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Inspecting temporal scales with non-linear signal 
features: A way to extract more information from 
brain activity? 

The characterisation of the electroencephalogram (EEG) activity with novel and informative features 

from has attracted substantial research over the last couple of decades. The article by Ibañez-Molina 

et al., (2014) in this issue of Clinical Neurophysiology represents one of the latest steps in this quest. 

Ibañez-Molina et al., (2014) propose an elegant modification of a widespread non-linear signal 

feature – the Lempel-Ziv Complexity (LZC, Lempel and Ziv, 1976) – to consider multiple temporal 

scales related to specific frequencies. The resulting multiscale LZC, hereafter mLZC, is able to 

characterise the EEG signals better by capturing the complexity of both fast and slow rhythms 

(Ibañez-Molina et al., 2014). 

The analysis of EEG activity has long been considered as a powerful tool to inspect brain function 

(Lopes da Silva, 2013; Sanei and Chambers, 2008). Traditionally, the EEG signals have been described 

in terms of frequency bands with different functional connotations (e.g., θ, α, β) (Lopes da Silva, 

2013; Sanei and Chambers, 2008). Thanks to spectral techniques such as the Fourier Transform, it 

has been possible to quantify these rhythms and how they change in different brain conditions 

(Sanei and Chambers, 2008). 

The emergence of the fields of chaos theory and non-linear dynamics opened up the possibility of 

using a completely different type of signal features to characterise the EEG brain activity (Hornero et 

al., 2009; Stam, 2005). Although it soon became clear that claims for “chaos” in the brain activity 

could not be sustained (Stam, 2005), the field of non-linear EEG analysis has since flourished thanks 

to the use of new non-linear metrics to detect, characterise and model non-linear dynamics, rather 

than focusing strictly on finding deterministic chaos (Hornero et al., 2009; Stam, 2005). 

Many of these non-linear features, including the traditional LZC, are based on estimations of 

“complexity” (Costa et al., 2002; Escudero et al., 2006; Stam, 2005). LZC conceptualises complexity 

as the information needed to generate the time series under analysis (Lempel and Ziv, 1976). The 

practical implementation of this idea relies on the binarisation of the signal under analysis. This is 

done by setting a unique threshold (usually according to the median of the time series) along the 

whole signal. Samples higher than the threshold are assigned a binary value of “1”, whereas points 

lower than the threshold are assigned “0”. Then, this binary sequence is scanned from left to right 

and parsed into distinct subsequences. A complexity counter is increased each time a new 

subsequence is encountered (Lempel and Ziv, 1976). The traditional LZC can be applied to any type 

of time series (including short signals), it is easy to compute, and it does depend on input 

parameters (Aboy et al., 2006; Lempel and Ziv, 1976). Because of these advantages, LZC has been 

used in a wide variety of fields. See, for example, Aboy et al., (2006); Fernández et al., (2012); 

Hornero et al., (2009); Jouny and Bergey, (2012); Li et al., (2008). 

However, the same binarisation process that lies at the heart of those advantages of the traditional 

LZC is also responsible for the limitation discussed by Ibañez-Molina et al., (2014). Ideally, the binary 

sequence should reflect the non-linear behaviour of the original signal. However, the binarisation 

may also lead to a relevant loss of information, especially in high frequencies (Ibañez-Molina et al., 
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2014). This is because the amplitude of the neural activity is inversely related to its frequency. Slow 

rhythms have much higher amplitude than faster oscillations (Sanei and Chambers, 2008) and the 

traditional binarisation of LZC will be dominated by slow rhythms, which tend to cause larger 

excursions around the threshold than the faster frequencies. Therefore, the traditional LZC may 

disregard the behaviour of the faster frequencies in the EEG (Ibañez-Molina et al., 2014). 

Overcoming this limitation would enable more insightful evaluations of the non-linear complexity of 

brain activity. Ibañez-Molina et al., (2014) propose to do so by computing several time-varying 

thresholds, each of which is associated with a different temporal scale (and thus, frequency) and 

leads to a different binarisation of the original signal. Then, the rate of appearance of binary 

subsequences is computed for each of the binarised versions of the signal. This yields a “spectrum” 

of complexity values, each of which can be interpreted in relation to an approximate frequency 

rhythm. 

Ibañez-Molina et al., (2014) illustrate the mLZC by means of simple and short, yet informative, 

synthetic signals and the publicly available real EEG recordings described by Andrzejak et al., (2001). 

The traditional LZC failed to reveal any difference between the EEGs acquired with eyes closed and 

open. In contrast, mLZC revealed differences in complexity between eyes closed and eyes open, 

especially for the temporal scales associated with the α rhythm. This suggests  that mLZC is able to 

account for the complexity of time series with fast oscillations masked by slower frequencies with 

higher amplitudes (Ibañez-Molina et al., 2014). 

What is more, mLZC is considering temporal scales, or temporal information, alongside the non-

linear behaviour of the signals. This idea can be traced back to a seminal article by Costa et al., 

(2002) who proposed the so-called multiscale entropy (MSE), which was first applied to EEG signals 

by Escudero et al., (2006). Since then, MSE has provided useful information in different conditions 

(Catarino et al., 2011; Escudero et al., 2006; Heisz and McIntosh, 2013). It must be noted that there 

are important differences between the MSE by Costa et al., (2002) and the mLZC by Ibañez-Molina et 

al., (2014) but both features fit with the current emergence of non-linear metrics able to bridge the 

gap between non-linear properties, and frequency- and correlation-based assessments of brain 

activity (Morabito et al., 2012). 

However, work still needs to be done, as it would be important to characterise the behaviour of the 

non-linear features in terms of other signal parameters to facilitate their interpretation (Aboy et al., 

2006; Escudero et al., 2009) and to clarify the extent to which they can provide complementary 

information to the traditional spectral analyses (Hornero et al., 2009). In the end, this would help us 

confirm if we can extract more information from EEG signal using this type of approaches.  

To sum up, Ibañez-Molina et al., (2014) propose an interesting modification of LZC congruent with 

the trend in the field to bring temporal and spectral information into the evaluation of non-linear 

characteristics of biomedical signals. mLZC does not replace, but extends, the traditional LZC. 

Moreover, mLZC retains the main advantages of the traditional LZC and, therefore, I would expect it 

to achieve similar widespread use in the future. I hope it will help us to increase our knowledge on 

the dynamical characteristics of brain activity as measured by EEG recordings. 
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