when the changes are no more than 20%.

Exp-3: Optimization techniques. In this set of experiments we evaluated (1) the effectiveness of minDelta, (2) the space cost of LandMark, and (3) the efficiency of InsLM for updating landmark vectors. In the experiments, we used one more parameter α, and generated graphs following the densification law [17], i.e., |E| = |V|^α.

To analyze the effectiveness of minDelta, we fixed |V| = 20K, varied parameter α, and randomly inserted and deleted 4000 edges. The results are shown in Fig. 10(i). We find that minDelta significantly reduces the set of updates. This becomes more evident when α is increased, i.e., if the graphs have more edges. In this case, more nodes are in the result graphs, and updated edges are less likely to affect the match results. The results also demonstrate the potential benefits of minDelta in real-life applications where insertions are much more common (e.g., [12]).

Fixing |V| = 10K, α = 1.1, Figure 10(j) reports the space cost of LandMark, incrementally maintained and recomputed from scratch, respectively. The x-axis shows the number of edges inserted, and the y-axis gives the space cost, including the size of LandMark as well as the updated distance vectors. The results show that (a) LandMark has much less space cost than a (10K)^2 distance matrix [8]; (b) compared to recomputation, InsLM updates LandMark with only extra space cost up to 2%; indeed, after the insertion of 5K edges, the recomputed LandMark and distance vectors takes 56M, while the total extra space added by InsLM is 64K.

Fixing |V| = 15K and α = 1.1, we also compared the performance of InsLM with its batch counterpart, denoted by BatchLM, which recomputes the weighted landmarks from scratch when graphs are updated. In the "lazy" mode, InsLM only updates the nodes within km hops of the inserted edges, where km is the maximum bound in Gp. To
favor BatchLM, we set $k_m = |V|$, i.e., all the distances have to be accurate after InsLM. The results are reported in Fig. 10(k), where the x-axis represents the number of inserted edges. The results tell us that InsLM significantly outperforms BatchLM. BatchLM does better than InsLM only when more than 25% of changes are incurred (not shown).

Exp-4: Incremental subgraph isomorphism. The last experiments evaluated the efficiency of IncIsoMatch against VF2 and IsoUMatch, using synthetic data and 30 normal patterns generated with parameters (4, 5, 3, 1). Fixing $|V| = 15K$, we varied $|E|$ from 100K to 124K by inserting edges, in 4K increments. The results are reported in Fig. 10(l), which show that IncIsoMatch performs much better than the batch algorithm VF2 when the changes are no more than 21%. Note that IsoUMatch does not scale well with $|\Delta G|$. Indeed, the union of affected areas grows rapidly since the updates spread all over the graph, and hence, IsoUMatch can no longer enjoy the locality property, as expected.

Summary. From the experimental results we find the following. (1) Incremental matching is more promising than its batch counterparts for simulation, bounded simulation and subgraph isomorphism in evolving networks, even when changes to data graphs are reasonably large. (2) Our incremental algorithms significantly and consistently outperform the previous incremental algorithms for (bounded) simulation. (3) The minDelta and weighted landmark techniques are effective in improving the performance of the algorithms.

7. **Conclusion**

We have proposed incremental solutions for graph pattern matching based on simulation, bounded simulation and subgraph isomorphism. We have shown that the incremental matching problem is unbounded for all of them, but identified special cases that are bounded and even optimal. For each of these, we have developed incremental algorithms for (possibly cyclic) patterns and batch updates. In particular, the complexity bounds of the algorithms for simulation and bounded simulation are independent of the size of data graph. Our experimental study has verified that our algorithms substantially outperform their batch counterparts.

We are currently experimenting with large real-life data sets in various applications. We are also investigating optimization techniques for incremental matching by exploring usage patterns of real-life networks [16, 18, 31]. Another challenging topic is to develop bounded incremental heuristic algorithms for subgraph isomorphism. Finally, we are extending our incremental matching methods to querying distributed graph data, exploring MapReduce.

Acknowledgments. Fan is supported in part by the RSE-NSFC Joint Project Scheme and an IBM scalable data analytics for a smarter planet innovation award. Li is supported by NGFR 973 grant 2006CB303000 and NSFC grant 60533110.

References

