Alcohol: another risk factor for diabetic retinopathy?

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
British medical journal (Clinical research ed.)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Alcohol: another risk factor for diabetic retinopathy?

R J YOUNG, D K McCULLOCH, R J PRESCOTT, B F CLARKE

Abstract
In a five year prospective study clinical features associated with the development and progress of retinopathy were sought in 296 randomly selected diabetic men aged 20-59. None had ophthalmoscopically detectable retinopathy initially, but during follow up 66 developed the condition (47 background, 10 exudative, 9 proliferative). Linear logistic analyses (two tailed tests) showed that the initial features independently predictive of retinopathy were duration of diabetes, poor glycaemic control, impotence, and—unexpectedly—heavy alcohol consumption. Poor glycaemic control in the interim and proteinuria at review were also associated with the development of retinopathy. No relation was found with smoking or obesity. Glycaemic control and alcohol consumption were therefore the only aetologically relevant associations identified. The development of severe retinopathy (exudative and proliferative) showed a particular association with heavy alcohol consumption, occurring in nine of the 70 heavy drinkers (13%) compared with 10 (4.4%) of the rest.

Alcohol consumption may be an important independent factor associated predictively with sight threatening diabetic retinopathy.

Introduction
Diabetic retinopathy remains a major cause of blindness. Various factors have been suggested as associated with retinopathy in cross sectional studies. A relation between duration of diabetes and the development of retinopathy has long been recognised, and mean clinic blood glucose concentrations are reported to be higher, particularly in severe retinopathy. Published data related to other factors such as cigarette smoking, obesity, blood pressure, and genetic susceptibility have produced conflicting conclusions well summarised by Dornan et al.

Only two studies have examined prospectively clinical features predictive of retinopathy. Pirart confirmed the effect of duration of diabetes and substantiated the importance of glycaemic control, but a vast drop out rate limited the value of his study. In Pima Indians, who have a high prevalence of type II (non-insulin-dependent) diabetes, severity of disease, a raised plasma glucose concentration, proteinuria, neuropathy, and systolic blood pressure all had some predictive value.

Much therefore remains uncertain about the factors responsible for the remarkable differences commonly observed between individual diabetics with respect to both the presence and severity of retinopathy. A prospective study of diabetic impotence in a large number of diabetic men allowed us also to consider clinical features which might be predictive of diabetic retinopathy.

Patients and methods
At the outset 541 men aged 20-59 years were studied; 101 had been selected at random from the total male clinic population of the same age range and it was shown that the study group was fully representative of the male diabetic clinic population. During the period of follow up 36 patients left the area and a further 22 became untraceable. In addition, six patients refused interview and 11 were unsuitable (five severe psychiatric illness, three severe cerebrovascular disease, one traumatic brain damage, two not diabetic). Of the remaining 466 men, 63 had died leaving 403 who were re-examined. The mean interval between the first and second study examinations was 4 years 8 months (range 3 years 8 months to 6 years 2 months). The same detailed questionnaire was completed at the initial and follow up visits. Age, body weight, duration of diabetes, form of treatment, other drug treatment, smoking (cigarettes a day), and alcohol intake (measures a week) were recorded. In the analysis alcohol intake was divided simply into none to moderate (<10 pints (5.7 l) of beer or equivalent a week) and heavy (>10 pints of beer or equivalent a week). Direct inquiry elicited past medical history, symptoms of ischaemic heart disease, peripheral vascular disease, sexual function, and diabetic peripheral and autonomic neuropathy. Initially the six most recent clinic blood glucose values were averaged as an index of
glycaemic control, and at review all of the values obtained during the intervening period were averaged. Retinopathy was assessed by direct ophthalmoscopy of both fundi through dilated pupils in a dark cubicle; findings were recorded as normal (grade 1), microaneurysms with or without dot haemorrhages (grade 2), soft or hard exudates (grade 3), and neovascularisation (grade 4). Proteinuria (Albustix) was recorded as 0, ±, +, ++, or +++.

Statistical analysis was principally by the application of linear logistic models. For binary responses (for example, retinopathy/no retinopathy) these models are the equivalent of the more familiar multiple regression models, which can be used only for continuous response variables (for example, weight). Thus the linear logistic model allows the simultaneous assessment of the possible influence of several interrelated variables on the development of retinopathy. Two tailed likelihood ratio tests were employed to determine the significance of individual terms. The analysis had two stages. In the first stage only variables relating to the initial examination were included in the model. In the second stage the significant variables from the first stage were retained in the model and the additional effect of variables relating to the follow up period were assessed.

### Table II—Development of retinopathy over 5 years (mean 4 years 8 months; range 3 years 8 months to 6 years 2 months) in 296 diabetic men originally free of retinopathy; significantly associated features. (Percentages given in parentheses)

<table>
<thead>
<tr>
<th>Grade of retinopathy at review</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>Total: all groups</th>
<th>Significance*</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Initial features</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration of diabetes (years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;4</td>
<td>137 (91)</td>
<td>9 (6)</td>
<td>2 (1)</td>
<td>3 (2)</td>
<td>151</td>
<td>p &lt; 0.0001</td>
</tr>
<tr>
<td>5-9</td>
<td>59 (71)</td>
<td>14 (17)</td>
<td>5 (6)</td>
<td>5 (6)</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>&gt;10</td>
<td>34 (55)</td>
<td>24 (39)</td>
<td>3 (5)</td>
<td>1 (2)</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Glycaemic control (mmol/l)†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;9</td>
<td>107 (87)</td>
<td>12 (10)</td>
<td>3 (3)</td>
<td>0</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>9-14</td>
<td>88 (73)</td>
<td>21 (17)</td>
<td>6 (5)</td>
<td>6 (5)</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>&gt;14</td>
<td>41 (69)</td>
<td>14 (24)</td>
<td>1 (2)</td>
<td>3 (5)</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Sexual function</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Potent</td>
<td>185 (83)</td>
<td>28 (13)</td>
<td>7 (3)</td>
<td>3 (1)</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>Impotent</td>
<td>45 (62)</td>
<td>19 (26)</td>
<td>3 (4)</td>
<td>6 (8)</td>
<td>73</td>
<td></td>
</tr>
<tr>
<td>Alcohol intake (measures/week)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤10</td>
<td>181 (90)</td>
<td>35 (15)</td>
<td>5 (2)</td>
<td>5 (2)</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td>&gt;10</td>
<td>49 (70)</td>
<td>12 (17)</td>
<td>5 (7)</td>
<td>4 (6)</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td><strong>Features at review</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glycaemic control (mmol/l)†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>&lt;9</td>
<td>61 (87)</td>
<td>5 (7)</td>
<td>3 (4)</td>
<td>1 (1)</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>9-14</td>
<td>127 (80)</td>
<td>21 (13)</td>
<td>5 (3)</td>
<td>2 (1)</td>
<td>159</td>
<td></td>
</tr>
<tr>
<td>&gt;14</td>
<td>25 (57)</td>
<td>14 (32)</td>
<td>2 (5)</td>
<td>3 (7)</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Proteinuria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nil or intermittent</td>
<td>224 (81)</td>
<td>41 (15)</td>
<td>6 (2)</td>
<td>5 (2)</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td>Persistent</td>
<td>6 (30)</td>
<td>6 (30)</td>
<td>4 (20)</td>
<td>4 (20)</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

*Based on likelihood ratio tests from linear logistic model.
†Values are means of clinic blood glucose concentrations as detailed in text; 24 records missing at review.
Conversion: SI to traditional units—Glucose: $1 \text{mmol/l} = 18 \text{mg/100 ml}$.

Results

Table I shows the fundoscopic findings initially and at review in the 403 men who were followed up. Initially no retinopathy was seen in 296, of whom 66 subsequently developed retinal changes. Table II lists the features significantly associated with the development of retinopathy in this group. From the logistic model the estimated relative risk of developing retinopathy of any grade in "heavy" compared with "none to moderate" drinkers was 2.25 with 95% confidence limits of 1.15 to 4.42. Table II also suggests that heavy drinkers were more likely to develop severe retinopathy. This was confirmed when the data were analysed to extract features associated with progression of retinopathy from grade 1 to grade 3 or 4 during the review period. The only significant features then were original alcohol intake (p = 0.02), original impotence (p = 0.03), and proteinuria at review (p < 0.001). The estimated relative risk for heavy drinkers of developing severe retinopathy was 3.5 but the 95% confidence limits were wide (1.2 to 8.4) owing to small numbers.

No other features appeared in the fitted logistic model and, in particular, the other potentially causal factors—smoking and body mass index—did not show any evidence of association with retinopathy even when considered separately.

Discussion

The prevalence of diabetic retinopathy is about 80% after 25 years of diabetes in otherwise unselected diabetics, but only a small proportion (rovuly 15%) will have developed proliferative retinopathy or maculopathy. In clinical practice it is noticeable that in apparently similar patients retinopathy develops to greatly varying degrees. Thus, although sight threatening retinopathy will usually not develop unless there is hyperglycaemia of substantial duration, glycaemic control and duration of diabetes often seem insufficient in themselves to account for the variations observed. Numerous studies have therefore sought aetiopathogenic factors other than glycaemic control, including genetic susceptibility, body mass index, blood pressure, and smoking, for all of which the evidence is conflicting. We have investigated the influence of some of these factors and additionally, for the first time, the effect of alcohol.

Before discussing the results further it is important to consider the following. Unlike cross sectional studies, prospective studies such as ours may identify predictive as well as co-existent features with respect to a dependent variable such as retinopathy. They cannot, however, determine whether such associations are causal. Nevertheless, based on what we know about the disease the statistically significant and non-significant features in the analysis may be divided into those such as glycaemic control and alcohol consumption which might have an aetiological role in retinopathy and those such as impotence and proteinuria which are probably just other manifestations of generalised microangiopathy. It is the former with which this study was concerned particularly, and the statistical analysis ensured that inclusion of the latter in the model did not obscure or create any significant associations with the former. Finally, almost all prospective studies have the inevitable shortcoming that follow up is incomplete. In our series 14% of the original cohort were "lost" and 12% died. We have no evidence that those who moved away or became untraceable differed ap-
precisely from the group reviewed. With respect to death it might be argued that risk factors for retinopathy may be obscured if they also increase the risk of early death. Features at the outset significantly associated with death during the review period were proteinuria, previous myocardial infarction, symptomatic autonomic neuropathy, and retinopathy.21 There was therefore an underrepresentation of initially retinopathy free men among JS whose role of role of retinopathy was among those therefore symptomatic autonomic retinopathy, diabetes Care 1980:3:250-2.


(Accepted 31 January 1984)

References


