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Learning, Generalization, and Scalability
of Abstract Myoelectric Control

Matthew Dyson, Sigrid Dupan, Hannah Jones, and Kianoush Nazarpour , Senior Member, IEEE

Abstract— Motor learning-based methods offer an alter-
native paradigm to machine learning-based methods for
controlling upper-limb prosthetics. Within this paradigm,
the patterns of muscular activity used for control can differ
from those which control biological limbs. Practice expe-
dites the learning of these new, functional patterns of mus-
cular activity. We envisage that these methods can result
in enhanced control without increasing device complexity.
However, key questions about training protocols, gener-
alisation and scalability of motor learning-based methods
have remained. In this work, we pursue three objectives:
1) to validate the motor learning-based abstract myoelectric
control approach with people with upper-limb difference
for the first time; 2) to test whether, after training, partic-
ipants can generalize their learning to tasks of increased
difficulty; and 3) to show that abstract myoelectric control
scales with additional input signals, offering a larger control
range. In three experiments, 25 limb-intact participants and
8 people with a limb difference (congenital and acquired)
experienced a motor learning-based myoelectric controlled
interface. We show that participants with upper-limb dif-
ference can learn to control the interface and that per-
formance increases with experience. Across experiments,
participant performance on easier lower target density tasks
generalized to more difficult higher target density tasks.
A proof-of-concept study demonstrates that learning-based
control scales with additional myoelectric channels. Our
results show that human motor learning-based approaches
can enhance the number of distinct outputs from the
musculature, thereby increasing the functionality of pros-
thetic hands and providing a viable alternative to machine
learning.

Index Terms— Abstract decoding, myoelectric control.

I. INTRODUCTION

THE most common method of controlling active hand
prostheses is myoelectric control; use of the electromyo-

gram (EMG) signals to estimate user intent [1]. Non-invasive
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EMG control has a number of attractive properties. For exam-
ple, the EMG signal can be adapted to provide proportional
control, the physical effort required resembles that of existing
limbs, and the sensors systems are compact [2].

For users with trans-radial (below-elbow) limb difference,
the “dual-site” control approach is commonly used. It pro-
vides bidirectional control of one degree of freedom (DoF)
based on the EMG signals from a residual muscle pair.
However, the functionality of the approach is limited due
to the sequential nature of the control [3]. Targeted muscle
reinnervation (TMR) provides a method whereby the number
of independent muscle pairs for control may be increased,
enabling the control of more DoF [4]. The current alternative
to conventional prosthesis control is pattern recognition [5].

Pattern recognition prosthesis control typically aims to
decode motor commands such that an intended movement
maps to its prosthetic substitute. When using surface EMG,
the intentions to be detected are usually limited to com-
monly used grasps [6], [7]. During calibration, said systems
require EMG data representative of each grasp to train a
classifier, which then categorizes new samples during actual
use. Literature suggests that when a classifier is trained for
each desired output, pattern recognition provides a viable
method of prosthesis control [8]. This approach has recently
reached the market [9], [10]. The core challenges which
limit the robustness of pattern recognition control relate to
ensuring training data adequately characterizes real world
data [11].

Learning-based methods, which rely upon closed-loop feed-
back to adapt muscle behavior, have generated significant
interest as a potential alternative approach for myoelectric
prosthesis control [12]–[18]. Insight into the clinical readiness
of such an approach has recently been provided [19]. A com-
mon component linking many of these methods is the presen-
tation of muscle activity as feedback in a non-representational
multidimensional space, such as a centre-out task, within
which users must learn to control their muscle activity. The
driving hypothesis is that once the skill is acquired in the
non-representational space, arbitrary mappings may be made
to functional outputs, such as proportional control of prosthetic
digits [13] or selection of hand postures [17]. Because these
methods are characteristically non-biomimetic, we refer to the
approach as “abstract decoding” [18].

Presenting continuous feedback of muscle activity in a
multidimensional space allows the motor system to generate
an inverse map [20]. Inverse maps link motor output to
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arbitrary control variables and multiple maps can be formed
for different task spaces [21], [22]. Inverse maps allow gen-
eralization to untrained locations in the task space, making
them distinct from associative learning which only allows
retention of trained activity [20], [23]. Within a task space,
errors in direction and gain are processed separately [24] and
newly learned inverse maps can be adapted to compensate
for spatial alterations [25]. When scaling errors generalize,
gain adaptation of feed-forward control is rapid [24]. For
clarity, we refer to this as within-task generalization to avoid
confusion with between-task generalization, in which practice
transfers to distinct activities [26].

In this paper, we present results from three complemen-
tary myoelectric control experiments. The first investigates
how training influences performance and skill transfer. This
experiment is intended to validate that our myoelectric control
protocol generates inverse maps, rather than being based on
associative learning [20], [23]. Validation is necessary because
the underlying theory is based on studies of physical move-
ment [20], [24], [25] and has not been explicitly addressed in
the EMG domain [12]–[18]. The second experiment shows,
for the first time, that participants with upper-limb difference
can learn to operate the myoelectric interface with an abstract
controller. This study extends results previously published in
limb-intact participants [18], [27] under two control condi-
tions: 1) direct, untransformed EMG signals and 2) spatially-
weighted EMGs. The third study demonstrates that learning
based control scales with additional EMG channels and
can replicate results associated with state-of-the-art machine
learning-based methods, without computational complexity.

II. METHODS

A. Ethics

All participants gave informed written consent. Approval
was granted by the local ethics committee at Newcastle Uni-
versity (Ref: 17-NAZ-056) and by Health Research Authority,
UK (Ref: 16/SW/0347).

B. General Setup

Each of the experiments presented are very similar in
nature. In all experiments, participants control a circular cursor
on a computer screen with their muscle activity, that is a
biofeedback setting. To avoid repetition, general properties
shared across more than one experiment are outlined here.

1) Estimation of Muscle Activity: All muscle activity was
smoothed using a mean absolute value (MAV) filter calculated
over the preceding 750 ms window of the EMG signal. This
window size has been found to balance the task requirements
of responsive effector movement with sufficient stability dur-
ing constant muscle contraction [13], [18]. Muscle activity
used to control the cursor was updated at a variable rate,
which exceeded and was asynchronous to the refresh rate of
the display. At each task update step an acquisition thread
was polled and any new samples available were added to the
EMG window. This approach was used to ensure changes in
EMG activation were reflected in cursor activity in the shortest

possible time frame. In the following sections y refers to
estimated muscle activity.

2) Calibration: A calibration routine was performed before
each experiment. The primary purpose of calibration was
to normalize muscle activation estimates. Operators observed
EMG activity while participants performed muscle contrac-
tions. Contractions corresponded to wrist flexion and exten-
sion in limb-intact participants. In limb-deficient participants
contractions corresponded to flexion and extension of the
phantom wrist when appropriate. In other cases, pairs of
muscles were selected based on independence of control.
Participants were instructed to restrict muscle activity to that
which could be maintained easily and repeated without risk
of fatigue. In previous studies these prompts have produced
EMG activity ranging between 10% to 20% of the maximum
voluntary contraction [16], [27], [28]. Such a low muscle
contraction level limits the signal-dependent noise [29] in the
EMG signals, allowing for smoother control.

Data representative of baseline rest, yr , and comfortable
contraction, yc were obtained for each EMG control channel.
A vertical bar was presented to the participant. The height
of the vertical bar corresponded to the real-time normalized
muscle activation level, ŷ = (y − yr )/(yc − yr ). Participants
were instructed to briefly maintain the vertical bar at a fixed
position for each muscle in order to ensure relative indepen-
dence of activity. The normalized muscle activation level, ŷ,
was used during experiments.

C. General Protocol

Experiment 1 and 2 used the myoelectric-controlled inter-
face (MCI) described in [27]. The same protocol is briefly
described here for completeness. For discussion of how the
MCI relates to prosthesis control, please see our previous
work.

Participants operated the MCI by performing isometric
muscle contractions. Activity estimated from the contraction
of two independent muscles determined the position of a 2-D
circular cursor, as indicated in Fig. 1a. We use independent
muscles to refer to any muscle pair which can be contracted in
relative isolation to one another. Figure 1a shows a four target
interface. The grey dashed line in Fig. 1a indicates where
four targets would be subdivided to produce an eight target
interface. In experiment 1, in addition to four and eight targets,
in two runs, twelve targets were required. To achieve that, each
of the four original targets were split into three zones along
its length, making a 3-by-4 matrix of targets.

All muscle activity was normalized such that estimation,
ŷ = 1, would bring the cursor to the top limit of the interface
on the corresponding dimension. All trials commenced with
the presentation of the cursor and the basket area at the origin
of the interface which delimits little to no muscle activity.
Participants had to be relaxed, such that the cursor remained
within the basket, for the trial to commence. A target was
presented when the trial started. A sample cursor trajectory
from the basket to a target is shown in Fig. 1b.

Each trial was 1.5 seconds long and composed of two
750 ms segments - the move period and the hold period. The
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Fig. 1. Interfaces and trial timing protocols. (a) The standard 2-dimensional myoelectric interface control space. Participants used co-contraction of
a muscle pair to move the cursor to targets. In Experiment 2, spatially-weighted muscle activity controlled the cursor position within the two axes. The
grey dashed line indicates where four targets would be subdivided to produce an eight target interface. The same approach was adopted to create
twelve targets. (b) A representative cursor trajectory in the task space. Thin and thick traces show trajectories during movement and hold periods
respectively. Green indicates where cursor is in contact with or within the target to score ∼70%. (c) The 4-channel interface used in Experiment 3 as
a proof of concept. Cursor position on each axis was determined by the relative output of each muscle. ECR denotes extensor carpi radialis, FCU
flexor carpi ulnaris, FCR flexor carpi radialis and APL abductor pollicis longus.

move period allowed time for reacting to presentation of the
target and moving the cursor to the target. Participants were
informed of the trial breakdown and were instructed to attempt
to maximize their score by keeping the cursor within the target
during the hold period. Trial score was calculated based on
the amount of time the cursor spent within, or in contact with,
the target during the hold period. The trial score was presented
to the participant after each trial.

D. Analyses

In all experiments the primary metric used to define per-
formance was trial score, as presented to the participant after
each trial. Hit score refers to the percentage of trials in which
the target was reached.

Performance in the larger participant population tended to
be normally distributed, however at individual run level some
data appeared multimodal. Normality of distributions was not
assumed in the smaller amputee population. For consistency
all comparisons were made using non-parametric statistical
methods.

E. Experiment 1: Influence of Training Protocol

Experiment 1 was performed in order to ensure that the
use of a structured training protocol, in which the number of
targets increased progressively, produced the same results as
a training protocol with higher accuracy demands from the
onset.

Participants: Twenty-four limb-intact participants took part
in this experiment (19 male and 5 female; age 22.17 ± 2.68).
All were able-bodied and right–handed with no neurological
disorders. Data from one participant was discarded due to lack
of engagement. A replacement participant was recruited.

Recordings: Participants were seated in an experimental
chair with their right hand in a pronated open position within
a glove. The palm and fingers of the glove were adhered
to a horizontal board attached to the armrest of the chair.
A strap was placed over the lower wrist to restrain participants
from lifting the forearm. The position of the board on which
the glove was mounted was adjustable to ensure comfortable
support for each participant’s arm and hand.

Surface EMG signals were recorded from two forearm
muscles: flexor carpi radialis (FCR) and extensor carpi radialis
(ECR). Measurements were made using disposable snap elec-
trodes (Bio-logic®, Natus Medical Inc., USA). Signals were
amplified with a 5k gain (D360, Digitimer, UK), band-pass
filtered (30 Hz–1 kHz) and sampled at 5 kHz (NI USB-
6212 BNC, National Instruments, USA). The computations
necessary to realize the experiment were performed on a desk-
top computer (3.2 GHz i5-3470 CPU, 8 GB RAM, Viglen Ltd,
UK). Visual feedback was presented on a 17” LCD flat panel
display (Belinea 101727, Germany) positioned approximately
1m in front of the participant.

Data were visually inspected for artefacts. Trials containing
significant electrical noise, movement artefacts or any other
traces which appeared to be non-physiological, were rejected.
Mean artefact rejection rate across participants was 0.06% with
a standard deviation of 0.14%.

Protocol: All participants initially completed a short run
using a 12-target interface to assess baseline performance,
as shown in Fig. 2b. Twelve targets were presented without
repetition. The median score achieved over the 12 targets
was used as the participants’ baseline performance. After
completing the run, each participant was assigned to one of
two groups. Assignment was based on a moving average of the
groups, i.e. participants were assigned such that the difference
in mean baseline performance between the groups, at the
time of test, was minimized, as shown in Fig. 2a. To create
a reference for the moving average, participants 1-4 were
assigned to the 8-8 group, while participants 5-8 were assigned
to 4-8 group. Participants assigned to group one became
the 8-8 group, those assigned to group two became the
4-8 group.

Participants operated the MCI over eight runs. Each run
comprised 80 trials. The 8-8 group performed 8-target tri-
als in all eight runs. The 4-8 group performed 4 runs of
4-target trials, followed by 4 runs of 8-target trials. A final
run was used to test the generalization of the two training
protocols. This run consisted of 72 trials using a 12-target
interface. Figure 2b shows the number of targets presented in
each of the ten experimental runs for both the 8-8 and the
4-8 group.
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Fig. 2. Protocol information for Experiment 1. (a) Participant assignment
to experimental group based on baseline performance and resulting
group average baselines. Participants 1 to 4 were assigned to the
8-8 group, and participants 5 to 8 to the 4-8 group. Subsequent par-
ticipants were assigned such that the difference in the moving average
between the two groups was minimized. (b) Run number and target trial
types for each experimental group. All participants perform a 12 target
baseline performance run. Participants are assigned to the 8-8 group or
4-8 group, experiencing associated target types. All participants perform
a 12 target assessment of generalization run.

F. Experiment 2: Validation With People With
Upper-Limb Difference

In Experiment 2, participants learned to use the MCI using
the training approach validated in Experiment 1. Participants
controlled the MCI under two conditions: using two untrans-
formed EMG signals and using spatial weighting of multiple
EMGs. Use of two untransformed signals is of compara-
ble technical complexity to the current clinical standard for
upper-limb myoelectric control. Spatial weighting of EMG can
detect ensemble activities, sometimes termed muscle syner-
gies, and is closer to the standard used in pattern recognition
systems.

Participants: Eight participants took part in this experi-
ment. Six participants had trans-radial limb deficiency and
two participants had trans-humeral limb deficiency. Both the
trans-radial and trans-humeral groups were equally balanced
between congenital and acquired cases. One trans-radial partic-
ipant had a left limb deficiency, all remaining participants had
right limb deficiencies. Two of the trans-radial participants use
myoelectric prosthesis (Bebionic hand) proficiently, with the
dual-site controller. Further participants details can be found
in Table I.

Recordings: Participants sat in a lever operated office chair
with optional arm support and were free to move their residual
limb during experiments. Visual feedback of the task was
provided by a 24” LED flat panel display (Hanns.G, Taipei,
Taiwan), placed approximately 1m in front of the participant.

TABLE I
EXPERIMENT 2: PARTICIPANT INFORMATION DETAILS. TABLE SHOWS

PARTICIPANT GENDER (M: MALE, F: FEMALE) AND AGE; TYPE

(TR: TRANS-RADIAL, TH: TRANS-HUMERAL), CAUSE AND SIDE

OF LIMB-LOSS (L: LEFT, R RIGHT); NUMBER OF YEARS WITH

LIMB DIFFERENCE AND ANY PROSTHESIS USE

Surface EMG signals were recorded using a Trigno Wire-
less EMG System and Trigno Acc parallel-bar EMG sensors
(Delsys Inc. Natick, MA, USA).

In general, eight sensors were placed on the residual limb.
In the case of one participant for whom eight sensors could not
be accommodated on the residual limb, only four sensors were
used. In cases where independent muscles could be manually
distinguished in the residual limb, sensors were placed over
the belly of the muscle. Where biological landmarks could be
used to distinguish FCR and ECR in trans-radial participants,
the muscle pair was selected. When FCR and or ECR could not
be ascertained with certainty, independent muscles were first
identified using manual handling and confirmed by inspection
of raw EMG traces. After placing sensors over a minimum of
two discernible independent muscles, the remaining sensors
were spatially distributed around the residual limb. Signals
were acquired at 2000 Hz and band-pass filtered between
20 Hz and 450 Hz. All subsequent computation necessary to
realize the experiment were performed on a laptop computer
(2.3 GHz i5-6200U CPU, 8 GB RAM, Lenovo, China).

Estimation of muscle activity: In addition to single channel
data, muscle activity was estimated using spatial filters based
on multiple sensors. Spatial weighting was performed using
principal components analysis (PCA). Data for generating
PCA weights were obtained during the calibration routine.

Calibration: When calibrating for EMG based control, two
channels were selected based on participants’ ability to inde-
pendently control the available candidates. Calibration then
followed the general routine described in the methods section.
When calibrating for PCA based control, multi-channel data
representative of the muscle activity required for cursor control
were initially acquired. When FCR and ECR had been found
using biological landmarks muscle activity would map to
flexion and extension of the phantom wrist. In other cases,
muscle activity appropriate for producing those contractions
identified by manual handling and inspection of EMG traces
were used. During data acquisition both participants and
operators observed multi-channel EMG traces (time-series) in
order to ensure the muscle contractions performed produced
distinct activity in the sensor space. PCA weights were cal-
culated using said multi-channel data. After calculation of
PCA weights, calibration followed the routine used for EMG
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TABLE II
EXPERIMENT 2: RECORDED RUNS FOR EACH PARTICIPANT. EMG

REFERS TO USE OF TWO EMG CHANNELS FOR CURSOR

CONTROL. PCA REFERS TO USE OF SPATIALLY WEIGHTED

EMG CHANNELS FOR CURSOR CONTROL, WITH WEIGHTS

OBTAINED USING PRINCIPAL COMPONENT ANALYSIS.
4 TARGET AND 8 TARGET INDICATE THE TARGET

DENSITY OF THE INTERFACE

based control; with two principal components being selected
based on participants’ ability to independently control the
candidates available. In the PCA-based control, activity from
two principal components, representing the weighted activity
of eight sensors, determined the cursor position.

Protocol: All participants began using a 4-target interface.
The number of runs performed using a 4-target interface
was dependent on individual participant’s ability, however
all participants performed a minimum of four runs. When
both operators and participants were satisfied that participants
were ready, participants progressed to an 8-target interface,
as shown in Fig. 1a. Both 4-target and 8-target runs comprised
48 trials. Due to the challenging nature of the protocol,
progression was based on mutual decision rather than a fixed
performance metric to ensure engagement and to minimize
the risk of fatigue. Two muscle activation estimation methods
were compared - use of individual surface EMG sensors
and spatially-filtered EMG using PCA. Due to variability in
participant performance and task progression being based on
demonstrated ability, it was not feasible to systematically bal-
ance exposure to the EMG and PCA based control conditions.
Participants performed the task at variable rates and over a
differing number of days. All participants who used PCA
based control also used EMG control on the same day in at
least one session. Full details of the number of runs recorded
for each participant are listed in Table II.

G. Experiment 3: Scalability

In Experiment 3, we increased the number of control sites
and expanded the interface. We refer to these expansions as
scalability because we aim to demonstrate how, after extensive
practice, the performance patterns observed in participants
using a simple interface hold when task and control complexity
is scaled up.

Participants: As a proof of concept, one limb-intact right
handed participant took part in this experiment. This partici-
pant was proficient in abstract myoelectric control.

Recordings: Surface EMG signals were acquired using a
Trigno Wireless EMG System and Trigno IM parallel-bar
EMG sensors. Four sensors were placed on the right forearm

targeting, extensor carpi radialis (ECR), flexor carpi radialis
(FCR), abductor pollicis longus (APL) and flexor carpi ulnaris
(FCU). The experiment was performed on a laptop computer
(2.1 GHz i7-4600U CPU, 8 GB RAM, Lenovo, China). All
other aspects of data acquisition followed those detailed for
Experiment 2.

Calibration: Calibration followed the standard routine
extended to four channels. Care was taken to ensure muscle
contractions could be performed to activate each muscle
independently.

Protocol: The interface used in Experiment 3 expanded
upon that already presented by including the remaining three
quadrants necessary to create a generic centre-out task space.
Muscles were mapped to the interface space in a manner
which was intuitive for a hand held in a pronated position.
Muscles ECR and FCR acted as an antagonistic pair mapped
to up and down respectively. APL and FCU performed the
same role for cursor movement to the left and right. This
design was inspired by the task in [30]. As in the previous
interface normalized muscle activity, ŷ ≈ 1, would move the
cursor to the limit of the interface on a given dimension.
Cursor control was implemented as simply as possible. With
an interface space mapped from -1 to 1 on both dimensions,
vertical cursor position was determined by ŷEC R − ŷFC R and
horizontal position by ŷFCU − ŷAP L . For clarity, an interface
with 16 targets is shown in Fig 1c. Sections can be merged or
further sub-divided to change the density of the targets.

The participant started using a centre-out 8-target interface.
A minimum of four runs were performed before the option
was given to progress onto the next size of target interface.
Interfaces with 8, 16 and 24 targets were tested. All runs were
performed over four sessions. The first two sessions and the
final two sessions were separated by five months.

III. RESULTS

Results are presented in two areas of learning and general-
ization, which share common ground between the first two
experiments, namely, 1) the influence of training paradigm
and learning over runs; and 2) generalization of ability with
increasing target density. Our final experiment demonstrates
that both learning over runs and generalization of ability are
applicable as the number of EMG control sites and target
density increase. This serves as support for the scalability of
the abstract decoding method.

A. Learning

Limb-intact participants controlled a myoelectric inter-
face in Experiment 1. After an initial baseline testing with
a myoelectric interface of 12-targets, they were assigned
to one of two conditions: 1) 4-8, in which they oper-
ated a 4-target interface first and then moved to an
8-target interface in the later runs; and 2) 8-8, in which
they only experienced an 8-target interface. Both groups
performed a short run of 12-targets at the end. In Experiment 2,
limb-deficient participants operated the interface with two of
the eight EMG signals recorded from their remnant limb;
or with two principal components of their muscle activity,
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Fig. 3. Effect of learning over runs in terms of trial scores. (a) Exper-
iment 1: mean and standard error of mean for participants over runs
two to nine in the 8-8 group and the 4-8 group. (b) Experiment 1: box
plots showing participant performance in run 1, the baseline assessment,
and run 10, the generalization assessment, for the 8-8 group and the
4-8 group. (c) Experiment 2: median and individual participant results
for 4-target EMG control and 8-target PCA based control, runs shown
relative to final run using the same axes for trial score.

extracted from the eight EMG channels. In both experiments,
participants sought to maximize trial score, the degree to
which a cursor representing muscle activity reached a series
of rapidly presented targets.

Fig. 3a-b show the effect of learning on myoelectric control
over runs in Experiment 1. There was no difference in initial
baseline performance between the 4-8 group (median: Mdn =
0.21) and the 8-8 group (Mdn = 0.203) (Wilcoxon rank
sum, Z = −0.0866, n1 = n2 = 12, p = 0.935 two-
tailed). Additionally, we found no effect of training protocol
on participant performance, as evidenced by comparisons of
performance on runs six and ten. For run six, the first in which
both groups used an 8-target interface, no significant difference
was found between the 8-8 group (Mdn = 0.697) and the
4-8 group (Mdn = 0.742) (Wilcoxon rank sum,
Z = −0.1443, n1 = n2 = 12, p = 0.885 two-tailed).

Fig. 4. Generalization of performance with increasing numbers of
targets. (a) Experiment 1: participant performance on 8 targets relative
to 12 targets for the 8-8 group and the 4-8 group. (b) Experiment 2:
participant performance on 4 targets relative to 8 targets for both EMG
and PCA based control.

Likewise, run ten, in which both groups used a twelve target
interface, produced no significant difference in participant
performance between the 8-8 group (Mdn = 0.612) and
the 4-8 group (Mdn = 0.743) (Wilcoxon rank sum, Z =
−0.9526, n1 = n2 = 12, p = 0.341 two-tailed). Performance
on run ten, the generalization run, was significantly higher
(Mdn = 0.657) than run one, the baseline assessment run,
(Mdn = 0.211) (Wilcoxon signed-rank, Z = −4.29, n = 24,
p < 1e − 04). Figure 3c shows the effect of learning in
limb-deficient participants over runs in Experiment 2. Note
that final run performance in limb-deficient participants using
the 8-target interface falls within the first and second quartiles
of performance achieved in limb-intact participants.

In both Experiments 1 and 2, improvement in cursor control,
as measured by hit score, preceded improved trial score. Hit
scores were significantly related to trial score in all conditions,
both across runs: Experiment 1 (r = 0.988, p < 1e − 05,
n = 8), Experiment 2 EMG (r = 0.979, p < 0.05,
n = 4), Experiment 2 PCA (r = 0.986, p < 0.05, n = 4); and
also across participants as measured in experimental final runs:
experiment 1 (r = 0.652, p < 1e − 03, n = 24), experiment
2 EMG (r = 0.876, p < 0.01, n = 4), experiment 2 PCA
(r = 0.812, p < 0.05, n = 4).

B. Generalization

Participants’ within-task generalization of performance
across target layouts of increasing density are shown in Fig. 4.
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Fig. 5. The scalability of abstract decoding. (a) Participant performance progressing from use of an 8-target interface to a 24-target interface.
Points show performance on individual runs which are displayed old to new on the horizontal axis. Dashed grey line indicates performance over
different days. Lines of best fit are shown for performance on each interface size. (b) Representative cursor traces using an 8-target interface
(c) Representative cursor traces using a 24-target interface.

In both Experiment 1 and Experiment 2, and across participant
groups, individual participant performance using a simple
target layout was predictive of their ability to generalize
to one of increased complexity. In Experiment 1 there was
significant correlation between participants’ performance on
their final 8-target run and their post-training performance in
the 12-target run, for both the 8-8 group (r = 0.896, n = 12,
p < 1e−04) and the 4-8 group (r = 0.714, n = 12, p < 0.01).
In Experiment 2, significant correlations were found between
final run performances on a 4-target interface and final run
performance on an 8-target interface using control based on
both EMG (r = 0.911, n = 5, p < 0.05) and principal
components (r = 0.971, n = 5, p < 0.01).

C. Scalability

Individual participant performance while learning to use a
centre-out task space is shown in Fig. 1c. Points in Fig. 5a
show performance on individual runs. Markers differentiate
between using an 8-, 16- and 24-target interface. Lines of
best fit are included for each target density group and show a
general trend of improvement in overall score for each target
density over runs. Representative cursor trajectories during use
of an 8-target interface and a 24-target interface are shown in
Figures 5b and 5c. Data in Fig. 5 was obtained during the first
two of four recording sessions. Session 2 was recorded three
days after Session 1. Long-term retention of ability was probed
in Sessions 3 and 4, which are presented in the supplementary
material.

IV. DISCUSSION

Neuroscience has been fascinated with how people learn
motor tasks for decades [31], [32]. Studies of motor learn-
ing often depend upon modifying well established mappings
through visual rotations [24] or perturbation [31]–[33] because
it is difficult to create novel movements in physical space [20].
Human machine interfaces, including myoelectric control,
are novel by default and have therefore acted as a catalyst
to study how novel motor tasks are learned [12], [16], [23],
[34]–[39]. Evidence suggests new mappings can be generated
from scratch [20] and they can be arbitrary and non-intuitive
[12], [15], although they do not have to be [17], [39], [40].

The experiments presented in this paper demonstrate that
participants, both limb-intact and limb-deficient, can learn
to control an 8-target myoelectric interface using muscles
of the arm. Experiment 1 showed that the training protocol
had no influence on eventual performance, rather perfor-
mance increased based on the amount of runs completed.
This observation was confirmed in Experiment 2. In addition,
we showed for the first time that people with limb difference
can learn to operate a myoelectric interface with an abstract
decoder. In both Experiments 1 and 2, we found that once an
inverse map of the task is learned with practice, within-task
generalization to control spaces with more targets is possible.
Our final experiment showed how abstract control can scale
to higher target densities than required for rehabilitation.

Cursor control in our interface relies upon two factors:
the relative magnitude of activity between muscles and their
overall amplitude. In both task spaces in this paper, these
parameters map to direction and extent respectively. If these
variables are encoded independently, changes to one attribute
should not influence the other. Previous research has shown
that direction and extent can be learned and adapted indepen-
dently [24], however the mapping from control to task space
may influence whether this is the case [25].

As literature on gain generalization is inconclusive [24],
[25], Experiment 1 was designed to determine whether the
learning of gain control would generalize within our myo-
electric interface space. Independence of direction and extent
would imply that people can first learn a control space
with less constrained scaling requirements, introducing a gra-
dation of difficulty in order to maintain engagement [41].
We observed that participants who initially learned using
the 4-target interface performed equivalently on an 8-target
interface to those who learned on said 8-target interface. Our
results show that gain generalizes within our control space.
It may be the case that exploratory behaviour on the 4-target
interface that did not contribute to task performance, i.e.
exploring the space within targets influenced the generalization
of gain. As this experiment was designed to inform our applied
rehabilitation work with amputees using the same interface,
we could not control for this confounding variable.

In Experiment 2, participants with limb-loss learned the
same control scheme based on the structured training approach
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validated in Experiment 1. This experiment confirmed that
amputee participants’ scores increased as they used the MCI.
Within participants, performance using higher density target
interfaces was correlated to overall score obtained when using
lower density target interfaces. These observations are in line
with the results of Experiment 1 and our earlier work with
limb-intact participants [18]. Besides, we have previously
shown that participants can perform this task without visual
feedback, and that overall performance is predictive of the no
feedback condition [18]. These, combined with the presented
generalization results, support the working hypothesis that this
task can be used to train users for prosthesis control.

Our third experiment illustrated that this method can
translate to additional control sites and targets. The results
of Experiment 3 largely corroborate the findings of previ-
ous learning-based myoelectric interfaces that utilized the
centre-out task [12]–[15], [17], [19]. These experiments
demonstrate that simultaneous proportional control with mul-
tiple muscles can be achieved without the use of statistical
learning algorithms. Centre-out style control can be realized
in a shorter time-frame through the use of classification [42]
or regression [42]–[44] algorithms which weight multiple
control sites based on calibration or training data. These algo-
rithms allow immediate control, however little is known about
how they influence longer term user adaptation and learning
[45], [46].

In an upper-limb prosthetics context, the term user-
adaptation is more common than user learning. It is essential
to note the qualitative differences between this work and
that of Hahne et al. [42], [44]. Aside from the fact that we
use no regressors or classifiers, in the adaptation work of
Hahne et al. [42], [44], participants experience relatively long
periods of feedback in each trial (10 s). In contrast, we present
very short trials which encourage reaching the target very
quickly. Our parameters are selected to promote use of forward
model, rather than use of visual feedback and within-trial
adaptation. In this context, while online feedback may inter-
vene [47] within-trial adaptation is not a viable control strategy
and does not explain performance without visual feedback
and changes to reaction times [18] nor retention of ability
over sessions, as shown in Fig. 5a. For additional retention
and reaction time data supporting our position, the reader is
pointed to the supplementary material.

We do not anticipate retention of skills to differ
between limb-deficient and limb-intact participants. Anecdo-
tally, we observed that learning is often slower in amputee
participants, however this is not consistent. Two factors,
muscle fatigue and performance pressure, are likely to con-
tribute to this difference. Currently, these types of human
factors are the main limitation of this approach, rather than
technical engineering challenges. As presented, our method
relies on participants maintaining concentration, with an often
delayed reward, for relatively long periods. Since it is probable
that training will always be comparatively lengthy, we are
developing gamified protocols to target user engagement.
A corresponding technical challenge will be to validate that
learned skills actually transfer to prosthesis control [48]. We do
not view the work presented as controller implementations

per se, rather as a framework within which arbitrary multidi-
mensional spaces can be adapted according to the availability
of control channels. For details of how the interface used
in Experiment 1 and 2 was originally envisaged see [49].
We assume the method demonstrated in Experiment 3 could be
used similarly to other centre out control schemes [13]–[15],
[17], [19].

Exactly how to efficiently exploit learning in a
human-machine interfacing context remains an open question
[22]. Few papers directly address learning in a traditional
prosthetics context [26], [46]. Nevertheless, prosthetics
literature contains error-rates fit with exponential functions,
characteristic of a typical learning curve, during extended use
of both differential control [50] and pattern recognition [51].
Similarly, a form of learning was posited to significantly
improve pattern recognition control in TMR patients during
a long term home trial. Critically, no equivalent effect was
found when using direct control [5]. While the general
properties of myoelectric learning remain understudied,
confounds will exist for machine learning-based approaches.
This is particularly the case for long-term studies where the
properties of the EMG signal change over time [46], [51].
When implementing adaptive or co-adaptive approaches
that interact with changes, distinguishing user adaptation
from machine learning will require even more complex
controls [47].

We demonstrated that learning-based myoelectric
approaches are a viable option for people with upper-limb
difference. It also extends existing evidence demonstrating
that such techniques can produce more nuanced myoelectric
control than typically associated with prosthesis control.
By replicating a typical myoelectric control task, we have
shown how the method that we presented can scale with
additional control sites. In replicating a task normally
achieved using regression or classification we hope to draw
attention to the role human learning may play in prosthesis
control.

REFERENCES

[1] G. Hefftner and G. G. Jaros, “The electromyogram (EMG) as a control
signal for functional neuromuscular stimulation. II. Practical demonstra-
tion of the EMG signature discrimination system,” IEEE Trans. Biomed.
Eng., vol. 35, no. 4, pp. 238–242, Apr. 1988.

[2] P. Parker, K. Englehart, and B. Hudgins, “Myoelectric signal processing
for control of powered limb prostheses,” J. Electromyogr. Kinesiol.,
vol. 16, no. 6, pp. 541–548, Dec. 2006.

[3] A. Muzumdar, Powered Upper Limb Prostheses: Control, Implemen-
tation and Clinical Application, 1st ed. Berlin, Germany: Springer,
2004.

[4] T. A. Kuiken, G. A. Dumanian, R. D. Lipschutz, L. A. Miller, and
K. A. Stubblefield, “The use of targeted muscle reinnervation for
improved myoelectric prosthesis control in a bilateral shoulder disartic-
ulation amputee,” Prosthetics Orthotics Int., vol. 28, no. 3, pp. 245–253,
Dec. 2004.

[5] L. J. Hargrove, L. A. Miller, K. Turner, and T. A. Kuiken, “Myoelectric
pattern recognition outperforms direct control for transhumeral amputees
with targeted muscle reinnervation: A randomized clinical trial,” Sci.
Rep., vol. 7, no. 1, Dec. 2017, Art. no. 13840.

[6] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunc-
tion myoelectric control,” IEEE Trans. Biomed. Eng., vol. 40, no. 1,
pp. 82–94, 1993.

[7] K. Englehart and B. Hudgins, “A robust, real-time control scheme for
multifunction myoelectric control,” IEEE Trans. Biomed. Eng., vol. 50,
no. 7, pp. 848–854, Jul. 2003.



DYSON et al.: LEARNING, GENERALIZATION, AND SCALABILITY OF ABSTRACT MYOELECTRIC CONTROL 1547

[8] M. Ortiz-Catalan, B. Hkansson, and R. Brnemark, “Real-time and
simultaneous control of artificial limbs based on pattern recognition
algorithms,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 4,
pp. 756–764, Jul. 2014.

[9] L. Coapt. (2019). Coapt Engineering. Accessed: Aug. 27, 2019.
[Online]. Available: https://coaptengineering.com

[10] G. Ottobock. (2019). Myo Plus Pattern Recognition. Accessed:
Aug. 27, 2019. [Online]. Available: https://www.ottobock.co.uk/
prosthetics/upper-limb-prosthetics/product-systems/myo-plus/

[11] E. Scheme and K. Englehart, “Electromyogram pattern recognition for
control of powered upper-limb prostheses: State of the art and challenges
for clinical use,” J Rehabil. Res. Develop., vol. 48, no. 6, pp. 643–660,
2011.

[12] S. M. Radhakrishnan, S. N. Baker, and A. Jackson, “Learning a novel
myoelectric-controlled interface task,” J. Neurophysiol., vol. 100, no. 4,
pp. 2397–2408, Oct. 2008.

[13] T. Pistohl, C. Cipriani, A. Jackson, and K. Nazarpour, “Abstract and
proportional myoelectric control for multi-fingered hand prostheses,”
Ann. Biomed. Eng., vol. 41, no. 12, pp. 2687–2698, Dec. 2013.

[14] C. W. Antuvan, M. Ison, and P. Artemiadis, “Embedded human con-
trol of robots using myoelectric interfaces,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 22, no. 4, pp. 820–827, Jul. 2014.

[15] M. Ison and P. Artemiadis, “Proportional myoelectric control of
robots: Muscle synergy development drives performance enhancement,
retainment, and generalization,” IEEE Trans. Robot., vol. 31, no. 2,
pp. 259–268, Apr. 2015.

[16] T. Pistohl, D. Joshi, G. Ganesh, A. Jackson, and K. Nazarpour, “Artificial
proprioceptive feedback for myoelectric control,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 23, no. 3, pp. 498–507, May 2015.

[17] J. L. Segil and R. F. Weir, “Novel postural control algorithm for
control of multifunctional myoelectric prosthetic hands,” J. Rehabil. Res.
Develop., vol. 52, no. 4, pp. 449–466, 2015.

[18] M. Dyson, J. Barnes, and K. Nazarpour, “Myoelectric control with
abstract decoders,” J. Neural Eng., vol. 15, no. 5, Oct. 2018,
Art. no. 056003.

[19] J. L. Segil, R. Kaliki, J. Uellendahl, and R. F. F. Weir, “A myoelectric
postural control algorithm for persons with transradial amputations:
A consideration of clinical readiness,” IEEE Robot. Autom. Mag.,
vol. 27, no. 1, pp. 77–86, Mar. 2020.

[20] X. Liu and R. A. Scheidt, “Contributions of online visual feedback to
the learning and generalization of novel finger coordination patterns,”
J. Neurophysiol., vol. 99, no. 5, pp. 2546–2557, May 2008.

[21] D. M. Wolpert and M. Kawato, “Multiple paired forward and
inverse models for motor control,” Neural Netw., vol. 11, nos. 7–8,
pp. 1317–1329, Oct. 1998.

[22] F. A. Mussa-Ivaldi, M. Casadio, Z. C. Danziger, K. M. Mosier, and
R. A. Scheidt, “Sensory motor remapping of space in human-machine
interfaces,” Prog. Brain Res., vol. 191, pp. 45–64, 2011.

[23] K. M. Mosier, R. A. Scheidt, S. Acosta, and F. A. Mussa-Ivaldi,
“Remapping hand movements in a novel geometrical environment,”
J. Neurophysiol., vol. 94, no. 6, pp. 4362–4372, Dec. 2005.

[24] J. W. Krakauer, Z. M. Pine, M.-F. Ghilardi, and C. Ghez, “Learning of
visuomotor transformations for vectorial planning of reaching trajecto-
ries,” J. Neurosci., vol. 20, no. 23, pp. 8916–8924, Dec. 2000.

[25] X. Liu, K. M. Mosier, F. A. Mussa-Ivaldi, M. Casadio, and R. A. Scheidt,
“Reorganization of finger coordination patterns during adaptation to
rotation and scaling of a newly learned sensorimotor transformation,”
J. Neurophysiology, vol. 105, no. 1, pp. 454–473, Jan. 2011.

[26] H. Bouwsema, C. K. van der Sluis, and R. M. Bongers, “Changes in
performance over time while learning to use a myoelectric prosthesis,”
J. NeuroEng. Rehabil., vol. 11, no. 1, p. 16, 2014.

[27] M. Dyson and K. Nazarpour, “Data driven spatial filtering can enhance
abstract myoelectric control in amputees,” in Proc. 40th Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc. (EMBC), Jul. 2018, pp. 3770–3773.

[28] K. Nazarpour, A. Barnard, and A. Jackson, “Flexible cortical con-
trol of task-specific muscle synergies,” J. Neurosci., vol. 32, no. 36,
pp. 12349–12360, Sep. 2012.

[29] C. M. Harris and D. M. Wolpert, “Signal-dependent noise deter-
mines motor planning,” Nature, vol. 394, no. 6695, pp. 780–784,
Aug. 1998.

[30] T. M. Hall, K. Nazarpour, and A. Jackson, “Real-time estimation and
biofeedback of single-neuron firing rates using local field potentials,”
Nature Commun., vol. 5, no. 1, p. 5462, Dec. 2014.

[31] J. R. Lackner and P. Dizio, “Rapid adaptation to coriolis force perturba-
tions of arm trajectory,” J. Neurophysiol., vol. 72, no. 1, pp. 299–313,
Jul. 1994.

[32] R. Shadmehr and F. Mussa-Ivaldi, “Adaptive representation of dynam-
ics during learning of a motor task,” J. Neurosci., vol. 14, no. 5,
pp. 3208–3224, May 1994.

[33] T. Brashers-Krug, R. Shadmehr, and E. Bizzi, “Consolidation in human
motor memory,” Nature, vol. 382, no. 6588, pp. 252–255, Jul. 1996.

[34] M. D. Serruya, N. G. Hatsopoulos, L. Paninski, M. R. Fellows, and
J. P. Donoghue, “Instant neural control of a movement signal,” Nature,
vol. 416, no. 6877, pp. 141–142, Mar. 2002.

[35] L. R. Hochberg et al., “Neuronal ensemble control of prosthetic devices
by a human with tetraplegia,” Nature, vol. 442, no. 7099, pp. 164–171,
Jul. 2006.

[36] B. Jarosiewicz, S. M. Chase, G. W. Fraser, M. Velliste, R. E. Kass, and
A. B. Schwartz, “Functional network reorganization during learning in a
brain-computer interface paradigm,” Proc. Nat. Acad. Sci. USA, vol. 105,
no. 49, pp. 19486–19491, 2008.

[37] K. Ganguly, D. F. Dimitrov, J. D. Wallis, and J. M. Carmena, “Reversible
large-scale modification of cortical networks during neuroprosthetic
control,” Nature Neurosci., vol. 14, no. 5, pp. 662–667, May 2011.

[38] J. M. Carmena, “Advances in neuroprosthetic learning and control,”
PLoS Biol., vol. 11, no. 5, pp. 1–4, May 2013.

[39] X. Zhou, R. N. Tien, S. Ravikumar, and S. M. Chase, “Distinct types
of neural reorganization during long-term learning,” J. Neurophysiol.,
vol. 121, no. 4, pp. 1329–1341, Apr. 2019.

[40] P. J. Kyberd et al., “MARCUS: A two degree of freedom hand prosthesis
with hierarchical grip control,” IEEE Trans. Rehabil. Eng., vol. 3, no. 1,
pp. 70–76, Mar. 1995.

[41] K. Lohse, N. Shirzad, A. Verster, N. Hodges, and H. Van de Loos,
“Video games and rehabilitation: Using design principles to enhance
engagement in physical therapy,” J. Neurologic Phys. Therapy, vol. 37,
no. 4, pp. 166–175, 2013.

[42] J. M. Hahne, M. Markovic, and D. Farina, “User adaptation in myoelec-
tric man-machine interfaces,” Sci. Rep., vol. 7, no. 1, p. 4437, Dec. 2017.

[43] J. M. Hahne et al., “Linear and nonlinear regression techniques for
simultaneous and proportional myoelectric control,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 22, no. 2, pp. 269–279, Mar. 2014.

[44] J. M. Hahne, S. Dahne, H.-J. Hwang, K.-R. Müller, and L. C. Parra,
“Concurrent adaptation of human and machine improves simultaneous
and proportional myoelectric control,” IEEE Trans. Neural Syst. Rehabil.
Eng., vol. 23, no. 4, pp. 618–627, Jul. 2015.

[45] J. M. Hahne, M. A. Schweisfurth, M. Koppe, and D. Farina, “Simultane-
ous control of multiple functions of bionic hand prostheses: Performance
and robustness in end users,” Sci. Robot., vol. 3, no. 19, Jun. 2018,
Art. no. eaat3630.

[46] M. B. Kristoffersen, A. W. Franzke, C. K. van der Sluis, A. Murgia,
and R. M. Bongers, “The effect of feedback during training sessions
on learning pattern-recognition-based prosthesis control,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 27, no. 10, pp. 2087–2096, Oct. 2019.

[47] M. Couraud, D. Cattaert, F. Paclet, P. Y. Oudeyer, and A. de Rugy,
“Model and experiments to optimize co-adaptation in a simplified
myoelectric control system,” J. Neural Eng., vol. 15, no. 2, Apr. 2018,
Art. no. 026006.

[48] A. Heerschop, C. K. van der Sluis, E. Otten, and R. M. Bongers,
“Performance among different types of myocontrolled tasks is not
related,” Human Movement Sci., vol. 70, Apr. 2020, Art. no. 102592.

[49] R. Meijer and K. Nazarpour, “Prosthetics,”
U.S. Patent 20 150 374 515 A1, Dec. 31, 2015. [Online]. Available:
https://patents.google.com/patent/US20150374515A1

[50] G. C. Matrone, C. Cipriani, M. Carrozza, and G. Magenes, “Real-time
myoelectric control of a multi-fingered hand prosthesis using principal
components analysis,” J. NeuroEng. Rehabil., vol. 9, no. 1, p. 40, 2012.

[51] J. He, D. Zhang, N. Jiang, X. Sheng, D. Farina, and X. Zhu, “User
adaptation in long-term, open-loop myoelectric training: Implications for
EMG pattern recognition in prosthesis control,” J. Neural Eng., vol. 12,
no. 4, Aug. 2015, Art. no. 046005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


