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We compute the topological susceptibility for the SU(3) Yang–Mills theory by employing the
expression of the topological charge density operator suggested by Neuberger’s fermions. In the
continuum limit we find r4

0χ = 0.059(3), which corresponds to χ = (191 ± 5MeV)4 if FK is used to
set the scale. Our result supports the Witten–Veneziano explanation for the large mass of the η′.

PACS numbers: 11.15.Ha, 11.30.Rd, 11.10.Gh, 12.38.Gc

I. INTRODUCTION

The topological susceptibility in the pure Yang–Mills
(YM) gauge theory can be formally defined in Euclidean
space-time as

χ =

∫
d4x 〈q(x)q(0)〉 , (1)

where the topological charge density q(x) is given by

q(x) = −
1

32π2
ǫµνρσTr

[
Fµν(x)Fρσ(x)

]
. (2)

Besides its interest within the pure gauge theory, χ plays
a crucial rôle in the QCD-based explanation of the large
mass of the η′ meson proposed by Witten and Veneziano
(WV) a long time ago [1, 2]. The WV mechanism pre-
dicts that at the leading order in Nf/Nc, where Nf and
Nc are the number of flavors and colors respectively, the
contribution due to the anomaly to the mass of the UA(1)
particle is given by [1, 2, 3, 4, 5]

F 2
πm

2
η′

2Nf

= χ , (3)

where Fπ is the corresponding pion decay constant1. No-
tice that Eq. (3) is expected to be exactly satisfied if the
l.h.s. is computed in full QCD and the r.h.s. in the pure
gauge theory, both in the ’t Hooft large-Nc limit [6].

The lattice formulation of gauge theories is at present
the only approach where non-perturbative computations
can be performed with controlled systematic errors. Re-
cent theoretical developments [7, 8, 9, 10] (for a recent
review see [11]) led to the discovery of a fermion opera-
tor [12, 13, 14] that satisfies the Ginsparg–Wilson (GW)
relation [15], and therefore preserves an exact chiral sym-
metry at finite lattice spacing [16]

ψ → γ̂5ψ , ψ̄ → ψ̄γ5 , (4)
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1 In our conventions, the physical pion decay constant is 92 MeV.

where γ̂5 = γ5(1− āD), D is the massless Dirac operator
and ā is proportional to the lattice spacing (see below).
The corresponding Jacobian is non-trivial [16], and the
chiral anomaly is recovered à la Fujikawa [17] with the
topological charge density operator defined as2 [18]:

q(x) = −
ā

2
Tr

[
γ5D(x, x)

]
, (5)

where the trace runs over spin and color indices. These
developments triggered a breakthrough in the under-
standing of the topological properties of the YM vacuum.
They made it possible to find an unambiguous definition
of the topological susceptibility with a finite continuum
limit [4, 19, 20], which is independent of the details of the
lattice definition [20]. If the charge density suggested by
GW fermions Q ≡

∑
x q(x) = n+−n−, with n+ (n−) the

number of zero modes of D with positive (negative) chi-
rality in a given background, is employed, the suggestive
formula

χ = lim
a → 0

V → ∞

〈Q2〉

V
(6)

is recovered, where V is the volume. An immediate con-
sequence is an unambiguous derivation of the WV for-
mula [4] which, thanks to new simulation algorithms [21],
allows for a non-perturbative investigation of the WV
mechanism with controlled systematics.

In the past the topological properties of the pure gauge
theory were investigated with fermionic [22, 23] and
bosonic methods [24, 25, 26, 27, 28, 29, 30, 31, 32].
These results, however, are affected by model-dependent
systematic errors that are not quantifiable, and their in-
terpretation rests on a weak theoretical ground. Several
exploratory computations have already studied the sus-
ceptibility employing the GW definition of the topologi-
cal charge [33, 34, 35, 36, 37, 38, 39, 40].

2 We use the same notation for analogous quantities in the contin-

uum and on the lattice, since they can be clearly distinguished

from the context.
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The aim of this work is to achieve a precise and reli-
able determination of χ in the continuum limit. In order
to reach a robust estimate of the error on the extrapo-
lated value, we supplement the most recent and accurate
results [39, 40] with additional simulations, and we per-
form a detailed analysis of the various sources of system-
atic uncertainties. The result for the adimensional scal-
ing quantity computed on the lattice is r40 χ = 0.059(3),
where r0 is a low-energy reference scale [41]. In physical
units, it corresponds to χ = (191±5 MeV)4 if FK is used
to set the scale. Our result supports the WV explanation
for the large mass of the η′ meson within QCD.

II. LATTICE COMPUTATION

The numerical computation is performed by standard
Monte Carlo techniques. The ensembles of gauge config-
urations are generated with the standard Wilson action
and periodic boundary conditions, using a combination of
heat-bath and over-relaxation updates. More details on
the generation of the gauge configurations can be found
in Refs. [39, 40]. Table I shows the list of simulated lat-
tices, where the bare coupling constant β = 6/g2

0, the
linear size L/a in each direction and the number of inde-
pendent configurations are reported for each lattice.

The topological charge density is defined as in Eq. (5),
with D being the massless Neuberger–Dirac operator:

D =
1

ā

[
1 + γ5sign(H)

]
(7)

H = γ5(aDw − 1 − s) , ā =
a

1 + s
. (8)

Here s is an adjustable parameter in the range |s| < 1,
and Dw denotes the standard Wilson–Dirac operator
(the notational conventions not explained here are as in
Ref. [21]). For a given gauge configuration, the topolog-
ical charge is computed by counting the number of zero
modes of D with the algorithm proposed in Ref. [21]. As
s is varied, D defines a one-parameter family of fermion
discretizations, which correspond to the same continuum
theory but with different discretization errors at finite
lattice spacing. Our analysis includes data sets computed
for s = 0.4 and s = 0.0. Most of the data were taken from
Refs. [40] and [39] for s = 0.4 and s = 0.0 respectively.
The number of configurations were increased, where nec-
essary, in order to achieve homogeneous statistical errors
of the order of 5% for each data point. Some new lat-
tices were added so as to perform careful studies of the
systematic uncertainties which we describe below, before
presenting the physical results.

In order to compute its autocorrelation time, we moni-
tor the topological charge determined with the index ofD
for 500 update cycles (1 heat-bath and 6 over-relaxation
of all link variables) for the lattice A1. The autocorrela-
tion time, τQ, estimated as in Ref. [32], turns out to be
compatible with the one obtained for the same lattice by
defining the topological charge with the cooling technique

lat β L/a r0/a L[fm] Nconf 〈Q2〉 r4
0χ

A1 6.0 12 5.368 1.12 2452 1.633(48) 0.0654(22)

A2 6.1791 16 7.136 1.12 1138 1.589(76) 0.0629(32)

A3 5.8989 10 4.474 1.12 1460 1.737(72) 0.0696(30)

A4 6.0938 14 6.263 1.12 1405 1.535(63) 0.0615(27)

B0 5.8458 12 4.032 1.49 2918 5.61(16) 0.0715(22)

B1 6.0 16 5.368 1.49 1001 5.58(28) 0.0707(37)

B2 6.1366 20 6.693 1.49 963 4.81(24) 0.0604(32)

B3 5.9249 14 4.697 1.49 1284 5.59(24) 0.0708(33)

C0 5.8784 16 4.301 1.86 1109 15.02(72) 0.0784(39)

C1 6.0 20 5.368 1.86 931 12.76(95) 0.0662(50)

D 6.0 14 5.368 1.30 1577 3.01(12) 0.0651(27)

E 5.9 12 4.483 1.34 1349 2.79(12) 0.0543(24)

F 5.95 12 4.917 1.22 1291 1.955(79) 0.0551(24)

G 6.0 12 5.368 1.12 3586 1.489(37) 0.0596(18)

H 6.1 16 6.324 1.26 962 2.45(13) 0.0599(33)

J 6.2 18 7.360 1.22 1721 2.114(76) 0.0591(24)

TABLE I: Simulation parameters and results. For lattices
A1–D and E–J, s = 0.4 and s = 0.0 respectively.

adopted in Ref. [32]. Based on the experience with cool-
ing, where longer Monte Carlo histories can be analyzed,
we estimate τQ for all our lattices; for each run we sep-
arate subsequent measurements by a number of update
cycles 1–2 orders of magnitude larger than the estimated
τQ at the corresponding value of β. Statistical errors are
thus computed assuming that the measurements are sta-
tistically independent.

Besides the statistical errors, the systematic uncer-
tainties stem from finite-volume effects and from the ex-
trapolation needed to reach the continuum limit.

The pure gauge theory has a mass gap, and there-
fore the topological susceptibility approaches the infinite-
volume limit exponentially fast with L. Since the mass
of the lightest glueball is around 1.5 GeV, finite-volume

1 1.2 1.4 1.6 1.8 2

L [fm]

0.05

0.06

0.07

0.08

r 04 χ

FIG. 1: The topological susceptibility, in units of r−4

0
, as a

function of the linear lattice size, in fm, at β = 6.0.
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FIG. 2: Histogram for the distribution of the topological
charge Q from the lattice D.

effects are expected to be far below our statistical errors
as soon as L ≥ 1 fm. In order to further verify that no
sizeable finite-volume effects are present in our data, we
simulated four lattices at β = 6.0 but with different linear
sizes L = 1.12, 1.30, 1.49, 1.86 fm. The results obtained
for χ are shown in Fig. 1, where no dependence on L
is visible, hence confirming that finite-volume effects are
below our statistical errors. In the large-volume regime
the probability distribution of the topological charge is
expected to be a Gaussian of the form [40]

PQ =
1√

2π〈Q2〉
e
−

Q2

2〈Q2〉 . (9)

We have checked that this formula describes all our data
samples very well; for the lattice D, the results are shown
in Fig. 2. Much higher statistics are required in order
to highlight the deviations from a Gaussian distribution;
higher momenta of the topological charge distribution
measured on our data are all compatible with zero within
large statistical errors.

As pointed out in the introduction, the topological sus-
ceptibility defined from the index of the Neuberger oper-
ator is not plagued by power divergences and does not re-
quire multiplicative renormalization. This is a distinctive
feature of this approach, which is at variance with what
happens for other definitions used in the past to compute
χ. At finite lattice spacing, χ is affected by discretization
effects starting at O(a2), which are not universal, and, in
our case, depend on the value of s chosen to define the
Neuberger operator. In order to compare results at dif-
ferent lattice spacings, and to extrapolate them to the
continuum limit, we adopt r0 as the reference scale; this
choice is motivated by its precise determination in the
range of β explored in this work [41]. The values of the
adimensional quantity r40χ that we obtain are reported
in Table I. Data, displayed in Fig. 3 as a function of

0 0.02 0.04 0.06 0.08

(a/r0)
2

0.04
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0.07
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0.09

r 04 χ

FIG. 3: Continuum extrapolation of the adimensional prod-
uct r4

0χ. The s = 0.0 and s = 0.4 data sets are represented
by black circles and white squares respectively. The dashed
lines represent the results of the combined fit described in the
text. The filled diamond at a = 0 is the extrapolated value
in the continuum limit.

a2/r20, show sizeable O(a2) effects for both the s = 0.4
and s = 0.0 samples. For β ≤ 6.0, the difference be-
tween the two discretizations is statistically significant.
Within our statistical errors, and in the range where our
simulations are performed, our results suggest a linear
dependence in a2. For the s = 0.4 sample, the value of
χ2 per degree of freedom, χ2

dof , clearly disfavors a con-
stant behavior, while a linear fit of the form

r40χ(s) = c0 + c1(s)
( a

r0

)2

(10)

yields a value of c0 = 0.056(3) with χ2
dof ≈ 0.79. The

quadratic fit in a2/r20 yields an extrapolated value com-
patible with that of the linear one, but with an error
three times larger, and the coefficient of the quadratic
term compatible with zero. For the s = 0.0 sample, all
three fits give good values of χ2

dof , and for the linear one
we obtain c0 = 0.064(4) with χ2

dof ≈ 0.68, which is com-
patible with the outcome of the same fit for s = 0.4.
The agreement between the two extrapolations indicates
that we reached the scaling regime. This is confirmed by
the compatibility of the results in the two data sets for
β > 6.0. A robust estimate of χ in the continuum limit
can thus be obtained by performing a combined linear
fit of the data. This fit gives a very good value of χ2

dof

when all sets are included, and is very stable if some
points at larger values of a2/r20 are removed. In partic-
ular a combined fit of all points with a2/r20 < 0.05 gives
c0 = 0.059(3) with χ2

dof ≈ 0.73, and the error is expected
to be Gaussian.
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III. PHYSICAL RESULTS

From the previous analysis, our best result for the
topological susceptibility is the one obtained from a com-
bined fit of the two sets of data with a2/r20 < 0.05:

r40χ = 0.059± 0.003 , (11)

which is the main result of this work. Since r0 is not
directly accessible to experiments, we express our result
in physical units by using the lattice determination of
r0FK = 0.4146(94) in the pure gauge theory with va-
lence quarks [42] and, taking FK = 160(2) MeV as an
experimental input, we obtain

χ = (191 ± 5 MeV)4 , (12)

which has to be compared with [2]

F 2
π

6

(
m2

η +m2
η′ − 2m2

K

)∣∣∣
exp

≃ (180 MeV)4 . (13)

Notice that, since Eq. (3) is valid only at the leading order
in a Nf/Nc expansion, the ambiguity in the conversion

to physical units in the pure gauge theory is of the same
order as the neglected terms.

Our result supports the fact that the bulk of the mass
of the pseudoscalar singlet meson is generated by the
anomaly through the Witten–Veneziano mechanism.
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