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The Gamma and Strominger–Yau–Zaslow conjectures: a tropical
approach to periods

MOHAMMED ABOUZAID, SHEEL GANATRA, HIROSHI IRITANI AND NICK SHERIDAN

ABSTRACT: We propose a new method to compute asymptotics of periods using tropical geometry,
in which the Riemann zeta values appear naturally as error terms in tropicalization. Our method
suggests how the Gamma class should arise from the Strominger–Yau–Zaslow conjecture. We use it
to give a new proof of (a version of) the Gamma Conjecture for Batyrev pairs of mirror Calabi–Yau
hypersurfaces.

1 Introduction

1.1 The ‘error term’ in tropicalization

The relationship between tropical and algebraic geometry is based on the ‘Maslov dequantization’:

logT
(
Ta + Tb) ≈ max(a, b) for T � 1.

Setting b = 0, we can use this to arrive at the following approximation:

(log T)2
∫ A

−A
logT

(
1 + Ta) da ≈ (log T)2

∫ A

−A
max(0, a)da =

A2

2
(log T)2.

However there is an error term in this approximation (see Figure 1): in the limit T →∞ it is given by

(log T)2
∫ A

−A

(
logT

(
1 + Ta)−max(0, a)

)
da = 2(log T)2

∫ A

0
logT

(
1 + T−a) da

= 2
∫ 1

T−A

log(1 + x)
x

dx

= 2
∞∑

k=1

(−1)k+1

k2 + O(T−A)

= ζ(2) + O(T−A).

In other words, ζ(2) = π2/6 arises as a subleading term in the Maslov dequantization.

Going one dimension up, we can calculate the error term in the analogous approximation

(log T)3
∫

U
logT

(
1 + Ta1 + Ta2

)
da1da2 ≈ (log T)3

∫
U

max(0, a1, a2)da1da2.

We will assume that U ⊂ R2 is a polygon containing the origin, and transverse to the legs of the
‘tropical curve’ Sing(max(0, s1, s2)) (i.e. the locus where at least two of 0, s1, s2 are tied for largest).
The error term is equal to∫

log T·U

(
log
(
1 + es1 + es2

)
−max(0, s1, s2)

)
ds1ds2.

The integrand looks approximately like log (1 + es)−max(0, s) in the directions normal to the legs of
the tropical curve. Thus the leading piece of the error term is equal to the total length of the tropical
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2 Abouzaid, Ganatra, Iritani and Sheridan

curve contained inside the region log T · U multiplied by ζ(2), which will be linear in log T . It turns
out that there is also a constant term, which is equal to ζ(3) (see Proposition 4.5).

The main idea of this paper is to use such approximations to compute asymptotic expansions for period
integrals, and to relate them to the Gamma class of the mirror, which we describe in the next section.

Remark 1.1 These error terms compute the volume of (parts of) amoebas; see [Pas08, PR04] for the
study in 2 dimensions.

Figure 1: The graphs of logT (1 + Tx) and logT (1 + Tx + Ty) when T = e . These images were produced using
Maple 2018 [adoWMI].

1.2 The Gamma class and mirror periods

It has been long observed that products of the characteristic numbers of a Calabi–Yau manifold by zeta
values can be found in the asymptotics of periods of the mirror near the large-complex structure limit.
For example, ζ(3) multiplied by the Euler number of a quintic threefold appears in the famous work
of Candelas–de la Ossa–Green–Parkes [CdlOGP91]. Later, Hosono–Klemm–Theisen–Yau [HKTY95]
observed that certain Chern numbers of Calabi–Yau complete intersection threefolds can be read off
from hypergeometric solutions to the mirror Picard–Fuchs equation. This observation led Libgober
[Lib99] to introduce the (inverse) Gamma class which makes sense for any almost-complex (or stably
complex-oriented) manifold. The Gamma class1 of an almost-complex manifold X is defined to be the
cohomology class

Γ̂X =
∏

i

Γ(1 + δi) = exp

(
−γc1(X) +

∞∑
k=2

(−1)kζ(k)(k − 1)! chk(TX)

)
∈ H∗(X,R)

where δi are the Chern roots of the tangent bundle TX (such that c(TX) =
∏

i(1 + δi)) and γ =
limn→∞(1 + 1

2 + · · ·+ 1
n − log n) is the Euler constant. In terms of the Gamma class, a conjecture put

forward by Hosono [Hos06, Conjecture 2.2] (see also [Hor99, vEvS06, BH06, AvSZ08, Gol09, Iri11])
can be restated as follows:

1When X is an orbifold, the Gamma class has a component in the twisted sector. We nevertheless ignore the
twisted sector component since it does not intervene in the statement of the Gamma Conjecture.
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Conjecture A (Gamma Conjecture in the Calabi–Yau case) Let X be a Calabi–Yau manifold equipped
with a symplectic form ω and let {Zt}t∈∆∗ be a family of Calabi–Yau manifolds parametrized by t in
a small punctured disc ∆∗ that corresponds to (X, ω) under mirror symmetry. For a suitable choice of
a holomorphic volume form Ωt on Zt and of a coordinate t , if a Lagrangian cycle Ct ⊂ Zt is mirror to
a coherent sheaf E on X , then∫

Ct⊂Zt

Ωt =

∫
X

t−ω · Γ̂X · (2πi)deg /2 ch(E) + O
(
tε
)

as t→ 0 in a fixed angular sector

for some ε > 0, where i =
√
−1 is the imaginary unit.

Remark 1.2 (a) The original conjecture of Hosono [Hos06] is stated as an equality between periods
and explicit hypergeometric series in the case of complete intersection Calabi–Yau manifolds. The
version presented here can be obtained from the leading asymptotics of the hypergeometric series.
(b) Both sides of the equality in the Gamma Conjectures are multivalued functions of t : on the right
hand side, a choice of branch of log t is required to specify a value for t−ω , while on the left hand side
the monodromy of the family Zt in general acts non-trivially on the homology classes of Lagrangian
cycles. The family of Lagrangian cycles Ct mirror to E is identified over the universal cover of the
punctured disc ∆∗ .
(c) This is not a mathematically precise conjecture since it depends on mirror symmetry. In the case of
Fano manifolds, there is a precise conjecture (the original Gamma Conjecture) which can be formulated
purely in terms of quantum cohomology of a Fano manifold X [GGI16, GI15, SS17] and is closely
related to Dubrovin’s conjecture [Dub98].
(d) In the above conjecture, we implicitly assume that t = 0 is a point of maximal degeneracy in the
sense that the associated limit mixed Hodge structure is Hodge–Tate [Del97] and that the mirror map
takes the form2 −ω log t + O(t) so that t = 0 corresponds to the large-radius limit point of (X, ω).
We could further assume that the volume form Ωt is normalized by a Hodge-theoretic condition as
discussed in [CdlOGP91, Mor93, Del97].
(e) Using the Gamma class, Katzarkov–Kontsevich–Pantev [KKP08] and the third author [Iri09] intro-
duced a rational/integral structure on the quantum cohomology, which conjecturally corresponds to the
natural rational/integral structure (given by Betti cohomology) on the B-side.

Although Conjecture A is not mathematically precise, we can make it precise by specifying what we
mean by a “mirror pair” and by fixing the correspondence between equivalence classes of cycles on
the two sides: the Strominger–Yau–Zaslow (SYZ) conjecture posits that mirror pairs should carry dual
(possibly singular) torus fibrations, and building on this, the Gross–Siebert program gives a geometric
construction of mirror pairs in some large generality (see [SYZ96, GS11]). This determines the
correspondence between Lagrangian cycles and coherent sheaves appearing in the Gamma Conjecture.
The present paper aims to understand/explain the Gamma Conjecture from the viewpoint of the SYZ
fibrations.

1.3 The Gamma Conjecture for Batyrev mirrors

Let ∆ ⊂ PR be a reflexive polytope, and ∇ ⊂ QR its polar dual, where P ∼= Zn+1 and Q := P∨ and
we write PK = P⊗Z K , QK = Q⊗Z K for a Z-module K . Let V be a subset of ∂∇ ∩ Q containing

2If the mirror map is of the form −ω log t + h + O(t) with h ∈ H2(X), then we need to replace Γ̂X with ehΓ̂X

in the conjecture; the class h appears, for instance, when we replace t with 2t .
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all vertices of ∇ and let λ : V → R+ be a positive real-valued function.3 We assume that there exists
a simplicial fan Σλ on QR such that the set of one-dimensional cones of Σλ is {R≥0 · q : q ∈ V} and
that λ extends to a strictly-convex piecewise-linear function λ : QR → R with respect to the fan Σλ .
We set

ft(z) :=
∑
q∈V

tλq · zq

for t ∈ R+ and z ∈ PC∗ , and
Z̊t := {1 = ft(z)} ⊂ PC∗ .

The positive real locus C+
t ⊂ Z̊t is defined to be the intersection Z̊t ∩ PR+ ; this is homeomorphic to a

real n-dimensional sphere for a sufficiently small t > 0 (see Section 3.1).

Let Y∇ denote the toric variety defined by the normal fan of ∇ and take a partial crepant resolution Ŷ∇
of Y∇ which has at worst quotient singularities. The hypersurface Z̊t compactifies to a quasi-smooth
Calabi–Yau hypersurface Zt ⊂ Ŷ∇ . The holomorphic volume form

Ωt :=
d log z0 ∧ d log z1 ∧ · · · ∧ d log zn

dft(z)

∣∣∣∣
Z̊t

also extends to Zt , where (z0, z1, . . . , zn) denotes C∗ -coordinates on PC∗ ∼= (C∗)n+1 . On the B-side of
mirror symmetry we will consider the period integral∫

C+
t ⊂Z̊t

Ωt.

On the A-side of mirror symmetry, we consider the compact convex polytope

∆λ := {p ∈ PR : 〈q, p〉+ λq ≥ 0, ∀q ∈ V}.
Our assumption on λ ensures that the slopes of the edges at each vertex form a basis of PR . We have
a corresponding toric orbifold Y∆λ

equipped with a Kähler class [ωλ] =
∑

q∈V λq · Dq , where Dq

is the toric divisor corresponding to the qth face {p ∈ ∆λ : 〈q, p〉 + λq = 0} of ∆λ . The Batyrev
mirror of Zt is given by a quasi-smooth Calabi–Yau hypersurface X ⊂ Y∆λ

[Bat94]. It is expected that
the large-radius limit of X corresponds to the large complex structure limit t → 0 for Zt and that the
Lagrangian sphere C+

t ⊂ Zt is mirror to the structure sheaf OX of X . Thus it makes sense to substitute
Ct = C+

t and E = OX in Conjecture A. Our first main result is a proof of this special case of the
Gamma Conjecture:

Theorem B (Gamma Conjecture for the structure sheaf on Batyrev mirror pairs) We have:∫
C+

t ⊂Zt

Ωt =

∫
X

t−ω · Γ̂X + O
(
tε
)

as t→ +0, for some ε > 0.

Our second main result is a generalization of Theorem B, in which the structure sheaf OX is replaced
with an arbitrary ambient line bundle on X , i.e., one restricted from Y∆λ

. Any line bundle on Y∆λ
has

the form Oν = O(−
∑

q∈V νqDq) for some ν ∈ ZV ; let Lν denote the restriction of Oν to X . We now

describe the cycle C(ν)
t ⊂ Zt mirror to Lν . Consider the polynomial function ft,θ(z) on PC∗

ft,θ(z) :=
∑
q∈V

eiθq tλqzq

3R+ denotes the set of positive real numbers.
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that we obtain from ft(z) by multiplying the coefficients tλq by eiθq for some θq ∈ R, and the associated
hypersurface

Z̊t,θ := {ft,θ(z) = 1} ⊂ PC∗ .

Let C(ν)
t ⊂ Z̊t be the parallel transport of the positive real cycle C+

t ⊂ Z̊t as we vary θ continuously
from θ = 0 to θ = 2πν .

Remark 1.3 Let us explain why the cycle C(ν)
t is expected to be isotopic to a Lagrangian cycle mirror

to Lν . One expects a commutative diagram of categories as follows:

DbCoh(Y∆λ
)

restriction
��

oo
HMS
' // DbFS(PC∗ , ft) oo compactify

' // DbFS(PC∗ , f̄t)

L 7→∂L
��

DbCoh(X) oo
HMS
' // DbFuk(Zt).

The top arrow labelled ‘HMS’ is homological mirror symmetry for the toric variety Y∆λ
and its

Landau–Ginzburg mirror (PC∗ , ft), where we fix t . The other arrow on the top line identifies the
Fukaya–Seidel category of this Landau–Ginzburg model with that of its fibrewise compactification (see
[Sei16]). The objects of FS(PC∗ , ft) may be taken to be certain Lagrangian submanifolds of PC∗ with
boundary on the fibre f−1

t (1) = Z̊t , while the objects of FS(PC∗ , f̄t) are Lagrangians with boundary
on the compactified fibre f̄−1

t (1) = Zt . The left vertical arrow denotes the derived restriction functor,
while the right one sends a Lagrangian to its boundary; the commutativity of this diagram appears,
e.g., in [Aur07, Conjecture 7.7]. Under the (presumably removable) assumption that Y∆λ

is smooth,
the first author has constructed certain objects Lν of FS(PC∗ , ft), and proved that they are mirror to
the line bundles Oν [Abo06, Abo09] (see also the work of Fang–Liu–Treumann–Zaslow [FLTZ12],
Fang [Fan16], Fang–Zhou [FZ19], and Hanlon [Han19]). Therefore, by commutativity of the above
diagram, one expects Lν to be mirror to ∂Lν ⊂ Zt . One can identify ∂Lν with C(ν)

t up to an isotopy:
this becomes transparent using the tropical construction of C(ν)

t given in Section 5.

In light of Remark 1.3, it makes sense to substitute Ct = C(ν)
t and E = Lν in Conjecture A. Our second

main result is a proof of this special case of the Gamma Conjecture (generalizing Theorem B, which is
the case ν = 0):

Theorem C (Gamma Conjecture for ambient line bundles on Batyrev mirror pairs) We have:∫
C(ν)

t ⊂Zt

Ωt =

∫
X

t−ω · Γ̂X · e−
∑

q∈V 2πiνqDq + O
(
tε
)

as t→ +0, for some ε > 0.

We remark that similar results have been obtained in [Iri11, Theorem 1.1]; the novelty in our work is the
method of proof, which relates the Gamma Conjecture to the SYZ Conjecture and the Gross–Siebert
program. In fact, due to the local nature of the computations, we expect that it should not be significantly
harder to implement our approach for general Gross–Siebert mirrors than for Batyrev mirrors. The
Gamma Conjecture for general Gross–Siebert mirrors is open.

In a different direction, we expect that it should be possible to implement our approach to prove the
Gamma Conjecture for certain Lagrangian cycles Ct fibring over ‘tropical cycles’ in the base of the
SYZ fibration (see [CBM14, RS19] for the notion of ‘tropical cycle’ in closely-related contexts, and
[Mat18, Mik19] for the construction of the corresponding Lagrangian cycles). Indeed this is essentially
done in [RS19], in the case that the tropical cycle in the base of the SYZ fibration is 1-dimensional. In
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this case the interesting part of the Gamma class (i.e., the part involving zeta values) does not appear
in the computation: the mirror coherent sheaf is the skyscraper sheaf of a curve, and in particular its
Chern character is concentrated in degrees ≥ 2n− 2, whereas the zeta values in the Gamma class of a
Calabi–Yau only appear in degrees ≥ 4. This reflects the fact that the 1-dimensional tropical cycle can
be (topologically) deformed to avoid the codimension-2 singular locus of the SYZ fibration, where the
non-trivial contributions to the Gamma class are concentrated.4

1.4 Proofs of Theorems B and C

We compute the asymptotics of the period integrals appearing in Theorems B and C by breaking them
up into local pieces using tropical geometry. This procedure involves an extra layer of combinatorial
complexity in the case of Theorem C, so we give the proof of Theorem B first in the name of transparency.

The ‘local period integrals’ that will appear are

(1) I`;m1,...,mk :=
∫

[0,∞)k
sm1

1 . . . smk
k · g`(e

−s1 , . . . , e−sk ) ds1 · · · dsk for `,mj ∈ Z≥0 ,

where
g`(X1, . . . ,Xk) :=

∑
K⊂{1,...,k}

(−1)|K| ·
(

log
(

1 +
∑

j∈K Xj

))`
.

The integral (1) converges because the integrand decays exponentially at infinity, due to the bound

(2) g`(X1, . . . ,Xk) ≤ C` ·
k∏

j=1

Xj on [0, 1]k .

This bound can be proved by observing that the function g`(X1, . . . ,Xk) is analytic in a neighbourhood
of [0, 1]k , and vanishes along the coordinate hyperplanes {Xj = 0}, so is divisible by

∏k
j=1 Xj . We

note that g` = 0 for ` = 0.

We define a class in H∗(X) by

(3) ĜX = 1 +
∑

q,J,`,~m

I`;~m
`!
∏

j∈J mj!
· (−Dq) · (−σ)`−1 ·

∏
j∈J

(−Dj)mj+1

where σ =
∑

j∈V Dj is the first Chern class of Y∆λ
, and the sum is over all q ∈ V , all nonempty subsets

J ⊂ V not containing q, ` ≥ 1 and ~m ∈ (Z≥0)J .

Theorem 1.4 Let (X,Zt) be a Batyrev mirror pair of Calabi–Yau hypersurfaces and let C+
t ⊂ Zt

denote the positive real locus. Then we have∫
C+

t ⊂Zt

Ωt =

∫
X

t−ωλ · ĜX + O
(
tε
)

as t→ +0, for some ε > 0.

Theorem 1.4 is proved in Section 3. The proof uses tropical geometry to decompose C+
t into pieces,

so that the integrals of Ωt over these pieces are in one-to-one correspondence with the terms on the
right-hand side.

4We should mention that the aim of [RS19] is rather different from that of the current paper: the authors show
that the natural coordinate on the base of the family constructed by Gross–Siebert is a canonical coordinate in the
Hodge-theoretic sense.
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Theorem 1.5 We have ĜX = Γ̂X .

Theorem 1.5 is proved in Section 4. Combining Theorems 1.4 and 1.5, we have proved Theorem B.

In Section 5, we generalize Theorem 1.4 to give a computation of period integrals over cycles Ct,θ ⊂ Z̊t,θ ,
obtained by parallel transport of C+

t ; see Theorem 5.1. These include the cycles C(ν)
t , in the special

case that all θq are integers. Theorem C is proved by combining Theorems 5.1 and 1.5.

1.5 Plan

Theorems 1.4 and 1.5 are proved in Sections 3 and 4 respectively; together they prove Theorem B.
The additional ingredient needed to prove Theorem C, namely Theorem 5.1, is proved in Section 5.
However, the geometric idea underlying our approach may not shine through the tropical combinatorics
of the rigorous proofs. Therefore, in Section 2 we explain the idea behind the proofs informally,
emphasizing the relationship with the SYZ conjecture and the Gross–Siebert program. The reader who
has no interest in informal discussions can skip Section 2.

Acknowledgements. We thank Denis Auroux for a helpful conversation at an early stage of this
project. This work was done during the authors’ stay at the Institute for Advanced Study (Fall 2016),
Kyoto University (Winter 2017) and the Mathematical Sciences Research Institute (Spring 2018, sup-
ported by the National Science Foundation Grant Number DMS-1440140). M.A. was supported by
the National Science Foundation through agreement number DMS-1609148 and DMS-1564172, and
by the Simons Foundation through its “Homological Mirror Symmetry” Collaboration grant. S.G. was
supported by the National Science Foundation through agreement number DMS-1128155. H.I. was sup-
ported by JSPS KAKENHI Grant Number 16K05127, 16H06335, 16H06337, and 17H06127. N.S. was
partially supported by a Royal Society University Research Fellowship, a Sloan Research Fellowship,
and by the National Science Foundation through Grant number DMS-1310604 and under agreement
number DMS-1128155. Any opinions, findings and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views of the National Science
Foundation.

2 Discussion and examples

In this section we sketch the proof of the Gamma Conjecture for the structure sheaf on Batyrev mirrors
of dimension at most 3, emphasizing the relationship with the SYZ conjecture and the Gross–Siebert
program. The discussion is not intended to be completely rigorous.

Observe that the conjecture can be rewritten as

(4)
∫

C+
t

Ωt + O
(
tε
)

=
n∑

i=0

(− log t)n−i

(n− i)!
·
∫

X
ωn−i
λ · Γ̂i

where Γ̂i is the degree-2i component of Γ̂X .

Roughly speaking we will stratify C+
t in accordance with the singularities of the SYZ fibration, and

we will see that the codimension-i strata give rise to terms in the asymptotic expansion of the period
integral which precisely add up to the ith term on the right-hand side.
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This is a compelling picture, but unfortunately it becomes more complicated in higher dimensions
(compare Remark 2.4) and we have not been able to cleanly generalize it. The remainder of the paper
explains a more pedestrian version of our period computation which works in all dimensions, but which
uses the embedding of Batyrev mirror pairs in toric varieties corresponding to dual reflexive polytopes.

2.1 Leading term

We consider the map Logt : PC∗ → PR

Logt(z0, . . . , zn) = (logt |z0|, . . . , logt |zn|).

In the limit t → 0, the amoeba Logt(Z̊t) converges to the tropical amoeba, which is a codimension-1
weighted balanced polyhedral complex [Mik04]. The unique compact component of the complement
of the tropical amoeba is precisely the polytope ∆λ that appears on the A-side of our mirror statement.
The image of the cycle C+

t under Logt converges to ∂∆λ as t → 0, and the pullback of the volume
form Ωt to C+

t converges to the rescaling of the affine volume form on each face by − log t . Using this
we obtain that the leading term of the period integral is∫

C+
t

Ωt = (− log t)n · vol (∂∆λ) + O
(
(log t)n−1) .

The volume on the right-hand side coincides with the sum of symplectic volumes of boundary divisors
Dj ⊂ Y∆λ

by [Gui94, Theorem 2.10]. This coincides with the symplectic volume of X (since X is
cohomologous to

∑
j Dj ), which gives us the leading term in the Gamma Conjecture:∫

C+
t

Ωt =

∫
X

t−ωλ + O
(
(log t)n−1) .

The sub-leading terms are related to the ‘bends’ in C+
t where we interpolate between adjacent faces of

∂∆λ , as we will see in the next sections.
This is closely related to the SYZ conjecture, according to which there should exist a special Lagrangian
torus fibration with singularities Zt → B, where B ∼= ∂∆λ is endowed with an affine structure.5 The
cycle C+

t should correspond to the zero-section B ⊂ Zt of this fibration. The restriction of the
holomorphic volume form Ωt to the cycle C+

t is real, and should be approximately equal to the
pullback of the affine volume form on B (see e.g. [Gro13, Sections 1-2]). Thus the leading-order term
of the period integral should be∫

C+
t

Ωt = (− log t)n · vol(B) + O
(
(log t)n−1) .

The mirror X should admit a dual special Lagrangian torus fibration X → B, and its symplectic volume
should coincide with the affine volume of B. Thus we obtain an explanation of the leading term in the
Gamma Conjecture that is similar to the previous one. As promised, the codimension-0 locus of the
base of the SYZ fibration gave rise to the i = 0 term on the right-hand side of (4).

Remark 2.1 The relationship between the leading order asymptotics of periods and tropical geometry
has been studied by several people. Mikhalkin–Zharkov [MZ08] introduced periods for tropical curves

5Proving the existence of such special Lagrangian torus fibrations remains a difficult question, presenting
numerous challenges, see [Joy03]. In practice, our approach only requires the existence of a weak version of
an SYZ fibration, similar to that appearing in the Gross–Siebert program. Nevertheless, for the purposes of this
informal discussion, we will refer freely to special Lagrangian torus fibrations.
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in terms of affine length; Iwao [Iwa10] compared tropical periods for curves with the leading asymptotics
of classical periods. Yamamoto [Yam18] studied periods (or, radiance obstruction) of tropical K3
hypersurfaces and compared them with classical ones.

2.2 K3 surfaces

Let us consider the two-dimensional case, so Zt and X are K3 surfaces. There should be an SYZ
fibration p : Zt → B where B ∼= ∂∆λ , compare [Gro01, Gro13, Rua01]. We have one affine coordinate
chart of B for each face of ∆λ , which has the subspace affine structure; and we also have an affine
coordinate chart for each vertex, which is given by projection along the remaining ‘ray’ emanating from
the vertex (see Figure 2).

Figure 2: The tropical amoeba of a mirror quartic Z̊t = {tW1 + tW2 + tW3 + t/(W1W2W3) = 1}

The resulting affine structure on B is defined everywhere except near certain points along the edges of
∆λ , which correspond to the intersections of Zt with codimension-2 toric strata of Y∇ . Generically,
there are 24 of these, so we end up with an affine structure on the 2-sphere with 24 singularities.

Away from a neighbourhood of the singularities, the holomorphic volume form Ωt is approximately
equal to the flat volume form to order O (tε), so∫

p−1(U)∩C+
t

Ωt = (− log t)2 · vol(U) + O
(
tε
)
.

In a neighbourhood of a singularity, if we throw out terms of order O (tε) then the local model for
(Zt,C+

t ,Ωt) is

Zt = {(y1, y2, x) ∈ C2 × C∗ : y1y2 = 1 + x},
C+

t = Zt ∩ (R+)3,

Ωt =
dy1 ∧ dy2

x
= d log y1 ∧ d log x

where {y1y2 = 0} corresponds to the boundary divisor of Y∇ (compare [KS06]).

Example 2.2 Let X ⊂ CP3 be a quartic K3 surface equipped with a symplectic form ω in the class
c1(CP3). The mirror is given by Z̊t = {tW1 + tW2 + tW3 + t/(W1W2W3) = 1}. The tropical amoeba
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of Z̊t is shown in Figure 2; the Logt -image of the positive real cycle C+
t converges to the boundary

of the simplex ∆λ = {w1 ≥ −1,w2 ≥ −1,w3 ≥ −1,w1 + w2 + w3 ≤ 1} as t → +0, where
wi = logt |Wi|. We cover ∂∆λ by affine charts: on the interior of a facet (yellow region), we consider
the subspace affine structure, and around a lattice point v on an edge (blue region), we consider the
affine structure given by the projection along the ray R+v. The singularities of the affine structure occur
somewhere between adjacent lattice points on edges. For example, consider the red region in Figure
2, which lies between the two affine charts (w2 − w1,w2 + w3 + 1), (w2 − w1,w3) associated with
the rays R+(−1,−1, 1) and R+(−1,−1, 0). Since tW3 = t1+w3 and t/(W1W2W3) = t1−w1−w2−w3 are
exponentially small near the red region, the cycle C+

t in this region is given by the equation

tW1 + tW2 ≈ 1 ⇐⇒ t−(w2−w1) + 1 ≈ t−w2−1 = t−w2−w3−1 · tw3 .

Setting x = t−(w2−w1) , y1 = t−(w2+w3+1) , y2 = tw3 , we find that the red region of the cycle is
approximated by the positive real locus of the local model 1+x = y1y2 above. Note that (logt x, logt y1)
and (logt x, logt y2) give affine charts of the adjacent blue regions.

The base of the SYZ fibration at such a point is a ‘focus-focus singularity’. An approximation to the
SYZ fibration p : Zt → B can be written down away from the region where both yi are small. The
approximation is defined using coordinates b = − logt |x|, c1 = − logt |y1|, c2 = − logt |y2|; we have
p ≈ (b, c1) away from y1 = 0 and p ≈ (b, c2) away from y2 = 0. We observe that

c1 + c2 = − logt |y1y2| = − logt |1 + x| ≈ max(0, b)

when b � 0 or b � 0, so the transition maps for the approximate SYZ fibration are approximately
affine-linear in these regions. The fact that these transition maps are different for large and small b
accounts for the non-trivial monodromy of the affine structure around the focus-focus singularity.

c1 = const

c2 = const

c1

b
c2

b

c1

−B B

C1

−C2

×

c1 = const

c2 = const

Figure 3: The left picture: the surface c1 + c2 = − logt(1 + t−b) with t = 1/e . The red and blue coordinate lines
show how the approximately-affine charts (b, c1), (b, c2) are glued. (This image was produced using the Wolfram
Development Platform [Inc].) The right picture: the affine manifold with singularity drawn on the (b, c1)-plane
(which corresponds to the red region in Figure 2); this arises from the left picture in the limit t→ 0.

Figure 3 shows the hypersurface C+
t =

{
c1 + c2 = − logt

(
1 + t−b

)}
⊂ R3 , with the horizontal

coordinates corresponding to c1 and c2 , and the vertical coordinate to b. On it we draw the level
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sets of the coordinates of the SYZ fibration, where each is defined. We cut out a region p−1(U) ∩ C+
t

where U is a neighbourhood of the singularity in the base of the SYZ fibration. It will have boundaries
−B ≤ b ≤ B for some large B; c1 ≤ C1 for some large C1 , so that c1 is a coordinate of the
approximate SYZ fibration along that boundary; and c2 ≤ C2 for some large C2 , for the same reason.
We assume B� C1 + C2 so that the boundaries c1 = C1 and c2 = C2 do not intersect. We integrate
Ωt = (− log t)2db ∧ dc1 over p−1(U) ∩ C+

t , which means we calculate the area of its projection to the
b-c1 plane. This is the area of the region {(b, c1) : −B ≤ b ≤ B,− logt(1 + t−b) − C2 ≤ c1 ≤ C1},
which is clearly

(− log t)2
∫ B

−B

(
C1 + C2 + logt(1 + t−b)

)
db.

In contrast, the affine volume of U will be

(− log t)2
∫ B

−B
(C1 + C2 −max(0, b)) db.

The difference between these two is the contribution of this region to the sub-leading terms of our
period integral. It is equal to

(− log t)2
∫ B

−B

(
max(0, b) + logt(1 + t−b)

)
db = −ζ(2) + O(tB)

as we observed in the Introduction (see Section 1.1). Thus we have established that each of the 24
singular points in the SYZ base (i.e., the codimension-2 strata) gives rise to a contribution of −ζ(2) to
the sub-leading term in the period integral. These terms sum to

−24ζ(2) =

∫
X

Γ̂2,

using the fact that Γ̂2 = −c2(TX) = −24[pt] for a K3 surface, which is the i = 2 term in the right-hand
side of (4) as promised. This completes the sketch proof of Theorem 1.5 in dimension 2.

The complete proof of Theorem 1.5 that we give in Section 4 applies even in situations where X is not
smooth but only quasi-smooth, which means (in this two-dimensional case) that some of the singular
points in the SYZ base have collided. There is a new phenomenon here, which we briefly indicate
without going into full details.

We consider the tropical polynomial

fa(b) := max(−b, a, b),

and the leading behaviour of the corresponding ‘error in tropicalization’ integral

I(a,B, t) := (− log t)2
∫ B

−B

(
fa(b) + logt

(
tb + t−a + t−b)) db

as t → +0, with a,B held fixed and satisfying |a| � B. When a > 0, fa(b) has two bends
and is ‘tropically smooth’ at both (i.e., the slope changes by 1). However when a ≤ 0, we have
fa(b) = max(−b, b) and the two bends have collided into a single bend which is not tropically smooth
(the slope changes by 2).

This is reflected in the behaviour of the integral: when a > 0, the two bends in fa each contribute −ζ(2)
to the leading term of the integral, by the computation of Section 1.1, so I(a,B, t) = −2ζ(2) + O(tε) for
some ε > 0. When a < 0 the terms involving a contribute negligibly to the integral; after dropping
these terms, a straightforward manipulation reduces the computation to that of Section 1.1, giving the
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answer −ζ(2)/2 + O(tε). This reflects the fact that, although two separate focus-focus singularities
each contribute −ζ(2) to the period integral, after they collide the contribution is only −ζ(2)/2.
The corresponding local model for Zt is given by y1y2 = x + t−a + x−1 . The discontinuity of the
constant term in the asymptotics of periods can be understood from the fact that the large-complex
structure limit of Zt is different between a > 0 and a < 0.
This collision of two focus-focus singularities in the SYZ base of Zt is mirror to a degeneration of X
so that it acquires an A1 singularity. Indeed, a local picture for the development of this A1 singularity
is given by the family of toric varieties with moment polytopes {(b, c) : c ≥ fa(b)} as a passes from
positive to negative. We consider the effect of this degeneration on the i = 2 term in the right-hand
side of (4), which is ∫

X
Γ̂2 = −ζ(2) · χ(X).

For a > 0, the local contribution to the Euler characteristic is 2, from the two toric fixed points; for
a ≤ 0 the local contribution is 1/2, from the single toric fixed point which is an orbifold point of order
2.
Thus the effect of the collision of two focus-focus singularities on the period integral, and on the mirror
integral (4), is the same: −2ζ(2) gets replaced by −ζ(2)/2. A similar phenomenon can be observed
with the collision of k focus-focus singularities, replacing −kζ(2) with −ζ(2)/k .

Remark 2.3 The asymptotics becomes subtle when a = 0. More generally, we can consider the local
model Zt defined by y1y2 = x+ct−a +x−1 . For non-zero a, the corresponding ‘error in tropicalization’
integral does not depend on the coefficient c. For a = 0, however, it depends analytically on c as
follows:

(− log t)2
∫ ∞
−∞

(
max(−b, b) + logt(t

b + c + t−b)
)

db = −2
∫ 1

0
log(x2 + cx + 1)

dx
x

= arcsin2
( c

2

)
− π arcsin

( c
2

)
− π2

12
.

It is interesting to note that this gives−2ζ(2) for c = 2. The point (a, c) = (0, 2) is the so-called conifold
point in the complex moduli space, and should be mirror to a smoothing T∗S2 of the A1 -singularity.
The value −2ζ(2) can be interpreted as −χ(T∗S2)ζ(2).

2.3 Threefolds

Now we consider the case where Zt is 3-dimensional. In this case there is again an SYZ fibration
p : Zt → B with B ∼= ∂∆λ , but the singular locus is more complicated: it generically consists of a
trivalent graph lying inside the codimension-1 locus of ∂∆λ [Gro01, Gro13, Rua01], and there are
two types of vertices: those lying in the interior of a codimension-1 face, with the three incident edges
all lying in the same face (which we will call ‘type I’); and those lying at the intersection of three
codimension-1 faces, with the three incident edges all lying in different faces (which we will call ‘type
II’).

2.3.1 The edges

Along an edge of the singular locus, the SYZ fibration is a product of the two-dimensional case
previously considered with an S1 -fibration over an interval. Thus the integral along the edges should



The Gamma and Strominger–Yau–Zaslow conjectures: a tropical approach to periods 13

contribute −ζ(2) · (− log t) · (total length of edges), which comes out equal to

−ζ(2) · (− log t) ·
∫

X
ωλ · c2(TX) =

∫
X

t−ωλ · Γ̂2

as required (c2(TX) is represented by the singular locus of the fibration; see [Gro01, Theorem 2.17]).

2.3.2 Type I vertex: y1y2y3 = 1 + x

The local model near a type I vertex is

Zt = {(y1, y2, y3, x) ∈ C3 × C∗ : y1y2y3 = 1 + x}
C+

t = Zt ∩ (R+)4

Ωt =
dy1 ∧ dy2 ∧ dy3

x
= d log x ∧ d log y1 ∧ d log y2,

where the boundary divisor of Y∇ corresponds to {y1y2y3 = 0}.

The SYZ fibration is approximated using coordinates b = − logt |x| and ci = − logt |yi| as before. We
set p ≈ (b, c2, c3) away from y1 = 0, p ≈ (b, c1, c3) away from y2 = 0, and p ≈ (b, c1, c2) away
from y3 = 0. Observe that c1 + c2 + c3 ≈ max(0, b) away from b ≈ 0 as before, so once again
the transition maps are affine-linear away from this area. The region p−1(U) ∩ C+

t will be cut out by
inequalities −B ≤ b ≤ B, ci ≤ Ci as before, and we must calculate its projection to the b-c1 -c2 -plane.
The projection to the b-c1 -c2 is cut out by inequalities

−B ≤ b ≤ B, c1 ≤ C1, c2 ≤ C2, c1 + c2 ≥ − logt(1 + t−b)− C3.

We assume B � C1 + C2 + C3 to ensure that the fibre of this region over b ∈ [−B,B] is nonempty.
The fibre of this region over b ∈ [−B,B] is a right-angle isosceles triangle whose sidelengths are easily
calculated, which gives the total volume of the region as

(− log t)3
∫ B

−B

(
C1 + C2 + C3 + logt(1 + t−b)

)2

2
db.

As before, we need to subtract off the affine volume of the region, which is

(− log t)3
∫ B

−B

(C1 + C2 + C3 −max(0, b))2

2
db.

However even after subtracting off this volume, we will still get a divergent integral as t goes to +0.
That is because of the contributions from the edges of the discriminant locus: the three edges each
contribute a term

−(− log t) · Ci · ζ(2) ≈ (− log t)3 · Ci ·
∫ B

−B

(
max(0, b) + logt(1 + t−b)

)
db

to the integral. When we subtract off these contributions from the legs, we end up with the contribution
which arises solely from the vertex of the discriminant locus, which is given by the integral

(− log t)3
∫ B

−B

(
− logt(1 + t−b)

)2 −max(0, b)2

2
db = ζ(3) + O(tε).

We shall prove this later, see (22).
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2.3.3 Type II vertex: y1y2 = 1 + x1 + x2

The local model near a type II vertex is

Zt = {(y1, y2, x1, x2) ∈ C2 × (C∗)2 : y1y2 = 1 + x1 + x2}
C+

t = Zt ∩ (R+)4

Ωt =
dy1 ∧ dy2 ∧ dx1

x1x2
= d log x1 ∧ d log x2 ∧ d log y1,

where the boundary divisor of Y∇ corresponds to {y1y2 = 0}.

The SYZ fibration is approximated using coordinates bi = − logt |xi| and ci = − logt |yi|. The
region p−1(U) ∩ C+

t will be cut out by (b1, b2) ∈ V for some region V ⊂ R2 enclosing the origin,
together with ci ≤ Ci , and we must calculate its projection to the b1 -b2 -c1 -plane. We assume that
max(0, b1, b2)� C1 + C2 for (b1, b2) ∈ V . We find that this area is equal to

(− log t)3
∫

V

(
C1 + C2 + logt(1 + t−b1 + t−b2)

)
db1db2.

Once again we subtract off the affine volume of the region, leaving

(− log t)3
∫

V

(
max(0, b1, b2) + logt(1 + t−b1 + t−b2)

)
db1db2.

Next we need to subtract off the sum of the contributions from the edges of the discriminant locus,
which is equal to ζ(2) multiplied by the total length L of the standard tropical line Sing(max(0, b1, b2))
contained in the region V . We shall show in Proposition 4.5 that
(5)

lim
t→+0

[
(− log t)3

∫
V

(
max(0, b1, b2) + logt(1 + t−b1 + t−b2)

)
db1db2 + ζ(2) · (− log t) · L

]
= −ζ(3)

so the contribution of a Type II vertex in the discriminant locus to the overall integral is −ζ(3).

Figure 4: Regions V with kinks (left) and without kinks (right) along the tropical line.

Remark 2.4 There is an important issue which we have glossed over in this computation: in order
for (5) to hold, the boundary of the region V should be smooth and transverse to the edges of the
discriminant locus (i.e., the legs of the tropical line) where it crosses them. For example, if one takes
the region V shown in the left side of Figure 4, the value of the integral (5) will be equal to 5ζ(3)/4
(see the proof of Proposition 4.5). Some of the contribution of the vertex is ‘hiding in the kinks in the
boundary of V ’ in this case. It turns out that in higher dimensions, the local contribution is even more
strongly dependent on the shape of the region V . For example it is not enough that V have no ‘kinks’
where it crosses the discriminant locus: in dimensions ≥ 4 the integral may in general depend on the
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angle at which V intersects the singular locus. We have not found a way to organize these choices
efficiently. In Section 3 we take the more pedestrian approach of decomposing the cycle into pieces in
a completely canonical way, at the cost of leaving certain ‘kinks’ in the pieces which result in a formula
which is less visibly ‘local’ in the base of the SYZ fibration.

2.3.4 Proof of Theorem 1.5 in dimension 3

We can piece together a sketch proof of Theorem 1.5 in dimension 3 from the pieces we have assembled.
In Section 2.1 we have seen that the codimension-0 strata of the base of the SYZ fibration contribute the
i = 0 term on the right-hand side of (4); in Section 2.3.1 we have seen that the edges (codimension-2
strata) contribute the i = 2 term; it remains to see how the type I and type II vertices contribute the
i = 3 term. It is clear that their contribution is

(#(type I vertices)− #(type II vertices)) · ζ(3),

which we must show is equal to∫
X

Γ̂3 = −2ζ(3) ·
∫

X
ch3(TX) = −ζ(3) ·

∫
X

c3(TX) = −ζ(3) · χ(X).

The answer now follows from the observation that in the stratification of X according to singularities
of the SYZ fibration, each stratum has an S1 factor and therefore vanishing Euler characteristic except
for those lying over the vertices of the discriminant locus. The mirror to a type I SYZ fibre is a type II
SYZ fibre, which has Euler characteristic −1; whereas the mirror to a type II SYZ fibre is a type I SYZ
fibre, which has Euler characteristic +1. Therefore we have

χ(X) = #(type II vertices)− #(type I vertices),

which completes the sketch of a proof.

Example 2.5 The SYZ fibration on the quintic threefold has
(5

3

)
· 5 = 50 vertices of type I and(5

2

)
· 52 = 250 vertices of type II. The Euler characteristic of the mirror quintic is 250− 50 = 200, as

one clearly sees from its Hodge diamond [CdlOGP91].

3 Proof of Theorem 1.4

In this section we prove Theorem 1.4. We break up the mirror period integral into pieces corresponding
to a polyhedral decomposition of ∂∆λ , which is the limit shape of C+

t . Then we express each piece in
terms of integrals over the toric variety Y∆λ

by applying the Duistermaat–Heckman theorem.

3.1 Tropical setup

Consider the affine functions

βq : PR → R, βq(p) = 〈q, p〉+ λq,

as well as the map

it : PR → PC∗ , it(p0, . . . , pn) =
(
tp0 , . . . , tpn

)
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for t ∈ R+ , which is right-inverse to Logt . If we define

Bt :=

1 =
∑
q∈V

tβq

 ⊂ PR,

then it is clear that it(Bt) = C+
t . Therefore∫

C+
t

Ωt =

∫
Bt

i∗t Ωt.

We observe that
logt

∣∣∣tλq · zq
∣∣∣ = βq(Logt(z))

so βq is the ‘tropical monomial’ corresponding to the honest monomial tλq · zq . As a result, in the limit
t→ 0, the amoeba Logt(Z̊t) converges to the tropical amoeba Sing(min(0, {βq}q∈V )), the non-smooth
locus of the piecewise affine-linear function min(0, {βq}q∈V ) on PR [Mik04]. We observe that the
unique compact component of the complement of the tropical amoeba is precisely the polytope ∆λ that
appears on the A-side of our mirror statement. In the limit t → 0, Bt converges to the boundary ∂∆λ

of the polytope.

3.2 Decomposing the domain

We now decompose the domain Bt of our period integral into regions where the different monomials
dominate.

face q

face k

face
j

Figure 5: Decomposition of the cycle Bt . The cycle Bt approaches to the boundary of the polytope ∆λ as
t→ +0. The light grey region is the limit of Bq,{k}

t and the dark grey region is the limit of Bq,{k,j}
t ; these pieces

Bq,K
t can be presented as graphs over the shaded regions.

We cover PR with the sets

Uq := {p ∈ PR : βi(p) ≥ βq(p) for all i ∈ V }
for q ∈ V . Thus we can cover Bt with the sets Bq

t := Uq ∩ Bt . In the limit t→ 0, Bq
t converges to the

qth face of ∆λ .

The above cover is well-adapted to consider tropical limits, but our analysis of sub-leading terms
requires a further decomposition. Let us fix ε > 0, and for each {q} t K ⊂ V set

Uq,K :=

{
p ∈ PR :

βk(p)− βq(p) ∈ [0, ε] for k ∈ {q} ∪ K

βm(p)− βq(p) ∈ [ε,∞) for m ∈ V \ ({q} ∪ K)

}
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In words, Uq,K is the region where the tropical monomial βq is smallest (hence ‘dominates’) and the
tropical monomials {βk}k∈K are not far behind.
We observe that Uq is covered by the sets Uq,K . Then we obtain a cover Bq,K

t := Uq,K ∩Bt (see Figure
5). So our period integral is equal to ∑

q,K

∫
Bq,K

t

i∗t Ωt.

If we choose ε > 0 small enough, then Bq,K
t is nonempty for sufficiently small t > 0 if and only if the

facets {βi = 0} ∩∆λ with i ∈ {q} t K have nonempty intersection, or equivalently, {q} t K spans
a cone of the fan Σλ . Starting in the next section, and going through the end of Section 3.5, we will
restrict to pairs (q,K) such that the facets corresponding to {q} t K intersect.

3.3 Approximation in each region

Let us consider the integral over Bq,K
t . Observe that

ft(z) = tλqzq

(
1 +

∑
k∈K

tλk−λqzk−q + ht(z)

)
,(6)

where
ht(z) =

∑
j∈V\({q}tK)

tλj−λq · zj−q.

We observe that over it(B
q,K
t ), we have

(7) ht, zi
∂ht

∂zi
∈ O

(
tε
)

because each contributing monomial is so. The idea for approximating the integral over Bq,K
t is to

‘throw away’ these negligible terms.
In order to evaluate the integral over the region Bq,K

t , we introduce an affine coordinate system (a, bk, cj)
on PR :

a = βq

bk = βk − βq for k ∈ K

{cj} = a collection of integral linear functions completing a coordinate system.

The fact that it is possible to complete {a, bk} to a coordinate system follows from our assumption that
the fan Σλ is simplicial and that the facets corresponding to {q} t K intersect. We also write

rq,K · da
∏
k∈K

dbk

∏
j

dcj = the standard affine volume form on PR

for some factor rq,K > 0 and set

(8) d volq,K = rq,K

∏
j

dcj

for the residual volume form on the c-plane. When a, bk already form a coordinte system and there
are no c variables, we regard d volq,K as a measure on the point {0} = R0 . Note that this is different
from the affine volume form induced on a subspace of the form {a = const, bk = const} unless the
covectors da = q, dbk = k − q are part of a Z-basis of P∨ .
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We introduce the corresponding monomials on PC∗ :

w = tλq · zq

xk = tλk−λq · zk−q for k ∈ K

yj = zcj .

In these coordinates we have

ft(w, x, y) = w ·

(
1 +

∑
k∈K

xk + ht(x, y,w)

)
.

By the definition of rq,K , the standard holomorphic volume form on PC∗ is given by rq,K · d log w ∧∧
k∈K d log xk ∧

∧
j d log yj . Thus the volume form of Z̊t is

Ωt = rq,K ·
d log w ∧

∧
k∈K d log xk ∧

∧
j d log yj

dft(w, x, y)

∣∣∣∣∣
Z̊t

= rq,K ·
∧

k∈K d log xk ∧
∧

j d log yj

w · (∂ft(w, x, y)/∂w)

∣∣∣∣∣
Z̊t

(9)

in the region where the denominator does not vanish.

On C+
t = it(Bt) = {z ∈ PR+ : 1 = ft(z)}, we have

w · ∂ft
∂w

(w, x, y) = ft(w, x, y) + w2∂ht

∂w
(w, x, y)

= 1 + O
(
tε
)

over it(B
q,K
t )

where we used (7) and the fact that 0 < w < ft(x, y,w) = 1 on C+
t . Therefore we have

Ωt =
(
1 + O

(
tε
))

rq,K ·
∧
k∈K

d log xk ∧
∧

j

d log yj,

so ∫
Bq,K

t

i∗t Ωt =
(
1 + O

(
tε
))
· rq,K ·

∫
Bq,K

t

∧
k∈K

d log
(
tbk
)
∧
∧

j

d log
(
tcj
)

=
(
1 + O

(
tε
))
· (− log t)n · vol

(
πb,c

(
Bq,K

t

))
,

(10)

where πb,c denotes the projection to the (b, c)-plane and vol denotes the volume with respect to the
product of

∏
k∈K dbk and the residual volume form d volq,K in (8). See the remark below for the reason

why (− log t)n instead of (log t)n appears in the last expression.

Remark 3.1 We have been vague about how we choose an order of the coordinates a, bk , cj (or w, xk ,
yj ) and an orientation of the cycle Bt ; strictly speaking we need them to define Ωt and the integral. For
convenience, we shall always arrange these choices so that i∗t Ωt defines a positive measure (density) on
Bt . Note that the factor (− log t)n appearing in the above formula is positive since (− log t) > 0 for a
sufficiently small t .

3.4 Approximation in terms of volumes of polytopes

We now approximate the affine volume of πb,c(Bq,K
t ) in terms of the volumes of certain polytopes.



The Gamma and Strominger–Yau–Zaslow conjectures: a tropical approach to periods 19

On Bq,K
t , the defining equation can be rewritten as

1 =
∑

p

tβp ⇐⇒ 1 = ta ·
(

1 +
∑
k∈K

tbk +
∑

m∈V\({q}tK)

tβm−a

︸ ︷︷ ︸
O(tε)

)
,(11)

which can be used to write a as a function aq,K(b, c) of the variables bk, cj . We observe that we have
the approximation

(12) aq,K(b, c) = a′q,K(b) + O
(
tε
)

where a′q,K(b) := − logt

(
1 +

∑
k∈K

tbk

)
.

Now Bq,K
t is defined by the inequalities

bk ∈ [0, ε] for k ∈ K

βm(a, b, c)− a ∈ [ε,∞) for m /∈ {q} t K,

which means the region πb,c

(
Bq,K

t

)
is defined by the inequalities

bk ∈ [0, ε] for k ∈ K

βm(aq,K(b, c), b, c)− aq,K(b, c) ∈ [ε,∞) for m /∈ {q} t K.

We will consider the fibres Fq,K(b) of the projection

πb : πb,c

(
Bq,K

t

)
→ [0, ε]K .

It is clear that
vol
(
πb,c

(
Bq,K

t

))
=

∫
[0,ε]K

vol
(
Fq,K(b)

)
db,

where we use the volume form d volq,K (8) on the c-plane to define vol(Fq,K(b)), so our next project is
to approximate the volume of the fibres Fq,K(b). We claim that

vol(Fq,K(b)) = vol(F′q,K(a′q,K(b), b)) + O
(
tε
)

where F′q,K(a, b) is the compact polytope in the c-plane defined by

βm(a, b, c)− a ∈ [ε,∞) for m /∈ {q} t K

with fixed (a, b). Indeed, this follows because Fq,K(b) can be sandwiched between two perturbations of
the compact polytope F′q,K(a′q,K(b), b) where the facets have been shifted by quantities of order O (tε).

We have succeeded in approximating the volume of πb,c(Bq,K
t ) in terms of the volumes of the polytopes

F′q,K(a, b), but we would prefer to work with the volumes of the polytopes Eq,K(a, b) defined by

βm(a, b, c)− a ≥ 0 for m /∈ {q} t K

with fixed (a, b). We shall regard F′q,K(a, b) and Eq,K(a, b) either as polytopes in the c-plane or as
subsets of PR with the values of (a, b) fixed. More generally, for any subset K′ ⊂ V not containing q,
we write Eq,K′(a, {bk}k∈K′) for the polytope in PR defined by

βm − a ≥ 0 for m /∈ {q} t K′

with the values of a = βq and bk = βk − βq (with k ∈ K′ ) fixed. We have

F′q,K(a, b) = Eq,K(a, b) \
⋃

j/∈{q}tK

⋃
bj∈[0,ε]

Eq,Kt{j}(a, b, bj).
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This volume can be computed by the inclusion-exclusion principle: noting that⋂
j∈I

( ⋃
bj∈[0,ε]

Eq,Kt{j}(a, b, bj)
)

=
⋃

b′∈[0,ε]I

Eq,KtI(a, b, b′)

for I disjoint from {q} t K , we obtain

vol(F′q,K(a, b)) =
∑

J:J⊃K,q/∈J

(−1)|J\K| ·
∫

[0,ε]J\K
vol(Eq,J(a, b, b′))db′

where we write b = (bk)k∈K , b′ = (bj)j∈J\K , and use the volume form d volq,J to define vol(Eq,J(a, b, b′)).
This means our period integral becomes

∫
C+

t

Ωt =
(
1 + O

(
tε
))

(− log t)n

 ∑
q,K,q/∈K

∫
[0,ε]K

vol
(
F′q,K

(
a′q,K(b), b

))
db + O

(
tε
)

=
(
1 + O

(
tε
))

(− log t)n

 ∑
q,K⊂J,q/∈J

(−1)|J\K|
∫

[0,ε]J
vol
(
Eq,J

(
a′q,K(b), b, b′

))
dbdb′ + O

(
tε
) .

(13)

3.5 Duistermaat–Heckman

We apply the Duistermaat–Heckman theorem to express the volumes of polytopes in (13) as symplectic
volumes.

Lemma 3.2 For positive, sufficiently small a and bj with j ∈ J , we have

vol(Eq,J(a, b)) =

∫
Y∆λ

exp

ωλ −∑
j∈J

bj · Dj − a · σ

 · Dq ·
∏
j∈J

Dj,

where Dj ⊂ Y∆λ
denotes the toric divisor corresponding to the jth facet {βj = 0} ∩∆λ of ∆λ , and

σ :=
∑

j∈V Dj . The right-hand side vanishes when the facets corresponding to the elements of {q} t J
do not intersect.

Proof We use the Duistermaat–Heckman theorem to identify the volume of Eq,J(q, b) with the sym-
plectic volume of a toric subvariety of Y∆λ

. The polytope Eq,J(a, b) is defined by

βq = a

βj − a = bj for j ∈ J

βm − a ≥ 0 for m ∈ V \ ({q} t J),

which is equivalent to

βq − a = 0

βj − bj − a = 0 for j ∈ J

βm − a ≥ 0 for m ∈ V \ ({q} t J).
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This is precisely the face of the polytope ∆λ′ corresponding to the set {q} t J , where

λ′j = λj − bj − a for j ∈ J

λ′m = λm − a for m ∈ V \ J.

When a and {bj}j∈J are sufficiently small, the combinatorial type of ∆λ′ is the same as that of ∆λ ,
and the volume of the face corresponding to {q} t J is equal to the symplectic volume of the stratum

Dq ∩
⋂
j∈J

Dj

with respect to a symplectic form in cohomology class

[ωλ′] = [ωλ]−
∑
j∈J

bj · Dj − a ·
∑
j∈V

Dj,

by [Gui94, Theorem 2.10]. This yields the result. The right-hand side vanishes if Dq ∩
⋂

j∈J Dj = ∅,
and therefore if the facets of ∆λ from {q} t J do not intersect.

Remark 3.3 We hid some technical details when applying the Duistermaat–Heckman theorem. When
the covectors da, dbj are not part of a Z-basis of P∨ , the corresponding toric substack Dq ∩

⋂
j∈J Dj

has a generic stabilizer. The order of the generic stabilizer equals the ratio between the affine volume
form of the face corresponding to {q}t J and the residual volume form d volq,J on the c-plane. Since,
by definition, the integral over Dq ∩

⋂
j∈J Dj is the integral over the coarse moduli space divided by the

order of the generic stabilizer, the volume of Eq,J(a, b) with respect to d volq,J gives the correct answer.

We now substitute this into (13): we can ensure that bj in (13) is sufficiently small by making ε > 0
small, and also ensure that a′q,K(b) in (13) is sufficiently small by making t > 0 small because of the
estimate:

0 ≤ a′q,K(b) =
log(1 +

∑
k∈K tbk )

− log t
≤ log |V|
− log t

.

We now obtain: ∫
C+

t

Ωt =
(
1 + O

(
tε
))
·

(∫
Y∆λ

Pt(D)n+1 + O
(
(− log t)ntε

))
,

where

Pt(D) = (− log t)n ·
∑

q,K⊂J,q/∈J

(−1)|J\K|
∫

[0,ε]J
eωλ−

∑
j∈J bj·Dj+σ·logt(1+

∑
k∈K tbk )db · Dq

∏
j∈J

Dj

The subscript ‘n + 1’ denotes the part of Pt(D) in degree 2(n + 1): that is the only part that gets hit
by the integral

∫
Y∆λ

. The summand for (J, q) automatically vanishes unless the facets corresponding

to {q} t J intersect, in particular, unless the facets corresponding to {q} t K intersect. Therefore we
can now withdraw the assumption imposed at the end of Section 3.2 that the facets corresponding to
{q} t K intersect and consider the sum over arbitrary K, J, q with K ⊂ J and q /∈ J .



22 Abouzaid, Ganatra, Iritani and Sheridan

3.6 End of the proof

By replacing ωλ , Dj , σ in the definition of Pt(D) with (− log t)ωλ , (− log t)Dj , (− log t)σ respectively,
we obtain

(− log t)n
∑

q,K⊂J,q/∈J

(−1)|J\K|
∫

[0,ε]J
e(− log t)(ωλ−

∑
j∈J bj·Dj)−σ log(1+

∑
k∈K tbk )db · (− log t)|J|+1Dq

∏
j∈J

Dj

The degree 2(n + 1) part of this quantity equals (− log t)n+1Pt(D)n+1 . Making the substitution sj =
− log t · bj , we find that Pt(D)n+1 = Qt(D)n+1 with

Qt(D) =
∑

q,K⊂J,q/∈J

(−1)|J\K| ·
∫

[0,−ε log t]J
t−ωλ · e−

∑
j∈J sj·Dj−σ·log(1+

∑
k∈K e−sk )ds · Dq

∏
j∈J

Dj

where the factor (− log t)|J| is absorbed by db to become ds. By expanding the exponential, we find
that

Qt(D) = t−ωλ

σ +
∑

q,J,`,~m:q/∈J,J 6=∅

Iε`;~m(t)

`!
∏

j∈J mj!
· Dq · (−σ)`

∏
j∈J

(−Dj)mj+1

 ,

where the sum is over ` ∈ Z≥0 , ~m ∈ (Z≥0)J , q, J with q /∈ J and

Iε`;~m(t) :=
∫

[0,−ε log t]J

∏
j∈J

smj
j · g`

(
{e−si}i∈J

)
ds

is an ε-truncated version of the ‘local integral’ I`,~m in (1). We note that the first term σ =
∑

q∈V Dq

arises from the case where J = K = ∅.

Lemma 3.4 We have Iε`;~m(t) = I`;~m + O
(
(− log t)|~m|tε

)
as t→ +0, where |~m| =

∑
j∈J mj .

Proof We recall the bound (2), which was used to prove exponential decay of the integrand at infinity.
It gives ∏

j∈J

smj
j · g`

(
{e−si}i∈J

)
≤ C` ·

∏
j∈J

e−sjsmj
j for sj ≥ 0.

The order estimate then follows by∫ ∞
−ε log t

sme−sds = O
(
(− log t)mtε

)
.

Now observe that I0,~m = 0, and the anticanonical hypersurface X is homologous to the toric boundary
divisor σ =

∑
q∈V Dq , so we have proved∫

C+
t

Ωt =
(
1 + O

(
tε
))
·
(∫

X
t−ωλ · ĜX + O

(
(− log t)ntε

))
where ĜX is given in (3). Because − log t = O(t−δ) for any δ > 0, we can absorb the error terms
depending on log t by reducing ε, and thereby obtain∫

C+
t

Ωt =

∫
X

t−ωλ · ĜX + O
(
tε
)

for some (new, smaller) ε > 0. This completes the proof of Theorem 1.4.
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4 Proof of Theorem 1.5

4.1 Formula for the Gamma class

Since the Gamma class is multiplicative, the short exact sequence 0→ TX → TY → NX → 0 gives

Γ̂(TX) =
Γ̂(TY)

Γ̂(NX)
.

The Euler sequence on the toric variety Y gives the following expression for its Gamma class:

Γ̂(TY) =
∏
j∈V

Γ(1 + Dj)

(compare [CLS11, Proposition 13.1.2]). Setting σ :=
∑

j∈V Dj as before, we have

Γ̂(NX) = Γ(1 + σ)

because X is anticanonical and KY = −σ . Thus we have the formula

(14) Γ̂X =

∏
j∈V Γ(1 + Dj)

Γ(1 + σ)
.

Substituting in the power series expansion of Γ(1 + z), we obtain the more explicit

(15) Γ̂X = exp

∑
k≥2

(−1)k · ζ(k)
k
·

∑
j∈V

Dk
j − σk

 .

4.2 The identity ĜX = Γ̂X as formal power series

The expressions (3), (15) for ĜX and Γ̂X respectively define symmetric formal power series in the
variables Dj , j ∈ V . Theorem 1.5 follows from the following stronger statement:

Proposition 4.1 We have ĜX = Γ̂X as formal power series in {Dj : j ∈ V}.

In the rest of this Section 4.2, we prove Proposition 4.1. By (3), we have

ĜX = 1 +
∑

q,J,`,~m

(−Dq)
∏
j∈J

(−Dj)
∫

[0,∞)J

(−σ)`−1∏
j∈J(−sjDj)mj

`!
∏

j∈J mj!

∑
K⊂J

(−1)|K| log`
(

1 +
∑
k∈K

e−sk

)
dsJ

where, as before, the sum is taken over all ` ≥ 1, q ∈ V , all nonempty subsets J ⊂ V with q /∈ J , and
all vectors ~m : J → Z≥0 , and we write dsJ =

∏
j∈J dsj . We now regard Dj as positive real numbers

and introduce the following function GX(D) of D = (Dj : j ∈ V) ∈ (R+)V :

GX(D) := 1 +
∑
q,J

(−Dq)
∏
j∈J

(−Dj)
∫

[0,∞)J
e−

∑
j∈J Djsj

∑
K⊂J

(−1)|K|
(
1 +

∑
k∈K e−sk

)−σ − 1
−σ

dsJ

where the sum is over all q ∈ V and all nonempty subsets J ⊂ V not containing q, and σ =
∑

j∈V Dj .

The convergence of the integral is ensured by the exponentially decaying factor e−
∑

j∈V Djsj .

It is straightforward to compute that, if the Taylor expansion of the integrand could be exchanged with
the integral in the definition of GX(D), the result would be the formal power series ĜX . In fact we prove
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in Lemma 4.3 below that, for a fixed D = (Dj : j ∈ V) ∈ (R+)V , we have the asymptotic expansion

(16) GX(yD) ∼ ĜX

∣∣∣
Dj→yDj

as y→ +0

where ĜX|Dj→yDj means the substitution of yDj for Dj in the formal power series ĜX .

Similarly, we have the asymptotic expansion6

ΓX(yD) ∼ Γ̂X

∣∣∣
Dj→yDj

as y→ +0

where ΓX(D) is given by

ΓX(D) :=

∏
j∈V Γ(1 + Dj)

Γ(1 + σ)
with σ =

∑
j∈V

Dj .

Therefore it suffices to show that GX(D) = ΓX(D) as functions of D.

Note that we can interchange the integral sign with the sum over K in the definition of GX(D) because
of the factor e−

∑
j∈J Djsj (this interchange was not possible for ĜX ). Thus:

GX(D) = 1 +
∑
q,J

(−Dq)
∏
j∈J

(−Dj)
∫

[0,∞)J
e−

∑
j∈J Djsj

∑
K⊂J

(−1)|K|
(
1 +

∑
k∈K e−sk

)−σ
−σ

dsJ

= 1 +
∑

K⊂J,J 6=∅,q/∈J

(−1)|J\K|
Dq
∏

k∈K Dk

σ

∫
[0,∞)K

e−
∑

k∈K Dksk

(
1 +

∑
k∈K

e−sk

)−σ
dsK .

In the first line we used the fact that
∑

K⊂J(−1)K = 0, and in the second line we interchanged the
integration and summation, and then integrated sj out for j ∈ J \ K . Fixing an element q ∈ V and a
subset K ⊂ V not containing q, we sum over subsets J containing K but not q. Using the fact that

∑
K⊂J⊂V\{q},J 6=∅

(−1)|J\K| =


−1 if K = ∅;
0 if |K| ≤ |V| − 2;
1 if |K| = |V| − 1,

we obtain

(17) GX(D) =

∏
j∈V Dj

σ

∑
Kt{q}=V

∫
[0,∞)K

e−
∑

k∈K Dksk

(
1 +

∑
k∈K

e−sk

)−σ
dsK ,

where the case K = ∅ cancels the leading term 1 and only the case |K| = |V| − 1 remains.

In order to compute the sum of integrals in Equation (17), we interpret the domains of integration as
subsets of the projective space over the tropical numbers: concretely, we define the tropical projective
space to be the quotient

TP|V|−1 :=
(
(R≥0)V \ {0}

)
/R+,

where R+ acts on (R≥0)V diagonally by scalar multiplication. We write [uj : j ∈ V] for the homoge-
neous coordinates on TP|V|−1 . This projective space is equipped with a natural volume form, which is
given by the expression

(18) d vol =
∏

j∈V\{q}

d log
uj

uq

6actually the Taylor expansion
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for each choice of ‘inhomogeneous coordinates’ which identify the complement of the hypersurface
{uq = 0} with tropical affine space via the map

TP|V|−1 \ {uq = 0}
∼=−→ (R≥0)|V|−1,

[uj : j ∈ V] 7−→ (tj = uj/uq : j ∈ V \ {q}).
The key point is that the equality d log t = −d log 1/t implies that the right-hand sides of Equation (18)
for two different affine charts agree on the overlap, yielding a volume form on TP|V|−1 .

Lemma 4.2 With respect to the volume form in Equation (18), we have:∑
Kt{q}=V

∫
[0,∞)K

e−
∑

k∈K Dksk

(
1 +

∑
k∈K

e−sk

)−σ
dsK =

∫
TP|V|−1

∏
j∈V uDj

j

(
∑

j∈V uj)σ
d vol .

Proof We begin by noting that
∏

j∈V uDj
j /(

∑
j∈V uj)σ is a well-defined function on TP|V|−1 because

the numerator and denominator are homogeneous functions of equal degree, and the denominator is
non-vanishing. Consider the subdivision TP|V|−1 =

⋃
q∈V Rq with

Rq = {[uj : j ∈ V] ∈ TP|V|−1 : uq = max(uj : j ∈ V)}.
Then we have: ∫

TP|V|−1

∏
j∈V uDj

j

(
∑

j∈V uj)σ
d vol =

∑
q∈V

∫
Rq

∏
j∈V uDj

j

(
∑

j∈V uj)σ
d vol

=
∑

qtK=V

∫
[0,1]K

∏
k∈K tDk

k

(1 +
∑

k∈K tk)σ
∏
k∈K

dtk
tk

where, in the second line, we used the inhomogeneous coordinates (tk : k ∈ K) given by tk = uk/uq .
The conclusion follows by the change of variables tk = e−sk .

We apply the above lemma to (17). We rewrite the integral over TP|V|−1 as an integral over the simplex
∇ = {

∑
j∈V uj = 1}, which is a slice of the diagonal action on RV

≥0 \ {0}. Writing {D0, . . . ,Dm} for
{Dj : j ∈ V}, we find that the restriction of d vol to ∇ is

du1 . . . dum

u0u1 . . . um
.

Thus we have

GX(D) =

∏m
j=0 Dj

σ

∫
∇

m∏
j=0

uDj−1
j du1 . . . dum

=

∏m
j=0 Dj

σ
· Γ(D0) · · ·Γ(Dm)

Γ(σ)
= ΓX(D),

using a well-known integral due to Dirichlet [Dir39],7 together with the identity zΓ(z) = Γ(1 + z) and
the formula (14). This essentially completes the proof of Proposition 4.1 and hence of Theorem 1.5,
with the only missing step being the computation of the asymptotic expansion of GX , which we now
provide:

7This integral generalizes the Euler integral of the first kind which defines the Beta function (from which it
can be proved by induction), and expresses the fact that the Dirichlet distribution is normalized.
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Lemma 4.3 For a fixed D ∈ (R+)V , we have the asymptotic expansion

GX(yD) ∼ ĜX

∣∣∣
Dj→yDj

as y→ +0.

Proof We fix D ∈ (R+)V throughout the proof. For a nonempty subset J ⊂ V , we set

gJ(X, y) := hJ(X, y) ·
∏
j∈J

XyDj
j ,

hJ(X, y) :=

∑
K⊂J(−1)|K|

((
1 +

∑
j∈K Xj

)−yσ
− 1
)

(−yσ) ·
∏

j∈J Xj

where Xj (j ∈ V ) and y are variables in (0, 1]. Via the change of variables Xj = e−sj , we have

GX(yD) = 1 +
∑
q,J

(−yDq)
∏
j∈J

(−yDj)
∫

[0,1]J
gJ(X, y)

∏
j∈J

dXj

where the summation range is the same as before. Note that the sum over q, J is finite. It suffices to
show that we can exchange the Taylor expansion of gJ(X, y) in y with the integral over [0, 1]J to get
the asymptotic expansion. For this we use Taylor’s theorem:

gJ(X, y) =
m−1∑
a=0

1
a!

(∂a
y gJ)(X, 0) · ya +

1
m!

(∂m
y gJ)(X, ξ(X)) · ym, ∃ξ(X) ∈ [0, y].

Note that each term (∂a
y gJ)(X, 0) is a linear combination of products of the integrands defining the local

integrals I`;~m , and hence is integrable on [0, 1]J for the same reason that the local integrals are, namely
the exponential decay arising from the bound (2). It remains to show that |(∂m

y gJ)(X, y)| is bounded
by an integrable function of X (on [0, 1]J ) which is independent of y ∈ [0, 1]. As in the proof of the
bound (2), we can see that hJ(X, y) extends to a smooth (even analytic) function in a neighbourhood of
[0, 1]J × [0, 1]; the numerator in the definition of hJ vanishes along Xj = 0 for each j ∈ J and thus hJ

does not have poles along Xj = 0. Thus there exist smooth functions fa(X, y) in a neighbourhood of
[0, 1]J × [0, 1] such that

∂m
y gJ(X, y) =

m∑
a=0

fa(X, y) ·
(∑

j∈J Dj log Xj

)a∏
j∈J

XyDj
j

and therefore we find a constant C > 0 with∣∣∂m
y gJ(X, y)

∣∣ ≤ C
m∑

a=0

∣∣∣∑j∈J Dj log Xj

∣∣∣a
for (X, y) ∈ (0, 1]J × (0, 1]. The right-hand side is integrable on [0, 1]J with respect to X , and the
lemma follows.

4.3 Examples of the local integrals

Recall that Γ̂X is expanded in the ζ -values ζ(k) with k ≥ 2 (see (15)). The identity ĜX = Γ̂X

determines some of the local integrals I`;~m (1) in terms of ζ(k). In general, however, the identity only
shows that certain polynomial expressions in the local integrals equal ζ(k); it seems that individual
local integrals cannot necessarily be written as polynomials in ζ(k).
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A local integral of weight k is a real number belonging to the set

{I`;~m : `+ |~m|+ dim(~m) = k, ` ≥ 1, dim(~m) ≥ 1}
where we set dim(~m) = p and |~m| =

∑p
i=1 mi for ~m = (m1, . . . ,mp) ∈ (Z≥0)p . We can easily see that

there are π(k − 1) + π(k − 2) + · · · + π(1) many local integrals of weight k , where π(j) denotes the
number of partitions of j ∈ N. On the other hand, we obtain π(k)− 1 relations8 in weight k from the
identity ĜX = Γ̂X . Therefore, as k grows, the number of local integrals becomes far greater than the
number of relations among them.

weight k 2 3 4 5 6 7 8 9 10 11 12 13
# of local integrals 1 3 6 11 18 29 44 66 96 138 194 271

# of relations 1 2 4 6 10 14 21 29 41 55 76 100

The local integral I1;m of weight m + 2 can be computed explicitly.

I1;m = −
∫ ∞

0
sm log(1 + e−s)ds

=
∞∑

n=1

∫ ∞
0

sm (−1)n

n
e−nsds = m!

∞∑
n=1

(−1)n

nm+2

= −m!
(

1− 1
2m+1

)
ζ(m + 2).

(19)

Remark 4.4 Viewing ĜX , Γ̂ as functions of D = (D1, . . . ,Dm) and writing ĜX = GX(D1, . . . ,Dm),
Γ̂X = ΓX(D1, . . . ,Dm), we have GX(D1, . . . ,Dm−1) = GX(D1, . . . ,Dm−1, 0) and ΓX(D1, . . . ,Dm−1) =
ΓX(D1, . . . ,Dm−1, 0). Therefore we can regard ĜX , Γ̂X as symmetric functions in infinitely many
variables (D1,D2,D3, . . . ), and we obtain the maximal number of relations by doing so.

In weight 2

We have only one local integral I1;0 = −1
2ζ(2).

In weight 3

We have 3 local integrals I2;0 , I1;0,0 , I1;1 . The identity ĜX = Γ̂X together with (19) shows:

I1;1 = −3
4
ζ(3),

I2;0 = −1
4
ζ(3),

I1;0,0 = − 5
12
ζ(3).

(20)

8Note that π(k) is the dimension of the space of symmetric functions of degree k . We have one fewer relations
since the coefficients in front of Dk

j of the degree-k parts of both log ĜX and log Γ̂X vanish.
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In weight 4

We have 6 local integrals I3;0 , I2;1 , I2;0,0 , I1;2 , I1;1,0 , I1;0,0,0 . We obtain I1;2 = − 7
4ζ(4) from (19) and

the following four relations from ĜX = Γ̂X :
1
2

I1;2 +
1
2

I2;1 +
1
3

I3;0 + ζ(4) = 0,

4I2
1;0 + 2I1;2 + ζ(4) = 0,

1
2

I1;2 +
3
2

I2;1 − 2I1;1,0 −
3
2

I2;0,0 + ζ(4) = 0,

2I1;2 − 8I1;1,0 + 4I1;0,0,0 + ζ(4) = 0,

(21)

where the second equation reduces to the well-known identity ζ(4) = 2
5ζ(2)2 .

Other examples

Considering the case where {Dj : j ∈ V} = {D1,D2} and comparing the coefficient of Dn−1
1 D2 of the

identity ĜX = Γ̂X , we get a linear relation among the local integrals:

(n− 1)!ζ(n) +

n−2∑
i=1

(
n− 1

i

)
In−1−i;i + 2In−1,0 = 0,

or equivalently,

(22) ζ(n) =
1

(n− 1)!

∫ ∞
−∞

(
log(1 + es)

)n−1 − (max(0, s))n−1ds.

This generalizes the first equation of (21).

There are other examples of the local integrals which can be expressed in terms of the ζ -values:

I2;2 =
29
8
ζ(5)− 2ζ(2)ζ(3),

I2;4 =
753
8
ζ(7)− 42ζ(3)ζ(4)− 24ζ(2)ζ(5).

4.4 Proof of (5)

We use the above results for the local integrals to prove (5).

Proposition 4.5 Let V be a bounded domain in R2 containing the origin such that ∂V is affine-linear
in a neighbourhood of Sing(max(0, b1, b2)) and intersects it transversally. Let L be the total affine
length of the intersection V ∩ Sing(max(0, b1, b2)). Then we have

(− log t)3
∫

V

(
− logt(1 + t−b1 + t−b2)−max(0, b1, b2)

)
db1db2 = ζ(2) · (− log t) · L + ζ(3) + O

(
tε
)

as t→ +0, for some ε > 0 depending only on V .

Proof We decompose V into small pieces V1,V2,V3, . . . and evaluate the integral locally. The
integrand− logt(1+t−b1+t−b2)−max(0, b1, b2) is exponentially close to zero away from the tropical line
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Sing(max(0, b1, b2)) (see Figure 1). Hence, for any bounded domain V1 with V1 ∩ Sing(0, b1, b2) = ∅,
we have

(− log t)3
∫

V1

(− logt(1 + t−b1 + t−b2)−max(0, b1, b2))db1db2 = O(tε)

for some ε > 0 depending on V1 . Consider a domain V2 ⊂ R2 such that V2 intersects the tropical line
Sing(max(0, b1, b2)) only along the edge {b1 = 0, b2 < 0}. We again assume that ∂V2 is affine-linear
in a neighbourhood of the edge and is transverse to it. Since the contribution (to the integral) away from
the edge {b1 = 0, b2 < 0} is exponentially small, we may assume that V2 is of the form

−B < b1 < B, f (b1) < b2 < g(b1)

for some negative affine-linear functions f , g. Because t−b2 is exponentially small in this region, we
have

(− log t)3
∫

V1

(
− logt(1 + t−b1 + t−b2)−max(0, b1, b2)

)
db1db2

= (− log t)3
∫ B

−B
(− logt(1 + t−b1)−max(0, b1))(g(b1)− f (b1))db1 + O

(
tε
)

= (− log t) · L2 ·
∫ −B log t

B log t

(
log(1 + ex)−max(0, x)

)
dx + O

(
tε
)

= (− log t) · L2 · ζ(2) + O
(
tε
)

where L2 = g(0) − f (0) is the affine length of V2 ∩ Sing(max(0, b1, b2)) and we used (22) in the last
step. By the symmetry of the integrand under the affine transformation (b1, b2)→ (−b2, b1 − b2), the
same is true for regions intersecting the other edges. It now suffices to prove the statement for one
particular V . Let V be the rectangular region given by −B < b1 < 2B, −B < b2 < B with B > 0 (see
Figure 6). We decompose it into seven regions W1, . . . ,W7 as shown. We have

(− log t)3
∫

W1

(
− logt(1 + t−b1 + t−b2)−max(0, b1, b2)

)
db1db2

=

∫
[0,(− log t)·B]2

log(1 + e−s1 + e−s2)ds1ds2

=

∫
[0,(− log t)·B]2

(
log(1 + e−s1 + e−s2)− log(1 + e−s1)− log(1 + e−s2)

)
ds1ds2

+ 2(− log t) · B ·
∫

[0,(− log t)·B]
log(1 + e−s)ds

= I1;0,0 − 2(− log t) · B · I1;0 + O
(
tε
)

= − 5
12
ζ(3) + (− log t) · B · ζ(2) + O

(
tε
)
,

where we used (19) and (20) in the last step. The integrals over the regions W2,W3 are the same by the
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W1

W2

W3

W5

W4

W6

W7

Figure 6: Decomposition of the domain V

affine symmetry. The integral over W4 is given by

(− log t)3
∫

W4

(
− logt(1 + t−b1 + t−b2)−max(0, b1, b2)

)
db1db2

= (− log t)3
∫

0≤b1≤B,B≤b1−b2≤B+b1

logt(1 + tb1 + tb2−b1)db1db2

=

∫
[0,(− log t)·B]

x log(1 + e−x)dx + O
(
tε
)

(b2 integrated out)

= −I1;1 + O
(
tε
)

=
3
4
ζ(3) + O

(
tε
)
,

where we used (19) in the last step. The integrals over W5,W6 are the same by the affine symmetry.
The integral over W7 is of order O (tε). The conclusion follows by summing up these contributions.

Remark 4.6 If we only assume that ∂V is smooth (instead of linear) in a neighbourhood of the tropical
line Sing(max(0, b1, b2)) and intersects it transversally, we get the same result except that the error term
O (tε) in the right-hand side must be replaced with O((− log t)−1). This is because the 2-jet of g − f
(in the above proof) contributes to the term of order (− log t)−1 . More precisely, we are able to show
the identity of distributions:

− logt(1+t−b1 +t−b2) = max(0, b1, b2)− ζ(2)
(− log t)2 δSing(max(0,b1,b2))−

ζ(3)
(− log t)3 δ(0,0) +O

(
1

(− log t)4

)
where δA means the delta measure supported on A (with A equipped with the affine measure). We plan
to explore such distributions on tropical spaces in a future paper.

5 Periods of cycles that are mirror to line bundles

5.1 Varying the phases

Let t > 0 be a small positive number and let θ = (θq)q∈V be a collection of real numbers. Recall that
we define

ft,θ(z) :=
∑
q∈V

eiθq tλqzq

and
Z̊t,θ := {ft,θ(z) = 1} ⊂ PC∗ .
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Let Ct,θ ⊂ Z̊t,θ be the parallel transport of the positive real cycle C+
t ⊂ Z̊t as we vary θ continuously

from θ = 0. Let Ωt,θ be the holomorphic volume form on Z̊t,θ defined by

Ωt,θ =
d log z0 ∧ d log z1 ∧ · · · ∧ d log zn

dft,θ

∣∣∣∣
Z̊t,θ

where (z0, . . . , zn) are coordinates on PC∗ ∼= (C∗)n+1 . In this section, we prove the following general-
ization of Theorem 1.4:

Theorem 5.1 We have∫
Ct,θ⊂Zt,θ

Ωt,θ =

∫
X

t−ωλ · e−
∑

q∈V iθqDq · ĜX + O
(
tε
)

as t→ +0, for some ε > 0.

We can formally obtain this from Theorem 1.4 by substituting λq + i(θq/ log t) for λq . Note however
that this does not logically follow from Theorem 1.4 since in general ‘analytic continuation’ does not
commute with ‘asymptotic expansion’. We will justify this substitution via a tropical calculation similar
to Section 3.

When θq = 2πνq , we have C(ν)
t = Ct,θ . Therefore, Theorem C follows by combining Theorems 5.1

and 1.5.

5.2 A tropical construction of the cycle Ct,θ

We first construct a cycle approximately contained in Z̊t,θ by “sliding” the positive real cycle Bt =
Logt(C

+
t ) in the purely imaginary direction. Then we modify it to an actual cycle Ct,θ in Z̊t,θ . A

similar construction for “semi-tropical” cycles appears in the work of Abouzaid [Abo06, Abo09],
Fang–Liu–Treumann–Zaslow [FLTZ12], and Hanlon [Han19].

Let κ > 0 be a positive real number and let Nκ(∆λ) ⊂ PR denote the κ-neighbourhood of ∆λ

Nκ(∆λ) = {p ∈ PR : βq(p) ≥ −κ, ∀q ∈ V}.
We choose κ > 0 sufficiently small so that the following holds:

(i) for every subset K ⊂ V , if the regions Nκ(∆λ)∩ {βq ≤ κ} with q ∈ K intersect, then the facets
∆λ ∩ {βq = 0} with q ∈ K intersect; in this case K is linearly independent as a subset of QR .

(ii) for every p ∈ PR , K = {k ∈ V : βk(p) ≤ minq∈V (βq(p)) +κ} is linearly independent as a subset
of QR .

We choose a smooth function φ : Nκ(∆λ)→ PR such that the following holds for every q ∈ V :

(23) 〈q, φ(p)〉 = −θq whenever βq(p) ≤ κ.
Such a function exists because of the above condition (i). Define a map Φt : Nκ(∆λ)→ PC by

Φt(p) = p + i
φ(p)
log t

.

We naturally extend the functions βq : PR → R, it : PR → PC∗ to the functions βq : PC → C,
it : PC → PC∗ by the formulae:

βq(p) = 〈q, p〉+ λq, it(p0, p1, . . . , pn) = (tp0 , tp1 , . . . , tpn).

The following is immediate from the definition.
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Lemma 5.2 For p ∈ Nκ(∆λ), we have that |ft,θ(it(Φt(p)))− ft(it(p))| ≤ 2|V|tκ .

Proof We have

ft(it(p)) =
∑
q∈V

tβq(p)

ft,θ(it(Φt(p))) =
∑
q∈V

ei(θq+〈q,φ(p)〉)tβq(p).

By the condition (23), the summands with βq(p) ≤ κ coincide. Since the summands with βq(p) > κ
have norm bounded by tκ , the conclusion follows.

The lemma implies that the cycle it(Φt(Bt)) is approximately contained in the hypersurface Z̊t,θ . We
shall make it an actual cycle in Z̊t,θ by a C1 -small perturbation. In the following, we will fix a Hermitian
norm on PC ∼= Cn+1 .

Proposition 5.3 Set Rt = {p ∈ PR : 1
2 ≤ ft(it(p)) ≤ 3

2}. For sufficiently small t > 0, there exists a
smooth function δt : Rt → PC such that

(a) we have ft,θ(it(Φt(p) + δt(p))) = ft(it(p)) for p ∈ Rt , and

(b) ‖δt‖C1 = O(tκ), where ‖ · ‖C1 denotes the C1 -norm over the region Rt .

Using the function δt in this proposition, we define

Ct,θ := it(Φ̃t(Bt))

where Φ̃t : Rt → PC is defined by Φ̃t(p) = Φt(p) + δt(p). This is a cycle contained in Z̊t,θ and is
homeomorphic to a sphere.

Example 5.4 We give an example of the phase-shifting function φ : Nκ(∆λ) → PR in the case of
Y∆λ

= CP2 . In Figure 7, we present φ as a vector field near the boundary of the moment polytope
∆λ ; the boundary condition (23) says that p + φ(p) with p ∈ ∂∆λ lies on the boundary of a shifted
polytope (dotted line). Following the method in [FLTZ12], we can give such φ via a piecewise linear
function f on the fan (drawn in thin lines) dual to the polytope ∆λ : φ can be given as the gradient
of a smoothing of the piecewise-linear function f that takes the values θ1 , θ2 , θ3 , respectively, at the
primitive generators (−1, 0), (0,−1), (1, 1) of the 1-dimensional cones.

φ = (−θ1,−θ2)

φ = (θ2 + θ3,−θ2)

φ = (−θ1, θ1 + θ3)

Figure 7: A phase-shifting function φ as a vector field (Y∆λ = CP2 ).
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We end this subsection with the proof of Proposition 5.3. It is elementary and based on a standard
method in tropical geometry. The uninterested reader can safely skip the proof since the details will not
be used later.

Proof of Proposition 5.3 The region Rt is contained in Nκ(∆λ) for sufficiently small t > 0 because
ft(it(p)) ≥ t−κ for p ∈ PR \ Nκ(∆λ). In particular, Φt(p) is defined for p ∈ Rt . Define a holomorphic
function gt : PC → C by gt(p) = ft,θ(it(p)) =

∑
q∈V eiθq tβq(p) . By Lemma 5.2, Φt(p) with p ∈ Rt is

“close” to the fibre of the map gt at ft(it(p)). We will flow Φt(p) to a nearby point Φt(p) + δt(p) lying
in the fibre g−1

t (ft(it(p))) by the gradient vector field of gt . Let

grad gt =

(
∂gt

∂a0
, . . . ,

∂gt

∂an

)
be the gradient vector field of gt on PC and define ξ : Rt → C by

ξt(p) = ft(it(p))− gt(Φt(p)).

Lemma 5.2 gives |ξt(p)| ≤ 2|V|tκ . Consider the differential equation for an unknown function
c(p; s) : Rt × [0, 1]→ PC

d
ds

c(p; s) = ξt(p) · grad gt

| grad gt|2
(c(p; s))

with the initial condition c(p; 0) = Φt(p). Suppose we have a global solution c(p; s). Then the
differential equation shows that gt(c(p; s)) = gt(Φt(p)) + sξt(p) and therefore c(p; 1) lies in the fiber
g−1

t (ft(it(p))). Setting c(p; 1) = Φt(p) + δt(p), we have part (a) of the proposition. We will show that a
solution exists and that the C1 -norm of δt is of order tκ .

For p ∈ Rt , let sp be the supremum of s ∈ [0, 1] such that the flow s 7→ c(p; s) exists on the interval
[0, s). As discussed, gt(c(p; s)) with s ∈ [0, sp) lies in the interval connecting gt(Φt(p)) and ft(it(p)).
Since |ft(it(p)) − gt(Φt(p))| ≤ 2|V|tκ by Lemma 5.2 and 1

2 ≤ ft(it(p)) ≤ 3
2 , we may assume that

|gt(c(p; s))| ≥ 1
3 for sufficiently small t > 0. Thus by Lemma 5.6 below, we have

(24) |(grad gt)(c(p; s))| ≥ (− log t)ρ0 > 0

for some constant ρ0 > 0 for a sufficiently small t > 0. Therefore, the differential equation implies∣∣∣∣ d
ds

c(p; s)
∣∣∣∣ =

|ξt(p)|
|(grad gt)(c(p; s))|

≤ |ξt(p)|
(− log t)ρ0

≤ 2ρ−1
0 |V|(− log t)−1tκ

for s ∈ [0, sp). This implies that the limit lims→sp−0 c(p; s) exists. If sp < 1, the solution can be
extended to a larger interval, contradicting the assumption. Therefore we must have sp = 1 and the
solution exists on the interval [0, 1].

By integrating the above estimate, we get the bound (for s ∈ [0, 1]):

(25) |c(p; s)− c(p; 0)| ≤ ρ1(− log t)−1tκ

with ρ1 = 2ρ−1
0 |V|. This gives a C0 -bound for δt(p) = c(p; 1)− c(p; 0).

To obtain a C1 -bound for δt , we use the differential equation

(26)
d
ds
∂c(p; s)
∂pi

=
∂ξt

∂pi
(p)

grad gt

| grad gt|2
(c(p; s)) + ξt(p)

(
F(c(p; s))

∂c(p; s)
∂pi

+ G(c(p; s))
∂c(p; s)
∂pi

)
where F(c), G(c) are square matrices of size n + 1 (viewed as endomorphisms of PC ) whose (j, k)-
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entries are given by

F(c)jk = − 1
| grad gt|4

∂gt

∂cj

n∑
l=0

∂gt

∂cl

∂2gt

∂cl∂ck

G(c)jk =
1

| grad gt|2
∂2gt

∂cj∂ck
− 1
| grad gt|4

∂gt

∂cj

n∑
l=0

∂gt

∂cl

∂2gt

∂cl∂ck
.

Given the function c(p; s), (26) can be viewed as a linear differential equation for x(s) = ∂c(p;s)
∂ai

as
appears in Lemma 5.7 below. In view of Lemma 5.7, it suffices to establish the following inequalities
for sufficiently small t > 0:

max
(∣∣∣∣∂ξt

∂pi
(p)

grad gt

| grad gt|2
(c(p; s))

∣∣∣∣ , |ξt(p)F(c(p; s))jk|, |ξt(p)G(c(p; s))jk|
)
≤ ρ2tκ∣∣∣∣∂c(p; 0)

∂pi

∣∣∣∣ ≤ ρ2

(27)

where ρ2 > 0 is a constant independent of p, s, t . The second inequality follows from the initial
condition c(p; 0) = Φt(p) = p + iφ(p)/ log t . Similarly to the proof of Lemma 5.2, we have∣∣∣∣∂ξt

∂pi
(p)
∣∣∣∣ = (− log t)

∣∣∣∣∣∣
∑

q∈V,βq(p)>κ

qi(1− ei(θq+〈q,φ(p)〉))tβq(p)

∣∣∣∣∣∣ ≤ ρ3(− log t)tκ

for some constant ρ3 > 0. Therefore, using the estimate (24), we get

(28)
∣∣∣∣∂ξt

∂pi
(p)

grad gt

| grad gt|2
(c(p; s))

∣∣∣∣ ≤ ρ−1
0 ρ3tκ.

Since p ∈ Rt , we have ft(it(p)) ≤ 3
2 and hence βq(p) ≥ logt(3/2). This together with the estimate (25)

gives

<(βq(c(p; s))) ≥ <(βq(c(p; 0)))− |q|ρ1(− log t)−1tκ

≥ logt(3/2)− ρ4(− log t)−1tκ.

with ρ4 := ρ1 maxq∈V (|q|), where we used <(βq(c(p; 0))) = <(βq(Φ(p))) = βq(p). Therefore we have∣∣∣∣∂gt

∂cj
(c(p; s))

∣∣∣∣ = (− log t)

∣∣∣∣∣∣
∑
q∈V

eiθqqjtβq(c(p;s))

∣∣∣∣∣∣
≤ (− log t)

∑
q∈V

|qj|t<(βq(c(p;s)))

≤ (− log t)ρ5 · tlogt(3/2)−ρ4(− log t)−1tκ ≤ (− log t)ρ6

for some constant ρ5 > 0 and ρ6 = 3
2ρ5 exp(ρ4). Similarly we have∣∣∣∣ ∂2gt

∂cj∂ck
(c(p; s))

∣∣∣∣ ≤ (− log t)2ρ7

for some constant ρ7 > 0. These estimates together with (24) and |ξt(p)| ≤ 2|V|tκ imply

(29) max
(
|ξt(p)F(c(p; s))jk|, |ξt(p)G(c(p; s))jk|

)
≤ ρ8tκ

for some constant ρ8 > 0. The estimates (28), (29) imply the first inequality of (27). The proposition
is proved.
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Remark 5.5 By a similar argument, we can prove that the function δt constructed in the above proof
is small in the C∞ -topology, i.e. ‖δt‖Cm = O(tκ) for all m ≥ 0, although we do not need this result.

We end this subsection with the two lemmas used in the above proof.

Lemma 5.6 Suppose 0 < t < 1 and let gt : PC → C be the function defined by gt(p) =
∑

q∈V eiθq tβq(p) .
There exist constants ρ1, ρ2 > 0 independent of p ∈ PC such that

| grad gt(p)|
|gt(p)|

≥ (− log t)(ρ1 − ρ2tκ)

whenever gt(p) 6= 0. In particular, the hypersurface Z̊t,θ is smooth for sufficiently small t > 0.

Proof Fix p ∈ PC . Set βq0(p) = minq∈V βq(p) and K = {q ∈ V : βk(p) ≤ βq0(p) + κ}. By the
condition (ii) above, K is linearly independent as a subset of QR . We have

| grad gt(p)| = (− log t)

∣∣∣∣∣∣
∑
q∈V

qeiθq tβq(p)

∣∣∣∣∣∣
≥ (− log t) · |tβq0 (p)|

∣∣∣∣∣∣
∑
q∈K

qeiθq tβq(p)−βq0 (p)

∣∣∣∣∣∣−
∣∣∣∣∣∣
∑

q∈V\K

qeiθq tβq(p)−βq0 (p)

∣∣∣∣∣∣


≥ (− log t) · |tβq0 (p)|

ρ1
∑
q∈K

|tβq(p)−βq0 (p)| − ρ3tκ


for some constants ρ1, ρ3 > 0, where we used the fact that K is linearly independent and that all norms
on a finite dimensional vector space are equivalent. Similarly we have

|gt(p)| ≤ |tβq0 (p)|

∑
q∈K

|tβq(p)−βq0 (p)|+ ρ4tκ


for some constant ρ4 > 0. Combining these inequalities, we get

| grad gt(p)|
|gt(p)|

≥ (− log t)
ρ1 − ρ3tκ/

∑
q∈K |tβq(p)−βq0 (p)|

1 + ρ4tκ/
∑

q∈K |tβq(p)−βq0 (p)|

≥ (− log t)

(
ρ1 − (ρ1ρ4 + ρ3)

tκ∑
q∈K |tβq(p)−βq0 (p)|

)
.

Setting ρ2 = ρ1ρ4 + ρ3 , we obtain the conclusion since
∑

q∈K |tβq(p)−βq0 (p)| ≥ 1.

Lemma 5.7 Let x(s) be a vector-valued function satisfying the differential equation
dx
ds

(s) = y(s) + A(s)x(s)

where y(s) is a vector-valued smooth function and A(s) is a matrix-valued smooth function. Then we
have

|x(1)− x(0)| ≤
(∫ 1

0
|y(s) + A(s)x(0)|ds

)
e
∫ 1

0 |A(s)|ds

where |A(s)| denotes the operator norm.
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Proof We have the integral inequality:

|x(s)− x(0)| =
∣∣∣∣∫ s

0
y(u) + A(u)x(0) + A(u)(x(u)− x(0))du

∣∣∣∣
≤
∫ 1

0
|y(u) + A(u)x(0)|du +

∫ s

0
|A(u)| · |x(u)− x(0)|du.

The lemma follows by the Gronwall inequality.

5.3 Complex volume of a polytope

We introduce a complex volume of an m-dimensional polytope ‘enclosed’ by a complex hyperplane
arrangement in Cm . The complex volume will appear in the calculation of periods of Ct,θ .

Let P ⊂ Rm be a compact convex polytope (with non-empty interior) equipped with an orientation (as
a manifold with corners). Let {Fi}i∈I be the set of facets (i.e. faces of codimension one) of P. We
assume that if

⋂
i∈K Fi 6= ∅ for K ⊂ I , then

⋂
i∈K Fi is a face of codimension |K|. Suppose that we

have a collection of complex affine hyperplanes {Hi}i∈I in Cm labelled by the same index set I . We
write Hi = (αi + µi = 0), where αi : Cm → C is a linear function and µi ∈ C is a constant. We
require that the hyperplane arrangement {Hi}i∈I satisfies the following (open) condition: for every
subset K ⊂ I such that

⋂
i∈K Fi 6= ∅, the hyperplanes in the collection {Hi}i∈K intersect transversally

along a codimension |K| affine subspace.

Consider a smooth map
Φ : P→ Cm

satisfying
Φ(Fi) ⊂ Hi

for all i ∈ I . Note that this condition (along with the requirement on {Hi}i∈I imposed above) determines
the image of a vertex in P under Φ. Fix a holomorphic volume form d vol = rdc1 ∧ · · · ∧ dcm on Cm ,
for some r ∈ C∗ . The complex volume of (P,Φ) is defined to be

(30) volC(P,Φ) =

∫
P

Φ∗(d vol).

Lemma 5.8 For a fixed volume form d vol, the complex volume volC(P,Φ) depends only on the
hyperplane arrangement {Hi}i∈I on Cm indexed by facets of P. Moreover, it is a polynomial function
of {µi}i∈I .

Proof This follows from a repeated application of the Stokes theorem. More generally, for a polynomial
m-form ω on Cm , we can see that the integral ∫

P
Φ∗ω

does not depend on the choice of Φ satisfying the above condition. Since any polynomial m-form on
Cm is exact, by Stokes theorem, we can write it as the sum of integrals

∫
Fi

(Φ|Fi)
∗ηi over i ∈ I with ηi

being a polynomial (m− 1)-form on Hi . The conclusion follows by induction on the dimension.
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5.4 Computing periods of Ct,θ tropically

By construction, the cycle Ct,θ is identified with the positive real cycle C+
t via the map Φ̃t = Φt + δt .

The tropical decomposition of C+
t in Section 3.2 then induces a decomposition of Ct,θ . We can

decompose and calculate the period of Ct,θ in almost the same way as before, with the only significant
difference being that we use the complex volume (instead of the real volume) of a polytope and apply
a complexified Duistermaat–Heckman theorem. We use the notation in Section 3.

Let κ > 0 be as in Section 5.2 and let ε > 0 be a sufficiently small number satisfying 0 < ε < κ/2.
Let Bq,K

t ⊂ Bt be the region introduced in Section 3.2 defined by this ε. We have∫
Ct,θ

Ωt,θ =
∑
q,K

∫
Bq,K

t

Φ̃∗t i∗t Ωt,θ

where, as before, it suffices to consider the sum over all q ∈ V and a subset K ⊂ V not containing q
such that the facets of ∆λ corresponding to K t {q} have nonempty intersection.

Let (a, bk, cj) be affine coordinates on PR from Section 3.3 associated with the choice of q and K . We
naturally extend these coordinates to complex coordinates on PC . Similarly to equations (6)–(7), we
have

ft,θ ◦ it(p) = eiθq ta

(
1 +

∑
k∈K

ei(θk−θq)tbk + ht(p)

)
where ht(p) =

∑
m∈V\({q}tK) ei(θi−θq)tβm(p)−a satisfies the uniform estimate

ht(p) ∈ O(tε),
∂ht

∂pi
(p) ∈ O((− log t)tε)

over Φ̃t(B
q,K
t ); this follows from the C0 -estimate for δt in Proposition 5.3. Hence a calculation similar

to equations (9)–(10) shows

i∗t Ωt,θ = rq,K(− log t)n+1 da ∧
∧

k∈K dbk ∧
∧

dcj

d(ft,θ ◦ it)

∣∣∣∣
(ft,θ◦it)−1(1)

= (1 + O(tε)) · (− log t)n · rq,K

∧
k∈K

dbk ∧
∧

j

dcj

over Φ̃t(B
q,K
t ), where rq,K > 0 is the number in Section 3.3.

Consider the Riemannian metric g on Bt induced from the Euclidean metric on the ambient space
PR ∼= Rn+1 . Then the volume of Bt with respect to g is bounded as t → +0; this follows from the
leading asymptotics of periods

∫
Bt

i∗t Ωt in Theorem 1.4 and the estimate∫
Bt

d volg =

∫
Bt

|d(ft ◦ it)|
dp0 · · · dpn

d(ft ◦ it)
≤ ρ

(− log t)n

∫
Bt

i∗t Ωt

for some constants ρ > 0, where we used the estimate |d(ft ◦ it)| ≤ ρ(− log t) over Bt . When we
define the C1 -norm of δt|Bt using the metric g, we have ‖δt|Bt‖C1 ≤ ‖δt‖C1 ; hence by Proposition 5.3,
‖δt|Bt‖C1 = O(tκ). Moreover it is easy to show that the C1 -norm of Φt (and hence of Φt|Bt ) is bounded.
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From these facts, we obtain the approximation:∫
Bq,K

t

Φ̃∗t i∗t Ωt,θ = (1 + O(tε)) · (− log t)n · rq,K

∫
Bq,K

t

Φ̃∗t

(∧
k∈K dbk ∧

∧
j dcj

)
= (1 + O(tε)) · (− log t)n ·

(
rq,K

∫
Bq,K

t

Φ∗t

(∧
k∈K dbk ∧

∧
j dcj

)
+ O(tκ)

)
.

This corresponds to (10) in Section 3.3.

Over Bq,K
t , we have 1 =

∑
k∈V tβk(p) ≤ |V|ta , and thus 0 ≤ a ≤ log |V|/(− log t). Therefore, by taking

t > 0 sufficiently small, we may assume that 0 ≤ βq = a ≤ ε < κ and that βk = a + bk ≤ 2ε < κ for
k ∈ K over Bq,K

t . This implies

Φ∗t bk = bk + i
θk − θq

− log t
over Bq,K

t

for k ∈ K by the condition (23). Therefore we have

rq,K

∫
Bq,K

t

Φ∗t

(∧
k∈K dbk ∧

∧
j dcj

)
=

∫
[0,ε]K

db̃
∫

Bq,K
t ∩{b=b̃}

Φ∗t (d volq,K)

=

∫
[0,ε]K

db̃
∫

Fq,K (b̃)
(Φt ◦ sb̃)∗(d volq,K)

(31)

where Bq,K
t ∩ {b = b̃} denotes the subset of Bq,K

t where the values of the coordinates b = (bk)k∈K

equal b̃ ∈ [0, ε]K , Fq,K(b̃) = πc(Bq,K
t ∩ {b = b̃}) is its projection to the c-plane as appears in Section

3.4, and sb̃ denotes the (unique) section of the projection πc : Bq,K
t ∩ {b = b̃} → Fq,K(b̃); we have

sb̃(c) = (aq,K(b̃, c), b̃, c). Also d volq,K = rq,K
∧

j dcj (see (8)) is now regarded as a holomorphic form
on PC .

Recall the function a′q,K(b) from (12). It differs from aq,K(b, c) by a function of order O(tε). Moreover,
we have the uniform estimate over the region πb,c(Bq,K

t )
∂aq,K(b, c)

∂cj
= O(tε).

In fact, by differentiating (11) with respect to cj , we get

∂aq,K

∂cj
(b, c)

1 +
∑

m/∈{q}tK

(∂aβm − 1) tβm(aq,K (b,c),b,c)

 = −
∑

m/∈{q}tK

(∂cjβm)tβm(aq,K (b,c),b,c)

where we regard βm = βm(a, b, c) as an affine linear form in a, b, c; the above estimate follows by
βm(aq,K(b, c), b, c) ≥ aq,K(b, c) + ε > ε over πb,c(Bq,K

t ). By this estimate, we can replace the section sb

in (31) with s′b(c) = (a′q,K(b), b, c) with error terms of order O(tε). Furthermore, by the same argument
as in Section 3.4, we can replace Fq,K(b) with the polytope F′q,K(a′q,K(b), b) with error terms of order
O(tε) again. Namely, we have∫

Fq,K (b)
(Φt ◦ sb)∗d volq,K =

∫
Fq,K (b)

(Φt ◦ s′b)∗(d volq,K) + O(tε)

=

∫
F′q,K (a′q,K (b),b)

(Φt ◦ s′b)∗(d volq,K) + O(tε)

= volC
(
F′q,K(a′q,K(b), b),Φt

)
.

In the last line, we identified the polytope F′q,K(a′q,K(b), b) with its image by s′b (as we did in Section
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3.4) and considered its complex volume (30) with respect to d volq,K . Note that Φt(F′q,K(a′q,K(b), b)) is
contained in the affine subspace of PC where the values of the complex affine-linear functions a, bk

are fixed (again by the condition (23)).

Applying the inclusion-exclusion principle for the complex volumes of polytopes as we did in Section
3.4, we arrive at the formula9:∫

Ct,θ

Ωt,θ = (1+O(tε)) (− log t)n

 ∑
q,K⊂J,q/∈J

(−1)|J\K|
∫

[0,ε]J
volC

(
Eq,J(a′q,K(b), b, b′),Φt

)
dbdb′ + O(tε)


where we write b = (bj)j∈K and b′ = (b′j)j∈J\K and used the holomorphic form d volq,J to define the
complex volume for (Eq,J(a′q,K(b), b, b′),Φt). This generalizes (13).

Finally we apply a complex version of the Duistermaat–Heckman theorem. Consider the polytope
Eq,J(a, b) with 0 < a, bj < ε. The image of Eq,J(a, b) under Φt is contained in the complex affine
subspace of PC defined by

βq = a + i
θq

− log t
,

βj = a + bj + i
θj

− log t
j ∈ J.

by (23). The facets of Eq,J(a, b) are given by Eq,J(a, b) ∩ {βm = a} for m /∈ {q} t J . These facets
map (under Φt ) to the complex affine hyperplane given by

βm − βq = i
φm − φq

− log t
by (23). Therefore its complex volume volC(Eq,K(a, b),Φt) is a polynomial function of the constant
terms of these complex affine-linear forms by Lemma 5.8. By analytic continuation of Lemma 3.2, we
get

volC(Eq,J(a, b),Φt) =

∫
Y∆λ

exp

ωλ + i

∑
k∈V θkDk

log t
−
∑
j∈J

bjDj − aσ

 .

We obtain this from Lemma 3.2 by substituting λk + i(θk/ log t) for λk for all k ∈ V .

The rest of the argument works in exactly the same way as before, just by replacing λk with λk +
i(θk/ log t), and we arrive at Theorem 5.1.
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