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The astrophysical °Li(p,7)"Be reaction occurs during Big Bang nucleosynthesis and the pre-main

sequence and main sequence phases of stellar evolution.

The low-energy trend of its cross sec-

tion remains uncertain, since different measurements have provided conflicting results. A recent
experiment reported a resonance-like structure at center-of-mass energy 195 keV, associated to a
positive-parity state of "Be. The existence of such resonance is still a matter of debate. We report
a new measurement of the °Li(p,7)"Be cross section performed at the Laboratory for Underground
Nuclear Astrophysics, covering the center-of-mass energy range E = 60 - 350 keV. Our results rule
out the existence of low-energy resonances. The astrophysical S-factor varies smoothly with energy,

in agreement with theoretical models.

Introduction — The abundance of lithium in the Uni-
verse is a complex topic involving all three main nucle-
osynthesis scenarios: Big Bang Nucleosynthesis (BBN),
the interaction of cosmic rays with interstellar matter,
and stellar nucleosynthesis [1]. Detailed simulations of
the chemical evolution of the Galaxy [2] have shown that
less than half of the solar system lithium was produced
by BBN [3, 4] or Galactic cosmic rays, with the remain-
der to be supplied by low-mass stellar sources such as red
giants, asymptotic giant branch stars, or novae [2].

BBN lithium production is dominated by the
2H(a,y)%Li [5, 6] and *He(a,y)"Be [7] reactions for its
two stable isotopes %7Li, respectively. The predicted

BBN SLi/7Li isotopic ratio is 107* [5, 7], much lower
than the solar system value of 0.08 [8]. Similarly, very
low SLi/7Li values are also expected for low-mass stellar
lithium sources. The same is true for neutrino nucle-
osynthesis, which may provide significant amounts of ”Li
but not °Li [9]. In contrast, the 5Li/"Li production ratio
in Galactic or structure formation cosmic rays is much
higher, close to unity [10].

The so-called Spite plateau of “Li abundances in metal-
poor stars [11] is 2-4 times below the predicted BBN
abundance [3], a discrepancy known as the cosmological
lithium problem [12, 13]. Stellar solutions to this prob-
lem are under discussion [14, 15], but the recent observa-



tion of lithium close to the Spite plateau in an extremely
metal-poor star seems to reinforce the lithium problem
[16]. In this context, it has been suggested to use the
6Li/"Li isotopic ratio as a tool to constrain non-standard
lithium production mechanisms [2, 17] and pollution of
stellar atmospheres [18].

While the SLi(p,«)*He reaction easily depletes °Li in
stars, the competing but much slower 5Li(p,y)"Be reac-
tion may convert some °Li to “Li (the daughter of ra-
dioactive "Be), which is less readily destroyed in stars,
thus affecting both the numerator and the denominator
of the SLi/7Li ratio.

The cross section of the °Li(p,a)3He reaction is known
to 5% precision at the energies of astrophysical interest
[19, 20]. On the other hand, the low-energy behavior of
the ®Li(p,y)"Be cross section is still poorly understood,
despite theoretical and experimental efforts. Previous
low-energy measurements of the 5Li(p,v)"Be cross section
at center-of-mass energies below 200 keV have given con-
flicting results on the slope of the astrophysical S-factor.
Three data sets are available in the literature: the first
measurement of the 5Li(p,7)"Be cross section relative to
the °Li(p,a)3He at center-of-mass energies between 40
and 150 keV led to a positive slope of the S-factor (Cecil
et al. [21]). A subsequent measurement of the energy
dependence of the °Li(p,y)"Be S-factor at proton beam
energies between 80 and 130 keV found a negative slope
(Prior et al. [22]). The most recent cross section mea-
surement by He et al. [23] reported instead a positive
slope of the S-factor, in qualitative agreement with [21],
which was interpreted either as a possible novel reaction
mechanism or as a new resonance at center-of-mass en-
ergy of 195 keV. In order to reproduce their experimental
data, He et al. assumed the presence of an excited state
in "Be with E, ~ 5800 keV, J™ = (1/2%,3/2%) and ', ~
50 keV in their R-matrix calculation [23]. This claim is
indirectly supported by the measured °Li(p,a)*He an-
gular distribution. In fact, while the °Li(p,a)3He cross
section shows no evidence of resonances around 200 keV
[20, 24], its angular distribution is well-studied [25, 26,
and references therein] and shows a prominent A; coef-
ficient leading to the hypothesis of positive-parity states
in "Be [25, 27, 28].

The new "Be excited state can potentially contribute
as a resonance in the 3He(*He,y)"Be reaction at center-
of-mass energy F =~ 4210 keV and affect the extrapola-
tion of the cross section to solar energies. However, a
recent *He(*He,y)"Be cross section measurement found
no evidence for such resonance [29].

From a nuclear structure point of view, the claimed
resonance [23] is particularly intriguing because of its re-
ported positive parity. There are no positive-parity "Be
states listed in the Evaluated Nuclear Structure Data
[30]. In addition, the energy spectrum of mass-7 nu-
clei can now be calculated ab initio [31, 32|, and such
an excited state, if confirmed, would constrain such cal-

culations.

A number of theoretical calculations of the SLi(p,y)"Be
S-factor have been performed using different types of
models [33-41]. None of them is able to reproduce the
newly-reported resonance, unless this is added ad-hoc to
reproduce the experimental data [36, 42]. Moreover, a
recent no-core-shell-model calculation predicts only neg-
ative parity states up to 9 MeV excitation energy [43],
corresponding to E ~ 4 MeV in the °Li(p,y)"Be system.

To assess the low-energy trend of the ®Li(p,y)"Be S-
factor, we performed a new experiment at the Labo-
ratory for Underground Nuclear Astrophysics (LUNA),
located at Laboratori Nazionali del Gran Sasso (Italy)
[44, 45]. The deep-underground location guarantees
an environmental background level orders of magnitude
lower than above ground [44, 46], allowing to perform
high-sensitivity measurements.

Ezxperimental setup and data acquisition — A
schematic view of the experimental setup is shown in
Fig. 1. A high-intensity proton beam with energy rang-
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FIG. 1. Sketch of the experimental setup used for the mea-
surement of the °Li(p,y)"Be cross section at LUNA.

ing from 80 keV to 400 keV was provided by the LUNA-
400 kV accelerator [47]. The beam was analyzed, col-
limated by a circular aperture of 0.3 cm diameter and
sent through a 70 cm long copper pipe of 2.6 cm diam-
eter. The copper pipe extended to a distance of 1 cm
from the target and had a dual function: it was cooled to
liquid nitrogen temperature to serve as a cold trap, and
it was biased to —300 V for secondary electron suppres-
sion. The beam impinged on a %Li-enriched solid target,
tilted at 55° with respect to the beam direction. Targets
were produced at Atomki (Hungary) by evaporation on
tantalum disks (of thickness 0.25 mm and diameter 42
mm) previously cleaned with an acid bath. Three tar-
gets (of thicknesses 100 — 200 pg/cm?) were made using
6Lia WO, powder from Sigma Aldrich; one target (thick-
ness 20 pug/cm?) was made using °LioO powder produced
at INFN - Legnaro National Laboratories (Italy) from
metallic Li. The SLi isotopic enrichment level was 95%
for all targets. To limit target degradation, the target



backing was directly cooled by recirculating water.

The scattering chamber and the target were electri-
cally insulated from the beam line and functioned as a
Faraday cup for beam current measurements. Through-
out the experiment a typical beam current of 100 pA was
delivered on target.

The SLi(p,7)"Be reaction (Q-value = 5607 keV) pro-
ceeds through direct capture (DC) to either the ground
state of "Be, or its first excited state, with subsequent
emission of a 429 keV secondary gamma ray. Gamma
rays were detected using a High-Purity Germanium de-
tector (HPGe) of 104% relative efficiency [48] positioned
at 1.7 cm from the target and at 55° with respect to the
beam direction.

The absolute gamma-ray detection efficiency was mea-
sured using point-like radioactive sources (137Cs, %°Co
and ®8Y), with activities calibrated by the Physikalisch-
Technische Bundesanstalt (PTB) to 1% accuracy. The
efficiency curve was then extended up to 6.8 MeV using
the well-known *N(p,v)!°O resonance at proton energy
E, =278 keV [49, 50]. True coincidence summing effects
[48] up to 16% were corrected using two independent ap-
proaches: an analytical correction [51, 52], and a Geant4
[53] simulation of the experimental setup [54, 55]. The re-
sults provided by the two methods are consistent within
4%. The simulation was also used to correct for true
coincidence summing effects on the detected gamma-ray
peak areas from SLi(p,y)"Be transitions.

In addition to the HPGe detector, a silicon detector
with 25 mm? active area and 100 gm depletion depth
was installed at 125° from the beam direction, on a linear
actuator. With this setup, the a and 3He particles from
the °Li(p,a)3He reaction were detected concurrently with
the gamma rays from the Li(p,y)”Be reaction. The sili-
con detector was collimated by a 1 mm thick and 1 mm
diameter aperture and shielded against elastically scat-
tered beam particles by a 5 um-thick Mylar foil. « and
3He particles could be clearly distinguished by reaction
kinematics.

The charged-particle detection efficiency was measured
using the '¥O(p,a)'"N resonance at E, = 151 keV, wy =
(164.21731) meV [56, 57]. With this approach, the de-
tection efficiency was determined in the same geometrical
configuration adopted for the °Li(p,a)3He measurement,
with the main systematic uncertainty coming from the
uncertainty on the w~y of the resonance used.

An additional source of uncertainty on both particle
and gamma-ray detection efficiency was due to the rel-
ative geometry of the beam spot and the detector. The
effect is more pronounced for the Si detector, since the di-
ameter of the collimator (¢s; = 1 mm) was much smaller
than the beam spot on target (¢peam =~ 10 mm) [58].
The uncertainty due to the source-to-detector geometry
was estimated using a simulation in which the beam spot
was located at different positions, in accordance with ob-
served beam spots on target. The effect was found to be

5% for the Si detector and 2% for the HPGe detector.

Data analysis — A measurement of the °Li(p,y)"Be
and SLi(p,a)3He excitation functions in the whole dy-
namic range of the LUNA-400 kV accelerator was per-
formed for each target. In this way it was possible to
make consistency checks between different data sets and
verify that our results are unaffected by systematic ef-
fects due to target composition and thickness. In each
run, the gamma-ray and charged-particle spectra were
recorded simultaneously and stored for off-line analysis.
The °Li(p,y)"Be experimental yield was given by the sum
of the contributions from the direct capture to the ground
state (7o) and to the 429 keV excited state (y;) of "Be.
Fig. 2 shows the ratio of the two transition probabilities
compared to the literature. The effect of gamma-ray an-
gular distribution was taken into account in the present
evaluation of the transition probabilities (more details
on the angular distributions adopted are provided in the
next paragraphs). As a result, the ratio B(vyo)/B(v1) is
observed to slightly increase with energy. The average
branching ratio from the present experiment is 1.72 £
0.11 (red line in Fig. 2), in good agreement with litera-
ture values [22, 23, 59].
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FIG. 2. Ratio of the counting rates in the DC—0 (o) and
DC—429 keV (71) for each target, corrected for detection ef-
ficiency and angular distribution. The ratio is compared to
literature values [22, 23]. Shaded areas represent the uncer-
tainties on literature values. The present error bars reflect
only the statistical uncertainties.

For the calculation of the SLi(p,y)"Be S-factor, we
adopted a relative approach: the (p,y) cross section was
normalized at each energy to the literature (p,a) cross
section [20]. At any given beam energy, the ratio of the
experimental yields for the v (Y5) and « (Y,) channels
is given by:

Y, N, 5.Wa(6)
Uva(a)

Y, N,
where N is the net (i.e. background-subtracted) num-
ber of gamma or alpha peak counts observed in the

(1)
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FIG. 3. Astrophysical S-factor for the °Li(p,y)"Be reaction as obtained from individual targets (left panel) and from a weighted
average of the different datasets (red filled circles, right panel). Previous experimental data and theoretical evaluations are also
shown for comparison in the right panel. The solid black line represents an R-matrix fit of present data and data from [59].

spectrum, 7 the detection efficiency, and W () = 1 +
N
> Ay Pi(cos(8)) the angular distribution correction fac-
k=1

tor, with Py (cos(#)) being the Legendre polynomial of or-
der k. The subscripts v and « refer to the (p,y) and (p,«)
channels, respectively. For the (p,a)) channel, the angu-
lar distribution coefficients A; and related uncertainties
were taken from [25, 26, 60]. For the (p,y) channel, no
angular distribution measurements are available in the
literature for the energy range explored in the present
study. Therefore, we adopted a theoretical angular dis-
tribution using the model described in [40]. For the re-
sultant uncertainty, we repeated the analysis, first, using
an anisotropy twice as large as given in Ref. [40], and
second, assuming isotropy [61]. The only other theoreti-
cal angular distributions available [33] fall in this range.
Due to the position of the detector, its close proximity
to the target and the relatively mild anisotropy (the first
to third order Legendre coefficients were between 0.0-0.2
[40]), the effect on the gamma-ray detection efficiency is
<3%.

At each energy, the ratio of the two yields can be ex-
pressed in terms of the astrophysical S-factors for the ~
(Sy) and « (S,) channels as [62, 63]:

B, _ —omn —

i 2)
E - (
Yo g, B Sa(B)e?™e (B)dE

where £, is the proton beam energy, AE, the energy lost
by the beam inside the target (between 30 and 100 keV,
depending on the type of target and on the beam en-
ergy), een(E) the effective stopping power, and e=2™"
the Gamow factor [62]. The energy associated to each
point is the cross-section-weighted average as defined in
[64]. This approach to derive the S-factor is only weakly
dependent on the target properties and behavior during

intense beam irradiation, as well as on the charge inte-
gration on target.

For normalization purposes, we adopted the
parametrization of the °Li(p,a)®He S-factor from
[20] provided in [65], which reproduces experimental
data in [20] to better than 1%. The energy dependence
of the S-factor was taken into account both for the «
and v channels: while So(E) is known, for S,(E) the
analysis was repeated assuming three different energy
trends from Refs. [22, 23, 40]. Results were insensitive
to the specific trend assumed.

The measured S-factors were finally corrected for elec-
tron screening, using the adiabatic approximation [66]
and a screening potential U, = 273 eV [20]. The screen-
ing correction amounted to at most 2.5%.

Results and discussion — The bare S-factor (i.e., the
S-factor corrected for the electron screening effect) for
the SLi(p,7y)"Be reaction from the present experiment is
shown in Fig. 3, together with previous literature data
and theoretical calculations. As shown in Fig. 3 all
targets gave consistent results, therefore we adopted a
weighted average of the different data-sets. A table with
average S-factor values is provided as supplementary ma-
terial [67]. The error bars in Fig. 3 account for statistical
uncertainties (< 2%) and the uncertainty due to the rel-
ative geometry of the beam spot and the two detectors
(6%). In addition, results are affected by a systematic er-
ror of 13%, due to the remaining uncertainty on charged-
particle (8%) and gamma-ray (4%) detection efficiency,
SLi(p,)®He S-factor (5%) and uncertainties on W, (6)
(3%) and W, (0) (< 4%).

Our data have a monotonic dependence on the energy
and show no evidence of the resonance reported by He
et al. [23]. One point at 110.7 keV is observed to scat-
ter with respect to the neighboring points. However, this
deviation is observed only in one point. Moreover, if the
uncertainty due to the beam spot position with respect



to the two detectors is taken into account, the point is
still consistent with the trend drawn by the other points
within two standard deviations. Fig. 3 also shows a sim-
ple R-matrix fit of our data and the data from Switkowski
et al. [59], performed with the AZURE code [68]. The
fit considers only the proton and gamma channels and
is dominated by non-resonant capture. This is modelled
with an external capture width to the ground state, plus
two background poles with J™ = 1/2% and 1/2~ (proton
orbital angular momentum [, = 0 and 1, respectively) at
E, =20 MeV. A more comprehensive fit including addi-
tional entrance channels, as well as a wider selection of
data sets, is beyond the scope of this work. The fit pro-
vides an extrapolated S-factor to zero energy of S(0) =
95 + 9 eV b. This value is 30% higher than the extrapo-
lation from [36], S(0) = 7315% eV b, which includes the
hypothetical 195 keV resonance. Our S(0) is in very good
agreement with the theoretical values from [40] (S(0) =
95.0 eV b, not renormalized) and [35] (S(0) = 99.5 eV
b).

We used our new data in combination with those re-
ported in [59] to evaluate the astrophysical reaction rate
for the Li(p,v)"Be reaction, following the approach sug-
gested in the NACRE compilation [69] for non-resonant
cross sections. The new reaction rate, expressed as the
Maxwellian-averaged (ov) multiplied by the Avogadro
number N4 [62], is shown in Fig. 4, normalized to the
reaction rate from the NACRE compilation [69]. Our
recommended rate is consistent with the NACRE rate
[69], while the uncertainty has been reduced by about
a factor of 2. The rate from the NACRE II compila-
tion [36] is also shown for comparison, where the rec-
ommended value was calculated assuming the existence
of the 195 keV resonance, while for the upper limit the
resonance was disregarded.

T
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FIG. 4. Astrophysical reaction rate for the ®Li(p,y)"Be re-
action, normalized to the NACRE rate [69]. The NACRE II
rate [36] is also shown for comparison. Dashed lines repre-
sent the uncertainty on the NACRE rate, while shaded areas
represent the uncertainties from the present experiment (red)
and from NACRE II (grey).

In conclusion, the Li(p,v)"Be cross section has been
measured at LUNA relative to the SLi(p,a)*He cross sec-
tion in the energy range from 60 — 350 keV with <2%
statistical and 12% systematic uncertainty. A previously
reported [23] possible resonance is ruled out by our new
data. These new data provide a solid experimental refer-
ence for future ab-initio evaluations of reactions involving
"Be [31, 32].

The new thermonuclear reaction rate is 9% lower than
NACRE [69] and 33% higher than reported in NACRE
IT [36] at 2 MK, and the reaction rate uncertainty has
been significantly reduced. This will allow a more precise
evaluation of the impact of the SLi(p,y)"Be reaction on
the lithium isotopic ratio in various stellar scenarios [2,
17, 70, 71].
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