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Abstract 

The characterisation of biochar has been predominantly focused around determining 

physicochemical properties including chemical composition, porosity, and volatile content. 

To date, little systematic research has been done into assessing the properties of biochar that 

directly relate to its function in soil and how production conditions could impact these. The 

aim of this study was to evaluate how pyrolysis conditions can influence biochar’s potential 

for soil enhancing benefits by addressing key soil constraints, and identify potential synergies 

and restrictions.  To do this, biochar produced from pine wood chips (PC), wheat straw (WS) 

and wheat straw pellets (WSP) at four highest treatment temperatures (HTT) (350oC, 450oC, 

550oC and 650oC) and two heating rates (5oC min-1 and 100oC min-1) were analysed for pH, 

extractable nutrients, cation exchange capacity (CEC), stable-C content and labile-C content. 

HTT and feedstock selection played an important role in the development of biochar 

functional properties while overall heating rate (in the range investigated) was found to have 

no significant effect on pH, stable-C or labile-C concentrations. Increasing the HTT reduced 

biochar yield and labile-C content while increasing the yield of stable-C present within 

biochar. Biochar produced at higher HTT also demonstrated a higher degree of alkalinity 

improving biochar’s ability to increase soil pH. The concentration of extractable nutrients was 

mainly affected by feedstock selection while the biochar CEC was influenced by HTT, 

generally reaching its highest values between 450oC – 550oC. Biochar produced at >550oC 

showed high combined values for C stability, pH and CEC while lower HTTs favoured 

nutrient availability. Therefore attempts to maximise biochar’s C sequestration potential could 

reduce the availability of biochar nutrients. Developing our understanding of how feedstock 

selection and processing conditions influence key biochar properties can be used to refine the 

pyrolysis process and design of “bespoke biochar” engineered to deliver specific 

environmental functions.  
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Introduction 

Applying biochar to soil has been proposed to improve soil fertility (Chan & Xu, 2009; 

Atkinson et al., 2010) while sequestering carbon (Lehmann, 2007; Sohi et al., 2010; Ippolito 

et al., 2012; Manyà, 2012) and reducing or supressing the release of greenhouse gases such as 

CO2, N2O and CH4 (Spokas & Reicosky, 2009; Zhang et al., 2010; Bruun et al., 2011). Due to 

the large variety of biomass potentially available for conversion to biochar, as well as 

different pyrolysis technologies (thermal, microwave etc.) and possible processing conditions 

(temperature, heating rate, vapour residence time etc.), an infinite range of biochar types 

could be created. These will differ in their physicochemical properties and functional 

performance (Verheijen et al., 2009; Enders et al., 2012; Ronsse et al., 2013). While the 

influence of production conditions on the physiochemical properties of biochar has been 

widely covered (Williams & Besler, 1996; Antal & Grønli, 2003; Demirbas, 2006; Shackley 

& Sohi, 2010; Enders et al., 2012; Angin, 2013) little has been reported on the corresponding 

effects on biochar functional properties (Atkinson et al., 2010; Rajkovich et al., 2011; 

Crombie et al., 2013; Mašek et al., 2013). Functional properties are those which could 

contribute to soil water holding capacity, crop nutrient availability, carbon storage, cation 

exchange capacity, favourable pH, etc.  

Biochar has been consistently shown to be recalcitrant (Spokas, 2010; Enders et al., 

2012; Crombie et al., 2013) when applied to soil which is its most important property in terms 

of C sequestration potential. Although having high levels of resistance, biochar is still 

gradually mineralized to CO2; otherwise, soil organic matter (SOM) would be dominated by 

biochar accumulated over long time scales (Masiello, 2004; Cheng et al., 2006; Lehmann et 

al., 2008). Therefore the absolute longevity of biochar in soil cannot be quantified by one 

number as biochar is not one consistent homogeneous state (Hedges et al., 2000). Different 

fractions and pools of biochar will decompose at different rates under different conditions 
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determined by method of production, feedstock material, as well as climate and soil 

properties. This makes the quantification of stability and degradation rates extremely 

important to the environmental and economic feasibility of biochar production. Direct 

measurements of stability on the timescale of decades or even a century is not possible 

leading to the development of laboratory based assessment tools for the rapid screening of 

fresh biochar (Hammes et al., 2007; Cross & Sohi, 2011, 2013; Harvey et al., 2012; Crombie 

et al., 2013).  

After low temperature pyrolysis, biochar may contain an unconverted or partially 

converted biomass fraction, known as labile-C, which is rapidly mineralized on addition to 

soil. The mineralization of labile-C results in a small short term CO2 flux (Zimmerman, 2010; 

Bruun et al., 2011; Calvelo Pereira et al., 2011; Cross & Sohi, 2011; Jones et al., 2011) and 

could be responsible for mineralization of other soil C, i.e. priming (Hamer et al., 2004; Cross 

& Sohi, 2011; Jones et al., 2011; Lehmann et al., 2011; Zimmerman et al., 2011) however 

labile-C can also provide a readily available food source for soil microorganisms (Smith et 

al., 2010). However this stimulated microbial activity occurs over a short time period (Cheng 

et al., 2006) with long incubation tests actually showing decreased or no mineralization of 

other soil C following biochar application (Kuzyakov et al., 2009; Spokas & Reicosky, 2009; 

Zimmerman, 2010; Cross & Sohi, 2011; Zimmerman et al., 2011). In many cases the 

observed release of CO2 from biochar takes place over a relatively short period of weeks or 

months before dissipating (Smith et al., 2010; Jones et al., 2011).  However the inconsistency 

in CO2 evolution following the addition of biochar to soil could be a result of large variability 

in the nature of applied biochar (feedstock, temperature, heating rate, pre/post treatment) as 

well as the conditions used during incubation studies (temperature, soil type, incubation time, 

atmosphere, pH) (Jones et al., 2011; Zimmerman et al., 2011) making conclusions on the 

positive or negative aspects of labile-C difficult.  
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Many studies have reported the effectiveness of biochar in improving soil quality and 

crop production (Lehmann et al., 2006; Liang et al., 2006; Laird, 2008; Atkinson et al., 2010; 

Van Zwieten et al., 2010; Rajkovich et al., 2011; Ippolito et al., 2012; Spokas et al., 2012; 

Liu et al., 2013). The positive impact of biochar could be due to a range of potential reactions 

that remove soil-related constraints otherwise limiting plant growth: soil nutrient status and 

soil pH, toxins, improved soil physical properties and improved N-fertilizer use efficiency 

(Chan & Xu, 2009; Van Zwieten et al., 2010). As biochar is produced by thermal 

carbonisation of biomass (virgin and non-virgin), it often contains a high concentration of C, 

as well as varying amounts of plant macro nutrients (phosphorous (P), potassium (K), 

magnesium (Mg), calcium (Ca) etc.) and micro nutrients (iron (Fe), copper (Cu), sodium 

(Na), zinc (Zn), chlorine (Cl) etc.)(Chan & Xu, 2009; Lehmann et al., 2011). However the 

total concentration of nutrients within biochar is not necessarily an appropriate indicator of 

the content of bioavailable nutrients, as many can be bound in stable forms not readily 

available to plants (Chan & Xu, 2009; Spokas et al., 2012). CEC is the capacity of biochar to 

retain cations in a plant-available and exchangeable form (e.g. nitrogen in the form of 

ammonium, NH4
+). The CEC is relatively low at low (acidic) pH but increases at higher pH as 

well as generally being very low at low HTT with substantial improvement as temperature is 

increased (Lehmann, 2007). While freshly produced biochar demonstrates minimal CEC 

compared to SOM, biochar has shown the ability to increase its CEC upon addition to soil 

through abiotic and biotic oxidation and the adsorption of SOM onto its surface (Cheng et al., 

2006; Liang et al., 2006; Lehmann, 2007). Increasing the CEC of biochar can result in 

reducing the leaching of nutrients (e.g. P, ammonium, nitrate, Mg and Ca) from soil, manure, 

slurry etc. thus increasing the potential availability of nutrients in the root zone for plant 

uptake and improved soil fertility (Glaser et al., 2001; Chan & Xu, 2009; Major et al., 2009; 

Clough & Condron, 2010; Angst et al., 2013). Furthermore by improving the sorption ability 
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of biochar, the efficiency of fertilizer can be increased by absorbing it to the biochar thus 

improving its retention in the root zone for uptake by plants (Chan & Xu, 2009; Xu et al., 

2013). Increasing the N-fertilizer use efficiency can then lead to a reduction in fertilizer 

application rates, thus decreasing GHG emissions associated with fertilizer production, 

transport etc. (Major et al., 2009) as well as the direct release of GHG (Zhang et al., 2010). 

However, adding biochar to soil does not necessarily guarantee a related increase in the CEC 

of the soil. While some studies have shown a positive increase in soil pH and CEC following 

the incorporation of biochar into soil other studies have shown the opposite effect (Van 

Zwieten et al., 2010). There are relatively few studies on the nutrient composition of biochar 

and its importance to soil amendment (Atkinson et al., 2010; Rajkovich et al., 2011; Angst & 

Sohi, 2013; Xu et al., 2013; Zheng et al., 2013) and less concerning how production 

conditions can influence the nutrient content of biochar and their availability (Zheng et al., 

2013).  

This work therefore aims to establish relationships between production conditions and 

biochar functional properties related to its soil performance such as long-term biochar 

stability, labile-C concentration, pH, CEC as well as the nutrient retention. This should then 

improve the understanding of how selected production conditions impact the effectiveness of 

biochar for soil amendment while also identifying possible or impossible combinations of 

functional properties which ultimately determine any potential to maximise the environmental 

benefits of biochar while considering possible trade-offs with other biochar benefits.  
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Materials and methods 

Feedstock 

Biochar samples were produced using three types of biomass: mixed pine wood chips 

(PC), raw wheat straw (WS) and wheat straw pellets (WSP). The selection of feedstock was 

based on using biomass that possessed very different structural and chemical properties and 

represented feedstock readily available in the UK. All biomass was used as received with no 

pre-treatment steps and an initial moisture content of 4.5 wt.% (PC), 4.5 wt.% (WS) and 13.3 

wt.% (WSP) obtained through gravimetric loss on drying at 105oC for 24 hr. PC (ranging 15 x 

5 x 4 mm to 100 x 40 x 15 mm in dimensions) were obtained from a Farm in East Lothian, 

Scotland while both WS (10 x 3 x 1 mm to 90 x 5 x 4 mm) and WSP (ø 6mm) were purchased 

from StrawPellet Ltd., Rookery Farm, Lincolnshire, England.  The natural heterogeneity of 

the feedstock was minimized as far as possible by thoroughly mixing a volume sufficient for 

all experiments. The composition of PC, WS and WSP feedstock is shown in Table 1.   

Experimental setup 

The experimental setup was previously described in detail by Crombie et al (2013) 

and Crombie & Mašek (2014a). A fixed bed batch pyrolysis unit heated by a 12kW infra-red 

gold image furnace (P610C; ULVAC-RIKO, Yokohama, Japan) was used to produce all 

biochar samples (Fig. 1). Biomass was placed within a vertical quartz tube (50 mm diameter) 

with a sintered plate positioned for the sample. A glassware condensation system was 

developed for the collection and separation of condensable and non-condensable volatiles. 

The remaining non-condensable gases were collected in a 200 litre multi-layered gas bag 

(JensenInert Products, Coral Springs, Florida). The gas composition was analysed using a 

quadrupole mass spectrometer (HPR-20 QIC, Hiden Analytical, Warrington, UK) and 

reported in Crombie & Mašek (2014). 
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For each pyrolysis experiment a standard volume of feedstock (approx. 200mm bed 

depth) was used, resulting in a different mass of starting material used for each biomass type: 

40g for PC, 15g for WS and 120g for WSP. For experiments carried out using the higher 

heating rate (100oC min-1) the mass of WSP material was reduced to 60g so that rapid gas 

release did not exceed the handling capacity of the condensation system. Each type of 

feedstock was exposed to highest treatment temperatures (HTT) of 350oC, 450oC, 550oC and 

650oC and two heating rates of 5oC min-1 and 100oC min-1. Heating at temperatures below 

350oC would be considered to be torrefaction rather than pyrolysis while pyrolysis above 

650oC could have resulted in insufficient char yields required for analysis. The selection of 

100oC min-1 and 5oC min-1 heating rates were made to compare a higher heating rate, typical 

of rates used for industrial-scale slow pyrolysis, with a lower heating rate close to the lower 

extreme for slow heating, providing adequate time for sufficient heat transfer. All runs were 

performed using one standard carrier gas flow rate (0.33 L min-1) of nitrogen (N2) and holding 

time at HTT (20 min). The collection and storage of the different pyrolysis products was 

described in Crombie et al. (2013). No pyrolysis run could be performed for WSP biomass at 

350oC and 100oC min-1, due to aborted pyrolysis runs which resulted in an insufficient 

amount of remaining homogenous WSP material.   

Biochar functional analysis 

This analysis focused on two key properties of biochar related to its function in soil, 

namely biochar C stability (stable-C%) and content of labile C (labile-C%) (Cross & Sohi, 

2011, 2013). In addition to these two assays biochar samples were also analysed for pH and 

extractable nutrients. 
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Stable carbon and labile carbon 

Stable-C was assessed using an oxidative ageing method previously described (Cross 

& Sohi (2013). Any temporary protection to oxidation provided by physical macrostructure 

was removed by milling prior to ageing. Biochar containing 0.1 g C was treated with 7 ml of 

5% hydrogen peroxide at room temperature, before being heated at 80oC for 48 hr. Oxidative 

ageing was performed in triplicates for each sample. While the stable-C tool uses chemical 

oxidation to mimic the oxidative degradation of biochar caused by peroxidase enzymes, this 

technique cannot completely replicate environmental processes. By focusing on the oxidation 

of biochar the process does not account for the degradation of biochar through hydrolysis 

steps which are likely to occur within the environment. Furthermore biochar samples were 

milled prior to oxidation as a means of removing any physical protection to the oxidation 

process, which could potentially lead to an underestimation of the environmental stability of 

biochar. Stability could also be further underestimated by failure to account for the potential 

stabilisation of biochar with soil minerals.  

Labile-C content was determined as the evolution of CO2 during a two week 

incubation of biochar (1 g) in sand (9.5 g) at 30⁰C, inoculated with a soil extract (Cross & 

Sohi (2011). Each biochar set consisted of 4 replicates and one control blank to correct for the 

CO2 gained during preparation of the vials, the flask headspace and re-drying of soda lime 

prior to weighing. The incubation of biochar was performed using a sand medium as opposed 

to soil, so that the measurement of labile-C was not compounded by soil mineralisation. 

While this allowed for measuring the labile-C content of biochar it also fails to include soil 

specific differences which could be faced in the environment. 
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Nutrient extraction analysis 

Biochar samples were analysed to determine the concentration of extractable Ca, K, 

Mg, Na, P and CEC. A full description of the analytical procedure for determining the 

extractable bases and CEC can be found in the supplementary material. Due to the low 

density of WS biomass, an insufficient amount of biochar was obtained following pyrolysis to 

allow for the nutrient extraction analysis to be performed, hence this analysis was only carried 

out using PC and WSP biochar. 

CEC and extractable nutrients 

Biochar CEC was assessed using the ammonium acetate method (Faithfull, 1985) 

where ammonium was extracted from biochar with acidified potassium chloride and 

quantified colorimetrically. The concentrations of extractable ions were determined by dry 

ashing, dissolving in hydrochloric acid and analysing by ion chromatography.    

Total and extractable phosphorous 

Biochar total phosphorous content was determined by ashing at 550oC for 4 hours 

followed by aqua regia digestion under heating (BS EN 13650, 2001). The remaining residue 

was then analysed using ICP-OES. Extractable P was estimated using the Olsen P method 

(Olsen et al., 1954; BS7755-3.6, 1995).  

pH 

Biochar pH was assessed using the procedure of Rajkovich et al. (2011). Biochar pH 

values were obtained using a ratio of 1.0 g of biochar in 20 ml of deionized water. Before pH 

measurements were taken the samples were shaken (Orbital Multi-Platform Shaker PSU-20i, 

Grant instruments Ltd, Shepreth, Cambridgeshire, UK) for 1.5h to ensure sufficient 

equilibration between biochar surfaces and solution. The pH measurements were taken using 
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a bench top pH probe (Mettler-Toledo FE20, Mettler-Toledo, Columbus, OH, USA) and 

performed in triplicate.  

Statistical analysis 

The pyrolysis experiments were designed and performed based on a ‘fully crossed 

design’ to investigate the effect of each production parameter on the response variables (Box 

et al., 2005). Using this type of experimental design meant that each combination of 

experimental conditions was only performed once. This design was possible as preliminary 

tests (n = 3) showed very good reproducibility of HTT (s = 0.15), heating rate (s = 0.36), time 

at peak temperature (s = 0.10) and char yield (s = 0.25). The monitoring of the pyrolysis 

process was such that any discrepancies in the process conditions would be detected and the 

run and results discarded. Analysis of variance (ANOVA) was applied through a general 

linear model using Minitab 16 statistical software and significance of results were calculated 

at a significance level of P < 0.05 for all materials and production conditions. Correlations 

were performed using Spearman rank method where R < 0.35 was taken to indicate weak 

correlations, 0.36 to 0.67 to be moderate correlations, 0.68 to 0.90 strong correlations and > 

0.9 to be a very strong correlation (Taylor, 1990). 

 

Results 

The focus of this work was the assessment of biochar functional properties. Results for 

pyrolysis product distribution as well as biochar physiochemical properties are reported in 

supplementary material (Table S1).  
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Biochar functional properties 

The progression of large scale biochar application to soil has been limited by 

uncertainties over the response of crops to biochar in the soil. Carbon sequestration, CEC, 

nutrient content and availability and pH were identified as important properties to investigate 

and relate to production parameters.  

Long-term biochar stability 

The most accurate method of assessing the C sequestration potential of biochar could 

possibly be through long-term field experiments monitoring stability and degradation over 

time; however this is not feasible over a period of 100 years or more. In this work we used an 

oxidation approach (Cross & Sohi, 2013) to determine stable-C content (biochar C basis) and 

yield of stable-C (feedstock C basis). The results plotted in Fig. 2a show that HTT was the 

main factor (P < 0.0001) determining the concentration and yield of stable-C together with 

feedstock (P < 0.026).On the other hand, no effect was observed for heating rate (P > 0.05), in 

the range investigated. Increasing the pyrolysis HTT generally resulted in an increase in 

stable-C present within biochar. At HTT < 450oC the slower heating rate produced higher 

stable-C concentrations compared to 100oC min-1 however at higher HTT this trend 

disappeared as temperature played the dominant role (Antal & Grønli, 2003; Crombie et al., 

2013; Crombie & Mašek, 2014a).  

The results further showed that the efficiency of conversion of feedstock carbon into 

stable carbon (stable-C yield) increased with HTT(Fig. 2b), therefore indicating that high 

HTT improved the C storing potential of biochar, reaffirming the same trend seen for 

different feedstock in Crombie & Mašek (2013). The variation in stable-C yield from 350 – 

650oC was considerably lower than that experienced for stable-C concentration with the 

average difference being 10.7 + 4.57 % compared to 42.1 + 11.4 % for stable-C content. 
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Lower variation in the yield of stable-C as HTT is increased can have a large impact on the 

economic and environmental case for biochar production, especially when pyrolysis at higher 

temperatures could provide additional energy and C sequestration benefits (Crombie & 

Mašek, 2014a). Although there is a significant effect of HTT and feedstock on the stable-C 

content and yield, the extent of this influence varies at different heating rates. Both parameters 

are largely significant when using heating rate of 100oC min-1 (P < 0.019), but only HTT 

shows statistically significant effect (P < 0.037) when applying the lower heating rate (5oC 

min-1) (P < 0.037), while feedstock type is not (P > 0.147). The lower heating rate would 

increase the duration of chemical reactions occurring during pyrolysis and could result in 

more time for the dominating effect of HTT to influence the biochar stability causing similar 

stable-C yields to be obtained for PC, WS and WSP biochar produced at 650oC.   

Biochar labile-C content 

Biochar labile-C content is mainly affected by the HTT (P < 0.0001) and feedstock (P 

< 0.028) selection, as shown in Fig. 3a, while heating rate had no statistically significant 

effect. As the pyrolysis HTT was increased from 350oC to 650oC the labile-C content in 

biochar dropped dramatically for WS and WSP feedstock while PC labile-C content also 

dropped between 450oC and 650oC. The trend for PC biochar labile-C content was difficult to 

determine as HTT was increased from 350oC to 450oC due to a large standard deviation for 

that biochar sample.  All biochar samples produced at 650oC, with the exception of WS, 

showed a labile-C content of < 0.11 %. WS biochar produced at 650oC contained a labile-C 

concentration of 0.31 % which was unexpectedly high but not statistically different to the 

labile-C content (0.18 %) of WS biochar produced at 550oC. The initial release of CO2 when 

biochar is added to soil could be due to microbial decomposition of an easily degradable C 

fraction remaining in higher concentrations within low HTT biochar due to incomplete 

conversion (Cheng et al., 2006; Zimmerman, 2010; Bruun et al., 2011; Calvelo Pereira et al., 
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2011). There was a clear difference in the concentration of labile-C present within biochar 

produced from the different feedstock at 350oC with the largest being WSP (1.34 %) followed 

by WS (0.94 %) and lastly PC (0.18 %). Biochar made from grasses has generally been found 

to degrade faster than wood biochar and has a higher initial CO2 flux (Zimmerman et al., 

2011).  

Similar to labile-C concentration, the labile-C yield (feedstock C basis) of biochar 

decreased with increasing HTT (Fig. 3b). Biochar produced at > 550oC contained a labile-C 

yield of < 0.14 %, and all biochar samples produced from PC, WS and WSP showed a labile-

C yield of < 0.17 %, < 0.66 %, < 0.77 % respectively. Overall this pathway for the release of 

CO2 represents only a small fraction of biochar C and therefore does not compromise the C 

sequestration potential. The observed increase in stable-C yield and decrease in labile-C yield 

with increasing HTT emphasises that pyrolysis at higher temperatures can sequester more C 

by increasing the C fraction stable over long periods of time while at the same time reducing 

the C fraction susceptible to rapid decay. However, further studies into the positive impacts of 

labile-C (e.g. food source for microorganisms) on soil processes is needed to gain a better 

understanding of the desired threshold for biochar labile-C content.   

Biochar nutrient concentration 

The concentrations of feedstock and biochar extractable nutrients were determined 

through ammonium acetate extraction and shown in Table 2 and Table 3 respectively. The 

extraction procedure was originally designed for analyzing soil samples and so analyzing 

biochar has demonstrated some limitations of the technique such as a higher concentration of 

nutrients being extracted from biochar compared to feedstock. This effect can also be due a 

dramatic change in physical (surface area, pore volume etc.) and chemical (surface charge, 

nutrient form etc.) properties following the pyrolysis process.   
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Extractable nutrients 

The mineral content of biochar consists largely of nutrients such as P,  K, Ca, Mg, Cl, 

Na etc. which can cause a catalytic effect during pyrolysis affecting the yields, composition 

and properties of char, condensable liquids and gas co-products including the reactivity and 

ignition properties of chars (Antal & Grønli, 2003; Sonoyama et al., 2006; Mašek et al., 2007; 

Brown, 2009; Enders & Lehmann, 2012). As the majority of feedstock nutrients are retained 

in the ash fraction of biochar, and the ash concentration of biochar increases with rising HTT, 

a strong positive correlation can be seen between ash content and the amount of extractable K 

(R2 = 0.713, P = 0.003) while moderate correlations are also evident for Ca (R2 = 0.632, P = 

0.011), Na (R2 = 0.601, P = 0.018) and Mg (R2 = 0.541, P = 0.037). The amount of 

extractable nutrients was also considerably higher for the high ash WSP biochar compared to 

the relatively low ash PC biochar (Table 3). Due to this clear correlation of ash content with 

nutrient composition the selection of feedstock was deemed to be the determining factor in the 

final biochar concentration of K (P = 0.005) and Na (P = 0.014) however Ca (P = 0.070) and 

Mg (P = 0.139) overall were not influenced by feedstock selection (for the types investigated). 

Although the influence of feedstock is clear, it is not surprising as only two types of 

feedstock, which differ greatly in origin and composition, were used for the comparison.  

The concentrations of Ca, K, Mg and Na extracted from WSP biochar generally peak 

at 450oC for both heating rates with increased HTT resulting in equal or lower concentrations 

of nutrients. The concentration of extractable nutrients from WSP biochar was substantially 

smaller when the higher heating rate was applied. This could be due to a loss of biochar 

structure and decrease in pore volume caused by a combination of a high heating rate and ash 

content (Downie et al., 2009). A lack of structure in biochar produced using higher heating 

rates has been attributed to the melting of the cell structure and the blocking of pores (Downie 

et al., 2009). Increasing the heating rate of pyrolysis reduces the time that volatiles have to be 
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discharged during pyrolysis leading to a shorter time for pore development as well as 

increasing the accumulation of volatiles between and within particles (Lua et al., 2004; 

Angin, 2013). For PC biochar, the highest amount for nutrient extraction occurred at 450oC 

when using the low heating rate, however pyrolysis of PC at a higher heating rate resulted in 

increasing nutrient extraction with increasing HTT. This led to the peak nutrient extraction for 

Ca, K and Na all occurring at 650oC. The ash content of PC biochar is considerably lower 

than WSP biochar therefore the expected loss of structure due to the presence of ash would be 

minimal. 

Phosphorus  

Total biochar P and extractable P concentrations are also shown in Table 3. Firstly to 

assess the yield of P extracted from the initial feedstock sample, the amount of extractable P 

(biochar weight basis) from biochar was expressed as a percentage of the extracted feedstock 

P. Secondly the amount of extractable biochar P was further expressed as a percentage of the 

total biochar P (biochar weight basis) to determine the proportion of P remaining within the 

biochar sample. For the range of process conditions investigated, the yield of extractable P as 

a function of extracted feedstock P peaked at 350oC for PC biochar and 450oC for WSP for 

both heating rates while the yield of extractable P as a function of total biochar P also peaked 

under the same conditions. The extractable P concentration for WSP biochar at 450oC actually 

exceeded the total P measurement for that biochar sample. This can be caused by a lack of 

repeated analysis or limitations of the total P extraction method. WSP was previously seen to 

contain a higher amount of extractable Ca, K, Mg and Na compared to PC biochar; this trend 

applied also to P. It is desirable to retain as many nutrient elements in biochar as possible. For 

some elements a proportion are lost by vaporisation during pyrolysis (K, Na, S, N etc.) with 

over half of their content being released at temperatures below 500oC (Mašek et al., 2007; 

Chan & Xu, 2009; Enders et al., 2012).  A lack of P volatilization compared to other nutrients 
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as HTT is increased could be the reason for a rise in total P as pyrolysis HTT is increased. 

Although total biochar P concentration increases with HTT, P availability can decrease due to 

P being trapped in less available forms at higher temperatures (Chan & Xu, 2009).   

To maintain content and availability of crop nutrient elements the preferred 

temperature of pyrolysis, based on the results of this work, would be between 450oC – 550oC 

which falls within the range put forward by Chan & Xu (2009) (400oC – 500oC). The exact 

conditions for improved nutrient properties may well differ between feedstock.  

Cation exchange capacity (CEC) 

In addition to the extracted nutrient concentrations, the CEC of biochar samples were 

also determined and shown in Table 3. In the HTT range 350oC to 650oC, biochar CEC 

increased between 450oC – 550oC for both feedstocks at both heating rates. This was 

consistent with trends reported previously (Lehmann, 2007). However, as HTT was increased 

to 650oC, CEC decreased for all samples (except WSP biochar produced using 100oC min-1) 

potentially due to a reduction in surface area attributed to higher pyrolysis HTT. As the 

biochar structure becomes more aromatic at higher pyrolysis temperatures, large amounts of 

acid-base surface functional groups (Chan & Xu, 2009; Lehmann et al., 2011) are lost altering 

the charge of biochar (Novak et al., 2009; Lehmann et al., 2011) therefore influencing the 

nutrient retention ability of cations and anions determined by CEC and anion exchange 

capacity (Chan & Xu, 2009).  

Biochar pH in solution  

Some studies have indicated that ash content of feedstock in conjunction with 

pyrolysis intensity could influence the final pH of biochar samples (Glaser et al., 2002; 

Lehmann et al., 2011; Enders et al., 2012; Novak et al., 2013; Ronsse et al., 2013). Enders et 

al. (2012) suggested that a large proportion of the ash in high-ash feedstock contains 
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carbonates which could cause a liming effect. While the production conditions of feedstock 

and HTT are well covered throughout these studies the impact of heating rate has not been 

covered. HTT (P < 0.0001) and feedstock selection (P < 0.0001) were both seen to influence 

the final pH value of biochar while heating rate only influenced the pH value of PC biochar. 

As the HTT of pyrolysis increased so too did the biochar pH (Fig. 4) indicating that higher 

HTT results in biochar with increased alkalinity. Studies have shown that under less intense 

pyrolysis conditions (reduced HTT and heating rate) more labile and oxygenated carbon with 

high acid-base surface functional groups are retained in the char, however as the intensity of 

pyrolysis increased more acidic groups (e.g. carboxyl) became deprotonated to the conjugate 

base consequentially causing a rise in the pH of biochar in solution (Chan & Xu, 2009; 

Ronsse et al., 2013; Zheng et al., 2013). The pH of biochar has been associated with having a 

liming effect on soil acidity thus increasing the soil pH following the addition of biochar (Van 

Zwieten et al., 2010; Biederman & Harpole, 2013; Liu et al., 2013; Novak et al., 2013). When 

heating rate of 100oC min-1 was used the pH of PC biochar increased with HTT while the pH 

values of WS and WSP were not affected (P > 0.05) by HTT. Applying the higher heating 

rate of 100oC min-1 can increase the rate at which volatiles are released from biochar thus 

affecting the rate that the deprotonation of the acidic groups within biochar occurs resulting in 

similar pH values over the temperature range 450oC–650oC compared to 5oC min-1. 

Differences in pH can also be observed between the biomass types: pH of biochar 

derived from woody biomass was consistently lower compared to straw based biochar. The 

higher pH values of WS and WSP biochar over PC biochar can be strongly correlated (R2 = 

0.891, P < 0.0001) to the larger ash concentration of wheat biochar compared to wood. The 

influence of ash can be clearly seen when comparing the values for PC biochar (ash = 0.7 – 

5.9 %, pH = 5.5 – 9.1) to that of WS (ash = 10.9 – 27.6 %, pH = 8.6 – 11.2) and WSP (ash = 

14.4 – 23.7 %, pH = 8.6 – 11.6). Increasing the alkaline nature of biochar can increase the 
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ability of biochar to improve crop productivity, however a number of variables such as soil 

type and climate also need to be considered (Czimczik & Masiello, 2007), as application of 

biochar with a very high pH can also have negative effects on soil such as micronutrient 

deficiencies (Chan & Xu, 2009).  

 

Discussion 

Identifying a combination of production conditions which could maximise the soil 

enhancing and C sequestering properties of biochar would be practically impossible due to the 

impact that processing conditions can have on several biochar properties simultaneously. For 

that reason a fine balance needs to be found between the C mitigation potential of biochar and 

identifying the functions relevant to the soil constraint being addressed i.e. soil pH, nutrient 

retention, microbial activity etc. To aid in the identification of these relationships Fig. 5 (a 

matrix plot diagram) and Fig. 6 (combination of scatterplot diagrams) were used to show the 

ranges in which biochar functional properties can be varied by adjusting key production 

parameters. In the following section each biochar sample is identified by feedstock-HTT-

heating rate e.g. PC-650-5 would refer to biochar produced from PC, using the HTT of 650oC 

and the heating rate of 5oC min-1.  

Carbon stability versus degradability  

If the desired outcome of pyrolysis is to increase the fraction of stored C and minimise 

the degradable C fraction, then this can be achieved through applying higher pyrolysis 

temperatures (HTT >550oC)(Crombie et al., 2013; Mašek et al., 2013; Crombie & Mašek, 

2014a), i.e. WS-550-5, WS-650-5, WS-550-100, WS-650-100, WSP-550-5, WSP-650-5, 

WSP-550-100, WSP-650-100, PC-650-5 and PC-650-100 (Fig. 5a). Where the concentration 

of labile-C is an important key soil property a HTT < 450oC would result in higher labile-C 
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concentration however at the expense of long-term C sequestration. Few stable biochar 

samples contained relatively “high” labile-C content when comparing the entire data set. 

However WS-450-5 and WSP-450-100 both contained a labile-C content > 0.45 % and stable-

C concentrations above 72 %. WSP-450-100 in fact contained a labile-C concentration of 

0.70 % and stable-C content of 81.8 % demonstrating a good combination of relatively high 

values of both stable-C and labile-C. While labile-C provides an energy source for microbial 

communities that promote soil aggregation, high-concentrations of labile-C could result in 

biological immobilisation of soil N which could become problematic if biochar is applied in 

large quantities. It is important to note that stable-C accounts for the long-term stability of C 

(> 100 years) while relatively non-stable labile-C demonstrates the short term decomposition 

of biochar C (two week incubations). Therefore combining stable-C and labile-C does not 

account for the total C present within biochar, indicating a third fraction of intermediate 

stability (2 weeks < Int-C < 100 years) (Crombie & Mašek, 2014a). It is important to consider 

this additional C fraction when assessing the C sequestration potential of biochar as it bridges 

the gap between the two extremes for biochar C stability and therefore can influence trade-

offs between C mitigation and other important benefits (greenhouse gas emissions, soil 

enhancement etc.).  

Carbon stability versus liming value 

It has been well documented that biochar of high alkalinity has been effective at 

increasing fertility of acidic soils (Van Zwieten et al., 2010; Biederman & Harpole, 2013; Liu 

et al., 2013; Novak et al., 2013). The cluster seen in Fig. 5b, representing biochar samples 

WS-550-5, WS-650-5, WS-550-100, WS-650-100, WSP-550-5, WSP-650-5, WSP-550-100 

and WSP-650-100, have high stable-C content and an alkaline pH. Within this smaller group 

the difference in stable-C content ranged from 90.5 – 100 % and pH from 10.2 – 11.6. A 

second group of biochar samples which showed less favourable but still relatively high values 
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of stability (81.7 – 88.9 %) and pH (9.1 – 10.4) consisted of PC-650-5, PC-650-100, WSP-

450-100. Although PC-650-100 was identified as having a high stable-C concentration (88.9 

%) its pH value of 9.14 was lower than the WS and WSP biochar produced at HTT > 550oC. 

however a pH of this value could still potentially provide an effective soil response depending 

on site specific soil properties. Furthermore, as labile-C decreases linearly with increasing 

HTT any attempt to maximise the pH of biochar and stable-C concentration would result in a 

reduction in the labile-C content e.g. WSP-650-5 biochar produced the highest biochar pH 

while also contained the second lowest labile-C concentration (Fig. 5d). Any reduction in 

HTT led to a reduction in pH and an increase in the concentration of labile-C. While it was 

clearly identified that increasing the severity of pyrolysis resulted in higher pH values and C 

stability, for soil amendment biochar with a high pH value may not be preferable. Too high a 

pH has been shown to cause micronutrient deficiencies (Chan & Xu, 2009). Therefore 

determining the ideal pH value for biochar will undoubtedly be influenced by the initial pH of 

the soil and the effect that biochar pH has on the overall agronomic impact of biochar.  

Carbon stability versus cation exchange capacity  

Non-linear progression of CEC with HTT made production conditions that maximise 

both stable-C concentration and CEC difficult to define (Fig. 5c). The surface area and CEC 

of biochar has typically been shown to decrease when made at HTT > 550oC and to maximise 

the CEC value, pyrolysis should be performed at temperatures between 500oC – 550oC 

(Lehmann, 2007). However CEC for PC and WSP biochar reached its highest values between 

450oC and 550oC, depending on the applied heating rate. Therefore, this indicates that the 

preferred pyrolysis temperature could actually fall between 450oC and 550oC. Too high a 

temperature can cause greater surface area, increased aromatic structure and loss of negative 

charge and therefore decrease the CEC (Novak et al., 2009; Lehmann et al., 2011) 
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When comparing the biochar CEC with stable-C concentration (Fig. 5c) some biochar 

samples show a high value for CEC but low stable-C content (WSP-450-5) or vice versa 

(WSP-550-5). Biochar produced from WSP at 650oC using 5oC min-1 (WSP-650-5) 

demonstrated the highest CEC while also containing a high stable-C concentration of 99.5 %. 

With the exception of WSP-650-5, the CEC of biochar tended to be higher at HTT < 550oC. 

Despite the importance of CEC, due to the fact that in general the initial CEC of fresh biochar 

is low, the importance of this parameter for optimisation is limited. It is the ability of biochar 

to acquire high CEC upon addition to soil, as a result of abiotic and biotic oxidation (Cheng et 

al., 2006; Xu et al., 2013) that is more relevant. Therefore while the initial CEC of biochar 

may be relatively low compared to SOM, the long term influence of CEC on nutrient 

retention may be an important functional property to monitor. 

Carbon stability versus extractable crop nutrients  

Most biochar produced from virgin biomass contains a relatively limited amount of 

nutrients, and therefore cannot be compared to conventional fertilisers. Nevertheless, the 

ability of biochar to release nutrients is an important one. The concentration of available plant 

nutrients in biochar was determined by ammonium acetate extraction. While the high 

temperature pyrolysis (> 550oC) of WS and WSP biomass has consistently shown a high C 

storage potential, high alkalinity, low labile-C concentration as well as high values of CEC, 

the concentration of extractable biochar nutrients was highest at 450oC. As HTT is increased 

from 200oC to 500oC the greater production of volatile material can enhance pore (macro-, 

meso- and micro-) development leading to increased pore volume and surface area (Downie et 

al., 2009; Angin, 2013). Above 500oC, structural re-ordering, pore widening, pore blockage 

and melting or fusing of ash seems to predominate resulting in decreased pore volume and 

surface area (Downie et al., 2009; Fu et al., 2011) reducing the extractability of plant 

nutrients. Therefore any beneficial properties obtained at higher HTT may be at a cost of crop 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

nutrient availability. The stable-C concentration of biochar samples was compared to the 

concentrations of extracted Ca, Mg, K, Na, P and total P  in Fig. 6a,b,c,d,e,f respectively and 

WSP-450-5 was consistently associated with the highest extractable amounts of Ca (100 %), 

K (100 %), Mg (69.9 %), Na (80.2 %) and P (100 %) as well as the second highest CEC (72.5 

cmolc kg-1) of any biochar. While the processing conditions used to produce this biochar did 

give a high pH (9.9) the stable-C content was relatively low (58.9 %) compared to other 

biochar samples investigated. This highlights the trade-off between C storage versus 

enhancing soil quality (Jeffery et al., 2013). While WSP-450-5 was associated with the largest 

amount of extractable nutrients it was not the only biochar to show positive results for this 

functional property. The highest extractable P content was found in WSP-550-5 which also 

contained a stable-C concentration of 98.2 %. This again demonstrates the increased 

availability of nutrients from biochar produced at HTT > 550oC. Two further biochar samples 

(WSP-650-5 and WSP-550-100) also showed a potentially positive combination of 

extractable P (> 44.5 %) and stable-C concentration (> 99.5 %). All other biochar samples 

either contained too low a concentration of stable-C or extractable P. WSP-650-5 also 

demonstrated a high stable-C (99.5 %) concentration in conjunction with  high extractable Ca 

(51.7 %) and K (100%) concentrations. When excluding WSP-450-5 (due to low stability) the 

remaining biochar samples displayed extractable Mg < 22 % while the majority of Na values 

fell below 41 %. 

Due to its content of N, P and K, biochar  can serve as a low grade fertilizer (Glaser et 

al., 2002; Novak & Busscher, 2013) with potential to improve soil quality. Free bases such as 

K, Ca and Mg can not only increase soil pH but also provide readily available nutrients for 

plant growth (Glaser et al., 2002; Novak & Busscher, 2013). However, biochar is potentially 

more important as a soil conditioner and can support nutrient transformation in soil rather 

than acting purely as a source of nutrients (Glaser et al., 2002). However these nutrient 
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transformations can also result in negative effects on plants, including N deficiency caused by 

N immobilization (Chan & Xu, 2009; Atkinson et al., 2010) where microorganisms are 

stimulated by the labile fraction of biochar to decompose available N in soil (NH4
+ and NO3

-) 

or from SOM if the available N concentration in soil is low. A high mineralisation rate has 

been attributed to a larger labile C fraction present within biochar making low temperature 

biochar more likely to cause the activation of soil microorganisms (DeLuca et al., 2009; 

Nelissen et al., 2012). However the bulk of the remaining organic C present within biochar 

does not lead to mineralisation-immobilization reactions because of its highly recalcitrant 

nature (Chan & Xu, 2009). Biochar has also been seen to adsorb NH4
+ and NH3

- from soil 

solution and thus reduce the availability of inorganic N (DeLuca et al., 2009).    

C stability versus soil enhancement and energy output 

The lower stable-C fraction of WSP-450-5 demonstrated that focusing pyrolysis to 

produce biochar with properties favouring nutrient extraction could affect the C sequestration 

potential of the related biochar; therefore enhancing both functional properties could prove to 

be impossible without directly affecting the other property. Although the proportion of 

extractable nutrients increased between 450oC – 550oC it was actually seen that biochar 

produced from higher HTT provided the better overall result when combined with the other 

functional properties of biochar.  

Although the energy content of pyrolysis co-products was not covered within this 

study, previous studies into the energy balance of the system concluded that applying higher 

pyrolysis HTTs actually resulted in increased C storage in addition to a larger amount of 

energy available within liquid and gas products (Crombie & Mašek, 2014a, 2014b). When 

considering the conclusions reported in these studies in conjunction with the results of this 

work, pyrolysis at HTT > 550oC can produce biochar with long-term stability, high alkalinity, 
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high biochar CEC, and deliver good concentrations of nutrients to soil, while providing 

additional heat and power generation potential through the utilisation of liquid and gas co-

products.    

In summary, the main objective of this work was to relate differences in biochar 

functional properties to pyrolysis process parameters while seeking combinations of 

functional properties that could lead to improvements to the environmental performance of 

biochar. The results showed that while CEC and available nutrients tended to be more 

favourable at lower HTTs, high temperature pyrolysis still demonstrated beneficial values for 

these soil enhancing properties as well as increased alkalinity and stable-C yield. Overall the 

differences between the functional properties of low and high heating rate biochar were not 

considerable. The lower heating rate may have produced biochar with marginally more 

beneficial properties however the process constraints imposed by slow heating (e.g. low 

throughput, large equipment) are unfavourable for industrial biochar production. Therefore a 

combination of production conditions and feedstock under which biochar with positive 

functional properties of high long-term C sequestration and soil enhancing capabilities was 

achievable.  

These findings are important, and in conjunction with detailed life cycle analysis (LCA) 

as well as comparative studies analysing the trade-offs between different benefits i.e. C 

storage and electricity generation, would provide a firm basis for decisions on best biochar 

deployment practices. While pyrolysis on a small-scale allowed for the high level of control 

needed to investigate the impact of production conditions and to identify regions of major 

property changes, the same control may not be achievable when using industrial-scale 

pyrolysis. It is reasonable to assume that if biomass particles are exposed to the same thermal 

history and environment (within the reactor), the same type of biochar can be produced, no 
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matter the scale or type of pyrolysis unit. Therefore the challenge is to design and control the 

conversion process to ensure the correct processing conditions. Furthermore field testing of 

selected biochar is required to first validate laboratory assessed functions to behaviour in soil 

and observe the development of functional properties with time. This work represents an 

important first step towards the ambitious goal of bespoke biochar, engineered to deliver 

specific environmental response. 
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Table 1: Composition of feedstock used throughout the pyrolysis experiments expressed 
on dry mass basis (db). 
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Table 2: Concentration of nutrients extracted from the PC and WSP feedstock via ammonium 
acetate 
 

Extractable Nutrients [mg/kg] 

Sample Ca K Li Mg Mn Na Total P Extracted P 
CEC 

[cmolc/kg] 

Pine Wood Chips 787.0 787.0 0.04 162.7 73.5 422.5 146.0 174.0 51.0 

Wheat Straw Pellets 1969.0 1969.0 0.06 213.7 2.6 401.1 335.0 206.0 117.0 
 

 
 
 
Table 3: The ash content (dry mass basis, db), CEC and extractable nutrient concentrations of 
biochar produced from PC and WSP feedstock 
 

Extractable Nutrients 

Sample 
Ash  

[wt.%, db] 
Extracted biochar Nutrient / Extracted Feed Nutrient [%] Extracted Biochar P 

/ Total Biochar P [%] 
CEC 

[cmolc/kg] Ca K Mg Na P 
PC350/5 1.4 5.3 4.3 7.7 34.1 12.8 21.5 35.7 
PC450/5 2.9 10.3 13.8 9.5 34.5 9.8 17.4 60.6 
PC550/5 4.2 4.5 4.1 4.9 22.0 9.2 14.0 65.9 
PC650/5 5.9 6.6 13.6 5.5 21.5 7.2 9.0 41.4 
PC350/100 3.4 5.6 8.8 6.7 28.7 17.0 15.3 38.4 
PC450/100 3.4 10.1 12.6 5.3 19.1 8.0 13.9 48.0 
PC550/100 0.7 11.2 18.9 5.5 18.9 4.5 5.1 32.9 
PC650/100 5.0 13.8 36.8 5.9 20.1 9.4 12.8 27.5 
WSP350/5 14.4 22.8 17.2 16.5 40.7 87.0 82.1 30.7 
WSP450/5 17.6 100.0 100.0 69.9 80.2 100.0 100.0 72.5 
WSP550/5 20.1 24.1 84.3 12.8 53.3 89.5 85.8 27.4 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

WSP650/5 21.9 51.7 100.0 21.1 68.4 44.5 44.5 79.6 
WSP350/100 - - - - - - - - 
WSP450/100 20.9 12.7 24.1 9.0 26.1 82.2 78.2 36.8 
WSP550/100 21.9 8.2 22.1 5.6 24.7 65.0 61.2 60.6 
WSP650/100 23.7 4.7 15.7 4.4 25.3 24.5 22.0 46.7 

 
 
 
Figure legends 
 
Figure 1: Small scale batch pyrolysis unit located at UKBRC 
 
Figure 2: Environmental stability of PC, WS and WSP char expressed on (a) char carbon 
basis (b) feedstock carbon basis. Error bars were added to the graph to show standard 
deviation of stable-C %, but are not visible due to the scale of the data (n = 3). All values for 
the standard deviation of stable-C % were > 0.63 and were provided in the supplementary 
material (Table S2).  

Figure 3: Labile C content of PC, WS and WSP biochar expressed on (a) char carbon basis (b) 
feedstock carbon basis. Error bars were added to the graph to show standard error of labile-C 
% (n = 4). All values for the standard deviation of labile-C % are provided in the 
supplementary material (Table S2).  

Figure 4: Investigating the effect of temperature and heating rate on the pH of biochar. Error 
bars were added to the graph to show standard error of biochar pH, but are not visible due to 
the scale of the data (n = 3). All values for the standard deviation of pH were > 0.07 and were 
provided in the supplementary material (Table S2). 
 
Figure 5: Matrix plot comparing biochar functional properties, (a) stable-C vs labile-C (b) 
stable-C vs pH (c) stable-C vs CEC (d) labile-C vs pH (e) labile-C vs CEC (f) pH vs CEC. 
 
Figure 6: Combination of scatter plots showing the comparison of stable-C concentration with 
the concentration of extractable nutrients, (a) stable-C vs Ca (b) stable-C vs Mg (c) stable-C 
vs K (d) stable-C vs Na (e) stable-C vs P (f) stable-C vs total P. 
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