Edinburgh Research Explorer

Gradient Pursuits

Citation for published version:
Blumensath, T & Davies, M 2008, 'Gradient Pursuits', IEEE Transactions on Signal Processing, vol. 56, no.
6, pp. 2370-2382.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version: _
Early version, also known as pre-print

Published In:
IEEE Transactions on Signal Processing

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN (75} ACCESS

Download date: 20. Apr. 2024


https://www.research.ed.ac.uk/en/publications/aada55b0-c486-4075-8488-70267186bdd0

Gradient Pursuits

Thomas Blumensatiyiember, IEEE Mike E. Davies,Member, IEEE

Abstract

Sparse signal approximations have become a fundamentahtsignal processing with wide ranging
applications from source separation to signal acquisifidre ever growing number of possible applica-
tions and in particular the ever increasing problem sizes addressed lead to new challenges in terms
of computational strategies and the development of fastefficdent algorithms has become paramount.

Recently, very fast algorithms have been developed to sobreex optimisation problems that
are often used to approximate the sparse approximationlggmothowever, it has also been shown,
that in certain circumstances, greedy strategies, suchrégm@dnal Matching Pursuit, can have better
performance than the convex methods.

In this paper improvements to greedy strategies are propard algorithms are developed that
approximate Orthogonal Matching Pursuit with computadiorequirements more akin to Matching
Pursuit. Three different directional optimisation schenmbased on the gradient, the conjugate gradient
and an approximation to the conjugate gradient are disdusspectively. It is shown that the conjugate
gradient update leads to a novel implementation of Orthab®matching Pursuit, while the gradient
based approach as well as the approximate conjugate gradéhods both lead to fast approximations
to Orthogonal Matching Pursuit, with the approximate cgaijie¢ gradient method being superior to the

gradient method.
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. INTRODUCTION

A sparse signal expansion is a signal model that uses a lic@mabination of a small number of
elementary waveforms selected from a large collection wresent or approximate a signal. Such
expansions are of increasing interest in signal processitigapplications ranging from source coding
[1] to de-noising [2], source separation [3] and signal asitjan [4].

Let x € RM be a known vector an@® € RM*N a matrix with M < N. We will refer to ® as the
dictionary and call the column vectogs of ® atoms. The problem addressed in this paper is to find a
vectory satisfying the relationship:

x = Py + €. Q)

If we allow for a non-zero erroe we talk about a signahpproximation while for zeroe we have an
exact signarepresentation

Becausé\/ < N, there are an infinite number gfsatisfying the above equation. It is therefore common
to search for a vectay optimising a certain sparsity measure. For example, it imroon to look for a
vectory with the smallest number of non-zero elements. The problinding such ay is, however, NP-
hard in general [5], [6]. Therefore, different sub-optinstategies are used in practise. Commonly used
strategies are often based on convex relaxation, non-gqfen gradient based) local optimisation or
greedy search strategies. Convex relaxation is used imiglge such as Basis Pursuit and Basis Pursuit
De-Noising [7], the LASSO and Least Angle Regression (LARSB) Recently fast algorithms solving
the LASSO problem have been suggested in [9] and [10]. Naweo local optimisation procedures
include the Focal Underdetermined System Solver FOCUSE4Ad Bayesian approaches such as the
Relevance Vector Machine, also known as Sparse Bayesiamihga12] [13] or Monte Carlo based
approaches such as those in [14], [15], [16], [17] and [1B]tHis paper we are interested in greedy
methods, the most important of which are Matching PursuiPNIL9], Orthogonal Matching Pursuit
(OMP) [20] and Orthogonal Least Squares (OLS) [21], alseroftnown as ORMP, OOMP or, in the
regression literature, as forward selection.

MP is an algorithm often used for practical applications #rete are now very efficier® (N log M)
(for each iteration) implementations [22], [23] wheneris the union of dictionaries for which fast
transforms are available. For general dictionaries MRO{SVM) (per iteration). On the other hand,
OMP has superior performance. Current implementationsekier, are more demanding both in terms
of computation time and memaory requirement.

In this paper we combine an MP type algorithm with directiomjatimisation to derive ‘Directional
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Pursuit’ algorithms. These new algorithms use a similaredyeelement selection as MP and OMP,
however, the costly orthogonal projection is (approxitgtelone using directional optimisation. We
propose two update directions that can be calculated efflgisuch that the algorithms have the same
memory requirements and computational complexity as MPhi/d tupdate direction is based on the
calculation of a conjugate gradient. This leads to a novgllémentation of OMP with computational

requirements similar to currently used methods based ona@®risation.

A. Paper Overview

The main part of this paper starts with a review of MP and OMRaéntion Il. Based on these two
algorithms, we develop the general Directional Pursuinfeavork in section Ill. Particular directions are
then suggested in the following three subsections, stavtith the gradient direction in subsection IlI-A,
followed by the conjugate gradient in subsection 111-B andgproximate conjugate gradient in subsection
IlI-C. Section IV takes a closer look at the computationajuieements of the proposed algorithms and
compares these to MP and two different OMP implementati@estion V gives theoretic bounds on
the convergence of the gradient based algorithm. The papeeiudes with a range of experiments
presented in section VI. The first experiment explores hosvgtoposed approaches compare with MP
and OMP, both, in terms of approximation performance (sctime VI-A) as well as in their ability to
exactly recover the underlying sparse structure (sulisedti-B). This is followed by an experiment that
highlights the applicability of the methods to an audio a@ésing example where OMP is not feasible
(subsection VI-C). The final example in subsection VI-D geas the performance of the methods for

compressed sensing and contrasts the performance to @peraghes.

B. Notation

'™ will denote a set containing the indices of the elementscsateup to and including iteration.
Using this index set as a subscript, the matdx. will be a sub-matrix of® containing only those
columns of® with indices inT"™. The same convention is used for vectors. For examyple, is a
sub-vector ofy containing only those elements @f with indices inT'™. In general, the superscript
in the subscript ofyr» reminds us that we are in iterationy on occasion, however, we resort to using
superscripts (e.g:") to label the iteration. The gram mati&r. = ®L, ®r. will also be used frequently.

In general, lower case bold face characters representrgagtole upper case bold characters are used for

matrices. Individual elements from a vector will be in starttitype face with a subscript. For example
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g will be used to refer to a gradient vector wigh denoting thei” element of this vector. Inner products

between vectors will often be written using angled brackets. (x,y) = x"y.

[I. MATCHING PURSUIT AND ORTHOGONAL MATCHING PURSUIT

The algorithms in this paper approximate a vectadteratively. In iterationn we calculate an approx-
imation using
%" = ®raype, 2)

and calculate the approximation error as

r'’ =x—x". 3)

In each iteration, the approximation error is then used terdg@ne a new element to be selected from
® in order to find a better approximation.

One of the simplest algorithms of this form is possibly MatchPursuit (MP) [19]. A new element
is selected based on the inner product between the currsiduedr™ and the columns inP and the
corresponding element gf is updated. MP is summarised as follows

1) Initialiser® =x,y" =0

2) for n = 1;n :=n + 1 till stopping criterion is met

a) g" = ®Trn!

b) i" = arg, max |g]|
c) yp =yp '+ gh
d) " =1t — ¢ingh

3) Outputr™, y™
Note the slight abuse of notation in the expressiogy max |g!'|, which in general could return a set of
indices. In this case one of the elements would have to beechos

MP requires the evaluation of matrix multiplications inviolg ®”'. If ® is a union of dictionaries for
which fast transforms exist, then these matrix operati@mshe computed efficiently. Another trick used
in MP [19] is to compute the inner products between the redidod the dictionary elements recursively.

This can be done using
ng_l = <rn+1’ ¢Z> = gzn - g:ﬁl <¢i"7¢i> ’ (4)
where ¢;~ is the last selected element. This result is a direct coresampiof the MP error recursion

n+1

R 5)
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This approach is of advantage whenever the inner produgtse;) between the dictionary elements can
either be stored or efficiently computed and, crucially, mdwar these inner products are predominantly
zero.
In Orthogonal Matching Pursuit [20], [24] the approximatipis updated in each iteration by projecting
x orthogonally onto all selected atoms. OMP therefore fings dptimum (in terms of squared error)
signal approximation achievable with the selected atorhss @lgorithm is
1) Initialiser’ = x,y* =0,T° =
2) for n = 1;n :=n + 1 till stopping criterion is met
a) g" = ®Tr"!
b) i" = arg; max |g]"|
c) I =r""1tuyi
d) y" = <I>ltnx
e) r'=x— ey"
3) Outputr™, y™
Here the dagget indicates the Moore-Penrose pseudo-inverse. Note thatirilierse should never be
calculated explicitly and more efficient implementatiorfs@QMP based on QR factorisation [24] or
Cholesky factorisation [25] are available. The main draskbaf these approaches is that they require
additional storage, as discussed in detail in section IMs Btorage requirement can become an issue
for large problems in whichk cannot be storéd The aim of this paper is therefore to develop fast

approximate OMP algorithms that require less storage.

I11. THE DIRECTIONAL PURSUIT FRAMEWORK

In iteration n the problem solved by Orthogonal Matching Pursuit (OMP)hie minimisation over

yr- Of the quadratic cost-function (in unknowns)
[x — @rayrs 3. (6)
Instead of updating;~ by addingg. as in Matching Pursuit (MP), we propose a directional update

Y, =yt 4 a"dr., )

1If @ could be stored explicitly as a matrix, then one could mdetlyi also store a QR or Cholesky factorisation of a subset

of its columns.
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wheredr- is an update direction. Different directiods~ can be chosen and three different possibilities
will be discussed below.
Once an update direction has been calculated, the step’sizan be determined explicitly. As shown
in [26, pp. 521], the optimum step sizes
(", c")

a" = (8)

el

wherec” is the vectorc” = ®r.d".

In general, a single directional update does not guarardeeecgence to the minimum of expression
(6) (one could therefore also term the method “nearly” Ogttrtal Matching Pursuit) and an additional
generalisation of the proposed approach would be to useaalieectional update steps before selecting
a new element.

In MP and OMP, the selection of new elements is based on ther iproduct between the residual
and the dictionary elements. In OMP, elements are not ssleepeatedly, because due to the orthogonal
projection used, the residual" is always orthogonal to all previously selected elemeritslirectional
optimisation is used to approximate the orthogonal pr@ecthis orthogonality is no longer guaranteed.
Because all previously chosen elements are updated in gaalian, it would nevertheless be possible
to restrict the selection of new elements to those elementtselected previously. However, a large inner
product between™ and any atom selected in a previous step indicates that giéued is ‘far’ from
orthogonal to the selected elements (as would be requirdtidoyesidual in exact OMP). Furthermore,
if the algorithm always selects the element with the largeser product, irrespective of whether this
element has previously been selected or not, then the tidgohielongs to the family oGeneral MPas
defined in [27]. The theoretic results presented in [27] wahlen also hold for the directional pursuit
algorithms. For example, the following theorem from [27]ukab hold for all algorithms in this paper.

Theorem 1:(Theorem 1 from [27]) Letl’ be an index set and let = ®ryr for someyr. If
Sup;gr [(®r)T¢;]|1 < 1, then a general MP algorithm picks up an atom from thel'set each step.

These theoretical considerations, as well as experimezgalts, some of which can be found in section
VI, show that it is beneficial to always select the elemenhutite largest inner product. We therefore

allow the selection step to select elements more than omceyé do not force the selection step to select

2The step size is optimum in terms of OMP, i.e. in terms of figdime minimum squared error solution in the update direction
Other algorithms, such as LARS can also be understood instefrdirectional optimisation. As these algorithms work hnét

different cost function, the optimal step size in these algms is different to the one used here.
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anewelement in each iteration, thereby letting the algorithrromatically decide how many directional
update steps are required for each new element.
The Directional Pursuit family of algorithms can be sumrsedi as follows
1) Initialiser’ = x,y* =0,1° =
2) for n =1;n :=n + 1 till stopping criterion is met
a) g" = ®Tr"!
b) i" = arg, max |g]"|
c) =11ty
d) calculate update directiodhp-

e) Cn = @I‘ndr‘n
n __ (rnvc">
N a" =

@) yt. =yp ' +a"dp
h) r* ="~ ! —q"c”
3) Outputr™, y™
Different choices for the update direction are feasible tiedgradieng™ discussed in subsection IlI-A
is the obvious choice. However, the optimal choicelpf would find the minimum of (6) in a single step.
It turns out that this optimal direction is a conjugate diil@t as discussed in subsection IlI-B and can
be evaluated explicitly. Unfortunately, the evaluationtios direction requires computational resources
similar to an OMP implementation based on QR factorisatiorsubsection IlI-C we therefore propose

the use of an approximation to the conjugate direction wiih be evaluated more efficiently.

A. Gradient Pursuit

The gradient of expression 6 with respectytas
gr = . (x — @rayph). 9)

Using this gradient as the update direction gives a direatipursuit algorithm we calGradient Pursuit
(GP). It is important to realise that this gradient is exatitle vectorg™ restricted to the elements I,
which has already been calculated in step 2.a) of the Magdhursuit (MP) algorithm, i.e. MP calculates
this gradient in each iteration, so that the use of this gradiomes at no additional computational cost.
The only additional cost compared to MP is then the evalnatibthe step-size. Note, however, that

when updating more than one elementyif, the recursion in equation (4) becomes less efficient.
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B. Conjugate Gradient Pursuit

Another popular directional optimisation algorithm is tt@njugate gradient method [26, Section 10.2],
[28, Section 16.4], which is a well known optimisation prduee that is guaranteed to solve quadratic
optimisation problems in as many steps as the dimension efptiobleni. The conjugate gradient
algorithm can be summarised as follows. We denote the costiin to be minimised b%yTGy—bTy
(which is equivalent to solvingzy = b for y). The conjugate gradient method uses directional updates
that areG-conjugate to the previously chosen directions. A set oforsdd;, do, . .., d, } is G-conjugate
if

d7’Gd, =0 (10)
for all k£ # n. More details can be found in for example [26, Section 10r] 8, Section 16.4].

The same idea can be used in the directional pursuit frankewdrere we now want to calculate an
update direction that i&r. conjugate to all previously used update directions. Hgfe = &%, ®r..
The cost function is now
2 (11)

HX - (I,l"nyr‘n

where the dimensiom of the cost function changes whenever a new element is sdlecetds, be
the k" conjugate direction. The subscript reminds us that thitoreis [I'| dimensional. We update
yr- (which is an|I'"|-dimensional sub-vector gf) in directiond},, which is equivalent to updating
using a directional vectad™ of dimensionN, with all elements zero apart from the element indexed by
I'™. Therefore, we can think of all previous update directidrfw (note the superscript in the subscript)
as higher dimensional vectod{in, where the elements associated with the ‘new’ dimensioassat to
zero.

To derive the algorithm, we recall the conjugate gradierddrbm [28, Theorem 16.2], which we give
here using the notation introduced above.

Theorem 2:[28, Theorem 16.2] Lefdl.,d?.,...,d}. ] be any set of non-zetGr.-conjugate vectors,

then the solution to the proble@r.yr. = ®L,x is
n
Y. =Y aFdf., (12)
k=1

with step-sizes i i
r ,‘I) kd n
o T 2redr) o 2>, (13)
[ ®redr. I3

3At least for infinite precision arithmetic. See for examphé][ for a detailed discussion regarding stability issues.
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where .
¥ =x— ®ra (Z a'd: > . (14)

The importance of this theorem lies in the fath:t;\at the siegp-«* only depends on the current
residual error and the current conjugate direction. Thismsethaty(:, can be approximated iteratively
by calculating a new direction and step-size in each it@nati

The other important aspect of this theorem is that it guaesan optimal solution iV iterations.
In a directional pursuit framework, the dimensions can geainom one iteration to the next. In the first
iteration we have a single trivial direction and step-sipegeneral, if then — 1 previously used update
directions areGr. conjugate, then, by the above theorem, we only require oniiagal conjugate
direction to exactly solve the dimensional problem.

Assume that then — 1 previously used update directions af-~-:-conjugate. We want to show
that they are als@r--conjugate (note the different subscripts!). Using ther'maiD?;}1 to denote the
matrix containing all conjugate update directions fromraton n — 1 and the matrixD?;1 to be the
same matrix but with an additional row of zeros at the bottBrom the definition ofGr--conjugacy we
require (D, 1T Gr. D! = B, whereB is a diagonal matrix. Because the last rowId}, ' contains

only zeros, the last row and column Gfr-. are multiplied by zeros, which implies that
B = (DY) Gr. DL = (DR G DL (15)

The main question is now how to calculate a new conjugateigmad/NVe require the new direction to

be Gr--conjugate. Therefore, the new direction has to satisfy
DO 'Gradi. =0 (16)

We write each new direction as a combination of all previgasiosen directions and the current gradient
gr- [26, Section 10.2]
d}. = bogr» + D 'b. (17)

Without loss of generality we can sigt = 1. Pre-multiplying byD?:len and using th&xp.-conjugacy

then leads to the& — 1 constraints
n—1\T n—lb . 8
(DF" ) G‘l"n (gl"n —|— DF" ) — 0 (1 )
from which we can write

b= —((Dp )G D) (DE ) Grogre). (19)
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Again usingGr--conjugacy we find tha(D?:l)TGanﬁzl is diagonal so that the conjugate gradient
can be calculated without matrix inversion.

Note that in the standard conjugate gradient algorithm Réction 10.2], [28, Section 16.4] each
new update direction can be calculated as a combinationeotuinrent gradient and thengle previous
update direction alone, i.e. in the standard conjugateigmadlgorithm, all but the last conjugate update
direction turn out to beG conjugate to the current gradient such thain equation (19) has only a
single non-zero element. Unfortunately, in the context MR)the changing dimensionality destroys this
property so that we have to take account of all previous @dmmections in each step.

For an efficient implementation it is worth noting that in tb&culation ofb the productD?;len
can be updated recursively by adding a single new row andnoolin each iteration. Note also that
(D 2)TGraDE2) ! and (DY) TG DIk 1)1 are equal apart from a single additional value
added in each iteration. This value|je"!||3 used in step 2.f) of iteration — 1 and does not have to
be recalculated.

It is important to realise that the algorithm derived herdifferent form an implementation of OMP
in which afull conjugate gradient solver is used ®achnewly selected element. Instead, the proposed
method only uses a single directional update step for eashetement. The most similar method to the
proposed algorithm is probably the implementation of OM&ppised in [20], which also uses a directional
update. However, the method in [20] uses matrix inversigrtich have to be updated iteratively and
which can make the approach less stable.

Another approach to OMP is based on QR factorisation. Thectad dictionary®- is decomposed
into ®r» = Qr-Rp~» where in each iteration new elements are adde@to-: andRp--:. The algorithm
then does not need to evaluate. in each iteration, instea@” = r"~! — (q, x) q, whereq is the newly
added column iMQr.. Using zr» = Qlfnx, the solution becomegr- = R~ 'zr., which can be solved
efficiently by back-substitution.

Interestingly, the QR factorisation and the proposed ayatjel gradient method show many similarities.

In the n" iteration the QR based approach calculates an estimate
x=QrRry = Qr-zr», (20)
whilst the conjugate gradient based approach calculagespproximation as

= @1’% Dl"n arn (21)

"

wherear. is the vector containing the different update step sizesaBse ofGr--conjugacy the matrix

(D) T®L, &r.DE, must be diagonal. Also, it can be shown by induction thath ajtpropriate diagonal
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weighting matrixW
@FnD?nW == QFn (22)

This implies that,
W lap, = zp.. (23)

The conjugate gradient approach therefore calculates gasidecomposition as the QR factorisation,

the way this decomposition is represented is, howevehtliglifferent.

C. Approximate Conjugate Gradient Pursuit

In the previous section we derived a novel implementatiof©dhogonal Matching Pursuit (OMP),
which is similar to the QR factorisation based method, batkeims of computational cost and storage
requirements. This new insight is the basis for the devetpnof a fast algorithm derived in this
section. Instead of calculating the exact conjugate dorctve propose to us an approximately conjugate
direction. This sub-optimal direction will then only apgimate OMP. The benefit of this approach are,
however, that the approximate conjugate gradient is muahee#o calculate than the full conjugate
gradient and that the memory requirements are significaatyced.

The conjugate gradient implementation derived above reduihe storage of all previous update
directions. This storage requirement can be significamitiiced by calculating the new update direction
such that it isG - -conjugate to only a limited number of previous directioRisis leads to am\pproximate
Conjugate Gradient Pursu{ACGP) algorithm. For notational simplicity, we here derihe method using
a single update direction. The more general derivatioro¥esl similar arguments.

The approximate conjugate direction is now a combinatiothef current gradient and the previous
direction

dp. = bogre + d by (24)
We can again sdfy = 1 and enforceGr.-conjugacy to the previous update direction
((Grdin!), (gf + brdin ) =0, (25)

from which we can calculatg,

&r.d? 1), (Pragh.
blz—<( r-dp )n(_lFQgr )>. (26)
[@rndp. |13

For an efficient implementation it is worth noting théﬁ:‘nd?:l = ¢"~! has been evaluated in the

previous iteration to determine the step size'! and the same is true for the denominator, which is

nothing else tharic”~!||2 calculated in the previous iteration.
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IV. COMPUTATIONAL COMPLEXITY

In this paper we have proposed three algorithms to solve proapnate OMP. When using the exact
conjugate direction in the proposed framework, the alporits a novel OMP implementation. The above
analysis shows that the computational complexity and thiage requirements of this method are similar
to an OMP algorithm based on QR factorisation. The other tgorahms can have computational benefits
compared to exact OMP implementations.

The computational requirements of each algorithm dependeweral parameters and an informed
algorithm choice requires a detailed study and comparidothe methods, both, in terms of floating
point operations (flops) and in terms of storage requiremeWte therefore summarise the required
resources for GP and ACGP and contrast them to two efficiepleimentations of OMP, namely a QR
factorisation based implementation and a Cholesky fesdtian based approach. For completeness, we
also look at an MP implementation.

For most large scale problems, for which the proposed dlgus are of particular interest, the matrix
& cannot be stored explicitly in general and structure in thitrix has to be exploited. This often
leads to efficient implementations for matrix vector prasuef the form®y and ®7x. For example
these operations can often be based on fast Fourier tramsfor fast wavelet transform algorithms. The
exact computation cost then depends on the exact dictiamses. In the following discussion the cost
of these operations is therefore listed not in flops, but iscBi@d only in terms ofdictionary-vector
multiplications. For example, fast Fourier based tramafopften allow these products to be calculated in
O(N log(M)), whilst the worst case complexity for totally unstructustidtionaries would be&) (M N)
flops. But even if fast transforms are used, it should be ntitatl these matrix vector products often
remain the most costly operations in the proposed algosittitfficient implementations of these products
are therefore paramount in practical situations.

In the following discussion we look at the computational uiegments for each algorithm when

selecting then!" element. It is worth bearing in mind th&f > M and that for OMPn < M.

A. Resources required by all algorithms

All algorithms require the computation of the gradignt= ®”r, which costs one dictionary vector
multiplication and the search for the largest elementgh which can be done inV operations. In
addition to the storage oP, all algorithms require the storage of yr, I' andg, which are vectors of

length M, n, n and N respectively.
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B. MP

Apart from the requirements shared by all algorithms, MiagHPursuit only requires the updating of

the residual, which costs M flops.

C. QR factorisation base OMP

The QR factorisation based OMP algorithm stores and up@a@R factorisation of the sub-dictionary
®. in each iteration. The additional storage requirementgHisr factorisation is one triangular matrix
Rr- with n(n + 1)/2 elements and an orthogonal mat@-- with Mn elements. Note that even @
is structured and can be stored efficiently, the QR factoisdas not guaranteed to have any structure.

The additional computational cost for this method2&/n + 3M flops required to update the QR
factorisation in each iteration antd flops to update the residual. As this method does not cakewglat
in each iterationy has to be calculated after the algorithm has been stoppegd bsick substitution,

which costsn?2, .. flops, wheren,,., is the total number of elements selected by the method.

D. Cholesky factorisation base OMP

The Cholesky factorisation stores and updates a Choleskgrisation of the Gramm matrir-.
This requires the storage of a triangular matrix witfn + 1) /2 elements.

In each iteration, updating the Cholesky factorisatiorunexy one dictionary vector multiplication, one
back substitutions(* flops) and an additionalM flops. Calculating the non-zero coefficiestgequires
two further back substitutions to be used at the cost3fflops. Finally, updating the error requires one

further dictionary vector multiplication.

E. GP

The gradient pursuit algorithm require the additional ater of a vector of lengtid/.
The computation of the step size costs an additional diatipwector multiplication pluM flops.

Updatingy costsn flops and updating the residual can be done ugifidlops.

F. ACGP

The approximate conjugate gradient algorithm also reghieestorage of a vector of lengthy.
The computation of the update direction now requires onihdurdictionary vector multiplication and
M + n additional flops. The step size is again calculated usingdicte®nary vector multiplication plus

2M flops. Updatingy costsn flops and updating the residual can be done udihdlops. Apart from
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TABLE |

COMPARISON OF THE METHODS IN TERMS OF COMPUTATIONAL REQUIREENTS IN ONE ITERATION.

Algo. Computation Cost (flops Storage Cost (floating point numbers)
MP M +[® + N] [® + M + 2n + N]
OMP QR 2Mn +3M +[® + N] | Mn+0.5n(n+1) + [@ + M + 2n + N]
OMP Cholesky| 2® + 3n? + 2M + [® + N] 0.5n(n 4+ 1) + [® + M + 2n + N]
GP 1® +n+3M + [® + N| M +[® 4+ M + 2n + N|
ACGP 2® + 2n + 4M + [® + N] M +[® + M +2n + N]

the additional computational cost to evaluate the updagetion, the cost is the same as for the gradient

pursuit algorithm.

G. Empirical analysis

To illustrate the above discussion we compared the speedatibMimplementations of the different
algorithms (the implementations are available on the fitgh@r’s web-page) run on a Macintosh G5
(2.5GHz Quad) computer. We compared a randomly generatgtugtured dictionary and a structured
dictionary that was the union of a discrete Fourier tramaf@nd a Dirac basis. Both dictionaries had
twice as many columns as rows. We then varied the dimensioof x up to the maximum size for
which all algorithms could extracd//2 non-zero elements. We also estimated the time the methods
took to extractd//10 non-zero elements. From the results in figure 1 it is clear @/ and ACGP are
always faster than the OMP implementations. This diffeeedecomes larger if either more elements are

extracted or if fast dictionary implementations are avdéda

H. Summary

The computational requirements for the different strategare summarised in table |, where the
computation costs and storage requirements are given feritemation. Again,n is the number of
elements selected in that iteration. Haperefers to the storage of the dictionary or the computation of
one application of the dictionary or its transpose to a singictor. Costs common to all algorithms are
collected together and given in square brackets. Note yipatally N > M > n.

For unstructured dictionaries and #/ is small enough, the QR factorisation based approach is
often faster than the Cholesky factorisation based apprdaawever, for larger problems, the storage

requirements become too large and another approach musiopted. The Cholesky factorisation based
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Comparison between Cholesky based OMP (dotted), @R OMP (dashed), Gradient Pursuit (dash-dotted) and

Approximate Conjugate Gradient Pursuit (solid) for unstineed dictionaries (first and third panels) and for a diwiy that

is the union of a Dirac basis and an DFT (second and fourthlpafiene in seconds is shown against dictionary size. All

dictionaries whereMl x 2M. The algorithms were used to extra%’t (top two panels) andi‘—g (lower two panels) non-zero

elements. Whilst GP and ACGP are generally faster than ORet differences are larger if either more elements aractztt

or if fast dictionary implementations are available.
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approach requires much less storage than the QR factorisbised method, however, it requires two
additional dictionary vector multiplications, which fonstructured dictionaries can be costly. However,
the Cholesky factorisation approach can be faster if siredtdictionaries are used and if the number of
non-zero elements is small, while for larger numbers ofaetéd non-zero elements and for unstructured
dictionaries, the QR factorisation based method is faBeth GP and ACGP are limited by the speed
with which the dictionary vector product can be evaluateB. @quires two such products while ACGP

requires three. Both of these methods are generally fasiar®@MP methodsand require less storage, so

that they are applicable to much larger problem sizes, wdi® is infeasible due to storage demands.

V. CONVERGENCE

An important aspect of approximation algorithms is theimergence and we here derive a convergence
result for Gradient Pursuit (GP).
Theorem 3:There exist a constamrt< 1, which only depends o, such that the residual calculated
with GP decays as
13 < L3 (27)

Proof: Let us user™ = r"~! — ¢"®p.d, then it can be shown that
2

-1
n2 netyz (T @red)
_ _ 28
||I' H2 HI' H2 HQI‘"dH% ( )
Usingd = ®%,r"~! we can bound
[®F. x5 [l
[®re@fxm =t ([ @re 3] @S
T 12 T n—12
s R

—o e T erei3
By theorem 9.10 in [22, pp. 422], there exista> 0 such that|®7x||%, > w||x]||3, for all x. Due to the
selection procedurdj®”x||2, = ||®L.x|?%. Gathering this all together we see that the theorem holds

forc=(1— W), where||®||3 > ||®r-||3 is the squared Euclidean operator norm of the full dictignar

4even though for unstructured dictionaries the differerzas be small
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Note that for Matching Pursdita corresponding result holds whete= (1 — w)[22, section 9.5.2],
which in general would suggest a faster decay, however, thmerical studies below show that GP
outperforms MP in general.

Unfortunately, we have currently no convergence proof f@G®R, however, a slight modification of
the proposed algorithms can be shown to converge in a finitebeu of steps. This approach would
use a gradient step (equation (9)) whenever a new elememéasted, while the update direction in
equation (24) is used, whenever no new element is added teetbeted subset. Empirical evidence for
this method shows that the actual performance is close toff@P and we therefore do not pursue this

method further here.

VI. EXPERIMENTAL EVALUATION

The proposed algorithms only approximate OMP and shoulcetbee be compared to exact OMP
solutions. To do this, we study the average performance efatjorithms on relatively small problems
with randomly generated dictionaries. In subsection VI-A ok at two regimes, mildly sparse signals
in which the algorithms are not able to exactly recover theemt sparse signal and highly sparse signals
in which the algorithms are able to recover the correct atdrhe transition between these two regimes
and the performance of the approximate algorithms duriigyttnsition is then studied in more detail
in subsection VI-B.

The main advantage of the proposed approximate methodsitighity require less storage than fast
OMP implementations. They can therefore be applied to laagde problems, where OMP is infeasible.
The last two subsections of this section therefore dematestine applicability of the proposed approaches
to two larger problems. The first example given in subsecb is an audio de-noising problem and
the second example in subsection VI-D looks at compressesirggof MRI images. The problem size
of the first of these examples is so large that exact OMP metbadnot be applied to the problem, while
the second example is of the maximum size for which the Chylézctorisation based OMP approach
is still feasible. The last example therefore allows us topare different methods, both in terms of

performance and in terms of computational speed.

The directiond that minimises the expression in equation (28) is exac#ydinection that would give the OMP solution so
that the same bound holds for OMP. However in finite dimersi@MP is guaranteed to converge in a finite number of steps.
For the infinite dimensional setting, and for functions witirtain smoothness properties, convergence results foP Gae
been derived in [29].
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A. Signal Approximation Performance

To compare the approximate OMP algorithms of this paper tdacMag Pursuit and Orthogonal
Matching Pursuit, we use a simple toy problem. 1 000 dicti@saof size128 x 256 were generated
with elementsp; drawn uniformly from the unit sphere. From each dictionaiyefements were selected
at random and multiplied with unit variance zero mean Gaumssoefficients to generate 1 000 different

signals.

i} m
© ©
£ £
5 5
i w
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0 20 40 60 80 100 120 0 20 40 60 80 100 120
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ACGP
—_ 04 T GP o 04.
= o MP 2
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.GE) 0.2y _9:_’ 0.2t
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Fig. 2. Comparison between Matching Pursuit (dotted), @timal Matching Pursuit (dashed), Gradient Pursuit (dbsted)
and Approximate Conjugate Gradient Pursuit (solid) for gnal generated using half as many non-zero coefficients &s th
dimension of the signat. The left plots show the error (in dB (top) and on a linear s¢abttom)) plotted against the number
of iterations whilst the right panels show the error plotagainst the number of selected elements. All results haee aeeraged
over 1 000 runs with dictionary elements drawn uniformlynficthe unit sphere and non-zero coefficients drawn from a Gauss
distribution.

The averaged results are shown in figure 2 where we plot theogippation error, both in dB (top
panels) and on a linear scale (lower panels) against thatidgar (left panel) as well as against the
number of non-zero coefficients selected (right panelgmRthese results it is clear that the approximate
algorithms perform nearly as well as OMP, while MP performarkedly worse. Therefore, the simple
incorporation of a gradient step into matching pursuit gigantly improved the performance, whilst

using the approximate conjugate gradient offered evereldognefits.
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Fig. 3. Comparison between Matching Pursuit (dotted), @timal Matching Pursuit (dashed), Gradient Pursuit (dbsted)
and Approximate Conjugate Gradient Pursuit (solid) forgnal generated using 12 non-zero coefficients, which istlesms a
tenth of the dimension of the signal The left plots show the error (in dB (top) and on a linear s¢abttom)) plotted against
the number of iterations whilst the right panels show thereptotted against the number of selected elements. Alliesave
been averaged over 1 000 runs with dictionary elements dramformly form the unit sphere and non-zero coefficientsadra

from a Gaussian distribution.

We repeated a similar experiment in which we used severdigmasteps in each iteration of GP (not
shown). Unsurprisingly, such an increase gives resultsgbteven closer to the performance of OMP.
It is, however, noteworthy that ACGP with a single direciibnpdate step was found to outperform GP,
even if this method uses two gradient steps per iteration.

The above experiments were conducted with a signal gemetetig M/ /2 non-zero elements. As
shown in the next subsection, in this regime, the algorittames not able to exactly recover the exact
non-zero coefficients. The experiment was therefore regedut this time, the signals were generated
using only 12 non-zero coefficients. As shown in the nextisectfor such highly sparse signals, all
algorithms are able to recover the correct non-zero elesngith high probability. The averaged results
of this experiment are shown in figure 3, where we again pletSNR value in both, dB (top panels)
and on a linear scale (lower panels) against the iteratiemt;d.e. against the number of gradient steps

(left panels) as well as against the number of selected eltsnfgght panels).
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In this scenario, all algorithms were able to recover thaemtrelements and the error decreased to
zero after 12 elements were selected. Looking at the erreaeh iteration, it can be seen that whilst
OMP only required 12 iterations, both, GP and ACGP only rexguslightly more iterations for the error
to drop below 120 dB. Matching Pursuit on the other hand megunearly 100 iterations. Looking at
the error plotted on a linear scale, it can be seen that duhiedirst iterations GP and ACGP did not

deviate markedly from OMP.

B. Exact Recovery Performance

For highly sparse signals and certain dictionaries, it isvkm that greedy pursuit type algorithms are
guaranteed to exactly recover the elements used to genkeasignal [27]. These bounds are worst case
bounds and the same bounds hold for all algorithms givenignpiper. We therefore analyse the average
performance of the methods in terms of exact recovery of tments used to generate the signal.

The signals were generated as in the previous experimengves, we varied the number of elements
used to generate the signals over a larger range. The réaulieaged over 10 000 runs) are shown in
figure 4. To support our argument for a repeated selectiortah®, we here show the results for two
different implementations of GP and ACGP, one in which weesgeh new element in each iteration
(shown with grey lines) and one in which we allowed the altyoni to select atoms repeatedly (black
lines). All algorithms were stopped after they had seleeteattly the number of elements used to generate
the signal.

OMP again outperforms the other algorithms in terms of eeing the true signal elements, however,
ACGP and GP perform relatively well when we allow elementbecselected repeatedly. Forcing GP and
ACGP to select a new element in each iteration is seen to hatviengntal effects for the performance in
terms of exact signal recovery. Matching Pursuit did penfeignificantly worse than the other methods,
for example, matching pursuit requires that less than 2@ehds are non-zero to be able to recover these
elements in 90% of cases, whilst our ACGP algorithm can recap to 28 non-zero elements in 90%

of cases, which is an increase of 40%.

C. Audio Example

In order to demonstrate the applicability of the proposedhos to larger problems that cannot be
solved with current OMP implementations we use an audioalsig example. We here used MP, GP
and ACGP on a 2.5 second long excerpt from a jazz trio audiordéty (mono, 44 100 kHz sampling

frequency) to which we added i.i.d. Gaussian noise, so ktieatihalysed signal had a signal to noise ratio
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Fig. 4. Comparison of the algorithms in terms of exactly kecing the original coefficients. The ordinate shows thetfom
of runs in which the algorithms exactly recovered the indeiIsused to generate the data while the abscissa shows the ratio
of the size ofl" to the dimension ofk. The grey lines are the implementation of the algorithms hiclv a new element is

chosen in each iteration, while the black lines allow elet®i¢a be chosen repeatedly. Results averaged over 10 000 runs

(SNR) of 20dB. As a dictionary we used a four times overcomeplodified Discrete Cosine Transform
(MDCT), using Tukey windows of length 4096 and 512 with 75%bap.

We run MP, GP and ACGP (both with a single gradient step),qusirfast implementation of the
MDCT. We here monitored the performance after each itaratiatil the methods had retrieved as many
coefficients as the signal dimension (110 592 samhles)

In audio de-noising, the typical performance measure wdigdin terms of how close the signal
approximation gets to the originalbiselesssignal. This is shown in figure 5 with the solid and dotted
lines. In addition, we also show how well the algorithms appmate thenoisysignal (dashed and dash-
dotted lines). The lower panel shows the detail in the rediowhich the best de-noising performance
was observed. We found that the performance of ACGP wasalliytidentical to GP in this example and
we here only show the latter. From the decay of the error intdpepanel for the signal approximation

performance of GP, we see that the error goes virtually to @g&0dB) once we select as many elements as

®For this example OMP based on QR factorisation would redhigestorage of a squale0 592 x 110 592 matrix as well as
the storage of an upper triangular matrix of the same size6& it floating point arithmetic, this would require 50 45486032
bytes or roughly 47 gigabytes of storage! An implementatiased on Cholesky factorisation requires less storagdy{‘an
upper triangular matrix), but the required solutions to ithesrse problems is far too costly for upper triangular imas of this

size.
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Fig. 5. Comparison of Gradient Pursuit (GP) and MatchingsBitil{MP) in terms of approximating a noisy audio signal (o
and dash-dotted lines) and in terms of de-noising the naislioasignal (solid and dotted lines). The lower panel magsifi
the area in which the de-noising performance is optimal. 3NR ratio is either the ratio of the signal energy to the error
between the approximation and theisy signal (dashed and dash-dotted lines) or the ratio of theakig the error between
the approximation and theoiselesssignal (solid and dotted lines). This is plotted against nlaenber of non-zero elements

selected, which is shown as a ratio to the signal length.

the signal dimension. This suggests that the algorithmsgiearly the exact signal projection, explaining
why ACGP did not offer any advantages in this example.

We see that GP offers a much better signal approximatiorhiisame number of used elements. For
example, using 10% of the elements GP offers 0.75 dB bettéompeance than MP, while for 25% the
performance benefit is 1.7 dB. For de-noising the maximum SWRe, 22.2 dB for GP and 21.9 dB
for the MP algorithm. These were achieved using 7.8% and ©B%e selected elements respectively.
Therefore GP does not only require less elements to appat&ior de-noise the signal, it also shows a

slightly better de-noising performance.
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D. Compressed Sensing

Whilst the previous experiment demonstrated the perfoomayains available over matching pursuits
in problems where exact OMP algorithms are infeasible, daistion studies a large problem that is
still solvable with exact OMP. Also, contrasting the prawdoexperiment where the emphasis was on
approximatingx, we here look at a compressed sensing application in whisttiucial that the algorithm
is able to closely approximate the sparse coefficignt€ompressed sensing is an emerging paradigm
that exploits the sparsity of a signal in some transform doriraorder to reduce the number of samples
required for signal acquisition [4]. The use of OMP to solwe tecovery problem in compressed sensing
was proposed in [30]. In the language of this paper, assurigmalg has a sparse representatios Wy
for some orthogonal transfornlr. In several applications, it is often not possible to measlf values
of z, instead, it is possible to acquire a small number of lineaasurements of of the formx = Mz,
whereM is a measuring matrix and where the dimensiox d@f less than that af. The problem is then
to estimatez given onlyx, M and ¥. If M and ¥ have certain properties andyf is sparse enough,
then it is possible to recover [4] by finding a sparse representatignsuch thatx = MW¥y = Py,
where the produc® of the sparsity basi® and the measurement operabdr now takes on the function
of the “dictionary”.

One particularly promising application domain of compsegssensing is Magnetic Resonance Imaging
(MRI) [31] and we take our example from this area. In particulve here use the same MRI example
as presented in [4] which uses the Logan-Shepp phantom. The Logan-Sheppghastshown in the
top left panel in figure 6.

The physical process of acquiring MRI images is equivalentaking one dimensional slices from
the 2 dimension Fourier domain of the image under investigaffThe magnitude of the 2-D Fourier
transform of the Logan-Shep phantom is shown in the bottdinplenel of figure 6. The measuring
matrix M here only takes a small subset of these slices as shown inottebright panel in figure 6.

In order to reconstruct the original phantom image, we adilihe fact that the image has a sparse
representation in the Haar wavelet transform, i.e. thesifydnasis¥ is a two dimensional discreet Haar
transform. The Haar wavelet coefficients are shown in therigipt panel of figure 6, where we plot
the logarithm of the absolute of these coefficients. For gaigicular image of siz&56 x 256, it was

observed that the original image is well approximated (@0 dB peak signal to noise ratio) using

"It is important to note that we here use a Haar wavelet basidl ixperiments and not a total variation based constraint a

used for example in [4].
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Fig. 6. Magnetic Resonance Imaging (MRI) Example. Origpteintom image (top left), Fourier domain representatiartt@mn
left), observation of 15% of the frequency coefficients sketi@long 42 radial lines (bottom right) and sparse repttasen in

Haar wavelet domain (top right).

only 4000 of the wavelet coefficients.

We compare the performance of OMP, MP, GP and ACGP using keet@@ and 52 radial lines from the
2 dimensional Fourier domain as the measurements. We aliaived the algorithms to select elements
repeatedly and stopped once 4000 different elements hadseéected. We then used a conjugate gradient
algorithm to calculated the solution vectgrs- that minimised (6) for the particular elements selected
with each of the methods.

For comparison, we also used several algorithms that sieé problem||x—®y||3+\||y||1. We used
for example the Gradient Projection for Sparse Reconstru¢GPSR) algorithm proposed in [10] avail-
able for download from (http://www.Ix.it.ptymtf/GPSR/) and the Truncated Interior-Point Method!fier
regularised least squares (which we will call TIM) from [9pdlable at (http://www.stanford.eduboyd/I1Is/).
For both of these methods we set the paramgtéar each condition such that the algorithm recovered
approximately 4000 non-zero eleméhtsVe also tried the homotopy method and the LARS algorithm
discussed in [8] and available in the SparseLab toolboy(faparselab.stanford.edu/). We stopped these
algorithms after they had selected 4000 elements. All nuttgave results comparable to those labelled

L1 in figure 7, where the Peak Signal to Noise Ratios are plotient the orthogonal projection onto

8We here found the appropriate value folby running the methods repeatedly, each time using a differalues for).
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Fig. 7. Comparison between the different algorithms fofedént numbers of observations in the compressed sensmgae.
The solid line shows the Peak Signal To Noise Ratio PSNR ferapproximate conjugate gradient method, the dashed line
shows the PSNR for Gradient Pursuit and the dotted line shibe&v?SNR for Matching Pursuit. Shown are the PSNR values

after orthogonal projection onto the selected elements.

the selected subset.

The results for GP and ACGP before projection were closedsdlshown here for ratios of measure-
ment to signal dimension above 0.15 suggesting that theseithims returned a good approximation to
the orthogonal projection whenever they were able to recthe correct index set. For MP and tlig
methods, the results always improved by several dB aftgegtion. Running OMP, it is interesting to
note that for certain problem sizes the algorithm is ablexacty recover the significant coefficients,
while for slightly larger ones it might fail. This seems to thee to the fact that for different observation
dimensions, completely different Fourier coefficients eveelected and that for certain problems the
chosen coefficients were not informative enough, even thaugre coefficients were available. A visual
comparison of the reconstruction for the experiment in Whiee observation dimension was 15% of the
signal dimension is given in figure 8 for the result found wit6GP and the/; method.

In this example, MP fails to recover the original signal otlee¢ range of measurement dimensions
used, while ACGP recovers the original signal for a measargro signal dimension ratio aboté%,
where it furthermore also returns a result close to the grhal projection onto the selected elements.
GP also performed well, however, GP required more obsensto exactly recover the signal. Note also
that the superior performance of OMP over thanethod observed here has previously been observed in

[32] for certain problems. For a more thorough study and amispn of the performance &f-regularised
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L1 Reconstruction

Fig. 8. Magnetic Resonance Imaging (MRI) Example. Compartsetween the reconstructed images using the ACGP algorith

and thel, algorithm for the experiment in which the observation disien was 15% of the signal dimension.

optimisation methods and OMP we refer to [32].
All the greedy algorithms were run until they had selecte@04@ifferent elements and both, MP and

OMP were found to be slower in this example than GP and ACGE. ONP algorithm used here was
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TABLE Il

COMPARISON BETWEEN THE APPROXIMATE COMPUTATION TIME OF SEVEAL ALGORITHMS RUN ON THE MRI EXAMPLE.

TIMES ARE NORMALISED TO THE TIME OFGP.

GP 1.0
ACGP 15
MP 3.4

OMP-Chol | 3.2
GPSR-PBB| 0.4
TIM 0.4
LARS 3.4
Homotopy | 3.7

based on Cholesky factorisation and we used the implenentatailable in the SparseLab toolbox
(http://sparselab.stanford.edu/). Even though eachtiter of MP is faster than a single iteration of GP
and ACGP, MP took roughly twice as long as ACGP and three timsdeng as GP. This can be explained
by looking at the total number of iterations used by the atbors. ACGP as well as GP only selected a
small number of elements repeatedly and the total numbeerHtions was not much more than 4000,
MP on the other hand was found to require around 12 000 iteratio select 4000 different elements.
The GPSR algorithm was found to be very fast and took a fifttheftime of MP to converge, however,
the calculated coefficients are far from the minimum leastasgs solution for the selected coefficients
and the required orthogonal projection, which we calcudlatsing a conjugate gradient algorithm, took
roughly the same computation time as the GPSR algorithrif.itse
A comparison between the computation times of the diffeedgobrithms is given in table 31 The

times shown also include the times for the calculation of dindnogonal projection onto the selected
subset. To facilitate comparison we have here normaliseddmputation times by dividing them all by

the time of GP (which took around 30 minutes on a Apple MaahtG5 Quad 2.5GHz computer).

VIl. DISCUSSION AND CONCLUSION

Sparse representations are used in many areas of signakpiog and efficient algorithms are required
to solve many real world problems. In this paper we have thtced a novel extension to greedy Matching

Pursuit type algorithms based on directional optimisatifinis framework allows different directions to

°Note that we here do not use equation (4) in our MP implemiemtatvhich would make MP substantially faster [23].
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be chosen and we have here discussed three possibilitegréidient, the conjugate gradient and an
approximation to the conjugate gradient. While the conjegaadient solves the Orthogonal Matching
Pursuit (OMP) algorithm exactly, the evaluation of thisedtion has the same computational complexity
as previous implementations of OMP, such as the approaddbas QR factorisation. The gradient as
well as the approximate conjugate gradient are much eastaltulate, with the gradient being available
from the first step of Matching Pursuit (MP).

For many applications, OMP can outperform convex optirasamethods. For large problems, in
which the number of non-zero elements is of the order of s¢wkousands or more, the computational
requirements and storage demands of currently availabjdeimentations of OMP can easily become
too large and faster alternatives are required. In this pagehave suggested two such alternatives, the
Gradient Pursuit (GP) algorithm and the Approximate Coajagsradient Pursuit (ACGP) method.

Experimental results show that both, GP as well as ACGP diatpe MP and often get a performance
close to OMP, with ACGP often exhibiting a better performaniban GP. In the de-noising example,
the performance of GP was comparable to ACGP and the resigtgested that the method gives results
close to OMP. This is probably due to the particular examgleduin which the selected elements only
influence a small part of the signal. A newly selected elerders then not influence the optimal solution
for most of the other coefficients.

Greedy strategies often select a single element at a timéhanefore require at least as many iteration
as the number of non-zero elements to be selected. This beuttdvercome by selecting more than one
element at a time, for example by using a thresholding praeeds recently proposed for the Stagewise
Orthogonal Matching Pursuit (StOMP) algorithm [33] or byngsa regularisation approach as that used
in the Regularised Orthogonal Matching Pursuit algoritiROMP) [34].

The only drawback of the suggested approach when compatd® is that in MP it is often possible to
update the inner products locally, whenever the Gram matigparse. As the algorithms suggested in this
paper update all previously selected elements, such amagipiis not directly applicable. Nevertheless,
as shown in the experiments, the methods are applicablergerlgproblems, for which traditional

implementations of OMP are not feasible.
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