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ABSTRACT 

The frequency of power outages being experienced in Sub-Saharan Africa mean that traditional methods of electricity demand forecasting 

which rely on directly observed demand data are inadequate for use in projections. Nevertheless, accurate forecasting methods are 

urgently required to ensure efficient power system operations and expansion planning. To address this gap, we develop a novel method 

to estimate unsuppressed electricity demand for developing countries. This follows a bottom-up approach based on socioeconomic data 

and a time-use database developed from a householder survey, which are used to generate household profiles using a Markov Chain 

approach. These profiles are then converted into electrical load time series by a series of appliance models, using reanalysis weather data 

to accurately represent ambient conditions for the generation of cooling demand profiles. We apply our method to a Nigerian case study, 

obtaining the first time series of unsuppressed residential electricity demand for the country using the first Time-of-Use Survey (TUS) 

for Nigerian households. We validate our model outputs using the results of a small-scale residential metering trial, which yielded a 

correlation coefficient of 0.97, RMSE of 0.04, and percentage error of 6% between measured and model data. This evidences that our 

method is a credible and practical tool for electrical demand studies in developing countries. Using the model, the forecasted domestic 

demand for Abuja Electricity Distribution Company ranges between 345 and 575 MW, while that of Nigeria ranges between 3,829 and 

6,605 MW 

Keywords: load modelling, load management, power demand, stochastic processes, cooling, buildings.

1. Introduction

Historical underinvestment due to inadequate funding and 

inefficient power sector operations, along with a rapidly 

growing population in developing countries, particularly in 

sub-Saharan Africa, have resulted in a significant population 

of about 620 million people without access to grid electricity 

[1]. The total installed generation capacity largely exceeds 

available production capacity in many of these countries, due 

* Corresponding author. Tel.: +234-908 599 6984, e-mail: oluwadamilola.oluwole@energy-mrc.com 

to constraints in power generation, transmission and 

distribution, resulting in inadequate energy supply to their 

electrified population [2]. 

To manage the limited energy supply, network operators 

resort to load shedding to manage inadequate energy 

allocations from the grid. This load shedding, which can either 

be pre-planned or arbitrary, occurs at different transmission 

voltage levels of the network by connecting and disconnecting 

customers. While the frequency and duration of outages vary 
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across countries (2–2500hours/year), customers increasingly 

resort to the use of costly back-up diesel generators [1]. 

At the transmission level, the inability of generation to meet 

demand results in an essentially flat measured load duration 

curve that does not reflect the actual spatial and temporal 

variations in demand. To plan investment effectively and 

efficiently in large scale generation, network infrastructure and 

potential renewable energy necessary to provide appropriate 

supplies it is important that realistic estimates of the 

unsuppressed demand are used. Techniques currently 

employed in forecasting demand including time series [3], 

econometric  [4], and computational intelligence [5], cannot 

readily be applied, as studies in developing countries have 

established an absence of causality between demand and 

economic variables [6], an incoherent trend in historical 

demand due to load shedding [7], and typically neglect 

portions of historical data due to influence of suppressed 

demand and system losses [8]. The application of weather 

variables in forecasting demand in Sub-Saharan Africa is also 

of limited value. Two forecasts from southern Africa [9] and 

[10], have both stated that industrial demand, the major driver 

of demand is independent of temperature, and hence do not 

include temperature in their national forecasts. Unavailable 

temperature data has also been the reason for non-inclusion in 

forecasts [11]. In northern Africa, a study has shown that a 1% 

increase in average temperature will increase electricity 

consumption by 1.32% [12]. 

Typically, demand forecasting tools such as IAEA’s Model 

for Analysis for Energy Demand (MAED) [13] are employed 

in Sub-Saharan Africa, but these are limited due to the 

unavailability of data required for sectoral energy projections, 

with generated load curves impacted by data gaps due to 

frequent power outages. 

Alternative approaches include the 2009 demand study by 

the now defunct Power Holding Company of Nigeria (PHCN), 

which employed a sigmoid growth curve method to forecast 

peak demand, using per capita residential energy consumption, 

electrification rate and load factor assumptions [14]. These 

estimates were obtained from the residential energy sales by 

distribution companies, and as a result still reflect suppressed 

demand, low electrification rates and no consideration of 

weather sensitivity. 

Energy surveys and measurement campaigns are also 

employed to estimate demand trends. A United Nations 

Development Programme (UNDP) residential metering study 

data [15] used month-long metering of around 35 households 

in 6 Nigerian States in 2012/13 to estimate domestic 

consumption. However, the reliability of annual estimates is 

limited as they are extrapolated from monthly measurements 

subject to supply interruption, partial capture of appliance-use 

and omission of household socioeconomic data. 

For renewable energy supply assessment, it is important that 

analysis does not simply report peak demand, as increasingly, 

the variation in demand and its relationship to production 

becomes more important [16]. To this end, a method is 

required to estimate time series demand that is unconstrained 

by suppressed demand data. In addition, the substantial 

differences in climatic conditions across geographically larger 

countries with warm temperatures indicates potential 

significant space cooling demand, which means that spatial 

characteristics are also important.  

Meeting these requirements lends itself to a bottom-up 

modelling approach able to capture essential features of energy 

use given broadly similar electrical appliance ownership and 

requirements in the residential sector. The heterogeneous 

nature of energy use, electrical equipment, and sectoral 

behavior in the commercial and industrial sectors would 

require an intensive modelling exercise currently beyond the 

scope of this study. 

While bottom-up modelling of residential energy demand is 

no longer exclusively in Western nations such as the UK [17] 

and Sweden [18], it is still mainly applied in Western nations. 

The climate assumptions in these models differ significantly 

from the tropical climate and socioeconomic conditions e.g. 

appliance ownership, that apply to residential electricity 

demand in Sub-Saharan countries. As such, simple translation 

of existing models would not be credible. 

In this paper, we therefore develop, demonstrate, and 

validate a novel bottom-up weather-sensitive residential 

demand model which is suitable for use in developing 

countries. In doing so, we aim to make three contributions to 

the existing literature. First, we develop a novel method to 

model unsuppressed electricity demand in developing 

countries. This provides a means of estimating demand even 

when directly observed data is unreliable because of recurrent 

outages due to grid collapses or load shedding, and facilitates 

use of time series operation and planning approaches that are 

standard in Western nations either directly or through 

providing means to cross-validate simpler methods and 

examine the credibility of limited measurement data. Second, 

in our case study, we apply this model to the Nigerian power 

system, obtaining the first weather-sensitive time series model 

of domestic energy demand in Nigeria driven by household 

activity and weather patterns. Third, the Time-Use Survey 

(TUS) which is used as input data for this model is itself of 

interest, being the first of its kind for Nigerian households.  

The remainder of this paper is arranged in the following 

way: Section 2 provides a description of the model, section 3 

discusses the case study, section 4 gives a presentation of the 

results which are discussed in section 5, and finally, the 

conclusions are made in section 6. 

2. Methods 

An overview of our modelling approach is shown in Figure 

1. At the core is a residential demand model which provides a 

time series simulation of energy use from appliances and air 

conditioning (A/C) for an individual household. Household 

profiles are stochastically generated from information on 

occupancy, appliance ownership and household activity 

derived from a TUS. The household profile data is then 

converted to electricity demand using appliance and A/C 

models.  

Weather data is used to simulate the ambient conditions 

which influence A/C and lighting use.  Since data gathering is 

the most expensive part of most modelling efforts, our model 

is capable of simulating demand from the individual household 

level up to many thousands of households with defined 



socioeconomic characteristics, providing robust aggregations 

at regional, Distribution Company (DISCO), and national 

levels. This ensures that a single input dataset can be used for 

a wide range of operational and planning purposes. Regional 

and national aggregation is achieved using the after diversity 

maximum demand (ADMD) method, which is widely used by 

network operators in aggregating residential demand, such as 

in the UK [19] and Australia [20].  

 

 
 

Fig. 1. Overview of the modelling approach 
 

2.1 Household Time-Use Survey 

The development of model household profiles requires a 

TUS. This is a detailed survey of household activities, which 

can be used in building household activity profiles, as 

performed in previous UK studies to represent 22 [21] and 

10,000 [22] households, respectively. TUS survey results are 

available for some countries, including in Sub-Saharan 

countries with energy supply shortages, e.g. industrial use in 

Cameroon [23] and residential use in Botswana [24]. For our 

Nigerian case study, a survey has, to our knowledge, not been 

conducted [25]. It was therefore necessary to design and 

conducted a bespoke survey to obtain information on activities 

and household energy usage.  

TUS surveys address areas of concern with the use of 

metered data from households that experience frequent load 

shedding, such as the failure to capture demand served by 

back-up generators, and also the tendency for household 

demand to shift to periods of restored power supply which 

tends to inflate demand during periods of power supply 

uncertainty. Using activity diaries and questionnaires which 

ask participants to detail their activities assuming 

uninterrupted supply reduces this risk, as activities are better 

distributed throughout the day and not impacted by load 

shedding.  

Our Nigerian questionnaire requested the preferred times of 

performing basic household activities; a half-hourly resolution 

was used to make this manageable for participants. It focused 

on typical weekdays and weekends only, again to reduce 

complexity for respondents. It also gathered data on appliance 

ownership, building types, occupancy and customer demand 

classed. More details about the survey can be found in Section 

3 below. 

The information captured was sufficient to capture realistic 

activity patterns and household profiles. While household 

activity times as recorded by respondents may differ in 

practice, across a larger number of respondents there is no 

reason to assume a systematic bias, since a concentration of 

activities was anticipated to occur around similar times. 

 

2.2 Household Profiles 

A key feature of residential demand modelling is the 

simulation of household occupant behavior. Occupant activity 

is the key driver of electrical energy consumption, as it 

determines usage of appliances. In our model, daily occupancy 

profiles of each household are constructed based on results of 

the TUS’ half-hourly activity diary and are simulated using a 

combined probabilistic and Markov Chain approach. In 

simulating household activity, transitions are implemented 

between ‘active’ and ‘inactive’ states. Active states are defined 

as periods when the household engages in activities that 

require electricity, while inactive states are periods the 

household does not engage in such activities, e.g., sleeping 

times, during which only cooling demand is present. 

The survey information is used to develop a probabilistic 

model of household activity. From a TUS diary, a Markov 

Chain transitional probability matrix is created by summing all 

transitions between active x and inactive y states [26]: 

 𝑝𝑥𝑦(𝑡) =  
∑ 𝑛𝑥𝑦

𝑌
𝑦=1

𝑛𝑥(𝑡)
 (1) 

where 𝑝𝑥𝑦(𝑡) is the transition probability from state x to y 

between time intervals, 𝑡 and 𝑡 + 1, 𝑛𝑥𝑦 is the number of 

transitions between the states x and y, and 𝑛𝑥(𝑡) is the 

population in state x at time t.  This is applied to the household 

survey diary to generate the transitional probability matrix as 

shown in Fig 2. and the probability of initial conditions across 

all the households. The probability distribution of the 

household initial condition is determined by the activity state 

at 𝑡(1). In simulating activity in the model, transition occurs at 

each time step 𝑡 by comparing the probability 𝑝𝑥𝑦 to a 

generated random number, to determine the household active 

state.  

 

 
Fig. 2. Transition Probability Framework 

 

Household electrical demand is driven by household 

activities including sleeping, cooking, etc. The activity in any 

one household is simulated based on the activities of the 

‘population’ who possess similar socioeconomic and appliance 

characteristics. From the survey, a time distribution for each 

household activity is generated by calculating the probability 



of activity occurrence among all active households in the 

survey population in each time step. Activity probabilities are 

then obtained using: 

 𝑝𝑗,𝑤𝑑(𝑡) =  
∑ 𝑛𝑗,𝑤𝑑

2
𝑤𝑑=1

𝑛𝑤𝑑,𝑎𝑐𝑡𝑖𝑣𝑒(𝑡)
 (2) 

where 𝑝𝑗,𝑤𝑑(𝑡) is the probability of occurrence of activity type 

j on the day type (i.e. weekday or weekend) wd at time t, 𝑛𝑗,𝑤𝑑 

is the total number of households performing that activity; and 

𝑛𝑤𝑑,𝑎𝑐𝑡𝑖𝑣𝑒  is the total number of households that are active. An 

example of the cooking activity probability distribution is 

shown in Fig. 3 and described in detail in the next section. 

 

 
Fig. 3. Example of the conversion of household active states to 

cooking appliance (electric cooker) demand 

2.3 Appliance Demand Model 

We model 24 separate appliances. Some, such as TV sets, 

electric irons, and electric fans, are standard across all 

households while others, such as A/C, microwave ovens and 

washing machines, are only present in more affluent 

households. The household active state is converted to 

electrical energy demand using the power ratings of 

appliances, activity profiles, an appliance scaling factor, and 

the duration of appliance use. For a household that owns an 

appliance, the demand of that appliance is determined by its 

current active state at time t, the activity probability linked to 

that appliance at t, the appliance demand (or stand-by) and the 

duration of appliance use.  

To represent the arbitrary nature of human use, appliance 

activation occurs if a generated uniform random number is less 

than the product of the appliance activation probability and the 

appliance-scaling factor during the period of likely appliance 

use. This can be expressed as: 

 𝑝𝑗,𝑎(𝑡) =  𝑝𝑗(𝑡) ×  ℎℎ𝑠𝑡𝑎𝑡𝑒(𝑡) (3) 

  𝐷𝑎(𝑡) = {
𝑅,       𝑟𝑛 ≤  𝑝𝑗,𝑎(𝑡) × 𝑠𝑗,𝐸

 0,       𝑟𝑛 ≥ 𝑝𝑗,𝑎(𝑡) × 𝑠𝑗,𝐸  
  (4) 

where 𝑝𝑗,𝑎 is the activation probability of appliance a 

associated with activity j, 𝑝𝑗 is the activity probability and 

ℎℎ𝑠𝑡𝑎𝑡𝑒 is the household active state. 𝐷𝑎 is the appliance active 

power demand (W), R is the appliance rating (W), 𝑠𝑗,𝐸 is the 

appliance scaling factor, and rn is a random number generated 

with uniform distribution. The scaling factor is a measure of 

the probability of the daily activation of an appliance based on 

its annual use. 

Fig. 3 shows the conversion of a household active state to an 

electric cooker power demand for cooking events. The cooker 

rating is 3kW is selected from a uniform 2.5-4.0 kW range 

from typically available cookers [27]. The red line shows the 

overall probability of activity in the household, the three blue 

regions show actual household activity in a day and the yellow 

regions show the appliance activation period when the electric 

cooker could be activated. To simulate cooking, the random 

number test then determines appliance activation, and as is 

shown for this simulated household, cooking occurs at 

lunchtime and in the evening. For each cooking activity, the 

duration is selected from a uniform 15-45 min range, obtained 

from existing TUS data from across Africa [28].  

The duration of appliance usage is determined from the 

survey results for ‘human activated’ appliances and duty cycle 

studies for other appliances [29]. Lighting demand has been 

modelled using an implementation of the algorithm developed 

by [30], and hourly solar irradiance data.  

 

2.4 Air Conditioner Demand Model 

A/C usage is implemented using a zonal (room-by-room) 

approach for modelled buildings. The household active state 

and occupants determine the activation of the A/C in each 

room, with the cooling demand calculated as described in [31].  

In an air-conditioned room, the heat balance is the sum of the 

heat loss (cooling) from the A/C and heat gains from 

infiltration, occupants, appliances, conduction and fenestration 

[32]. The change in air temperature due to the heat balance can 

be expressed as:  

 
𝐶𝑎𝑖𝑟

𝑑𝑇𝑟𝑜𝑜𝑚

𝑑𝑡
=  𝑞𝑔𝑎𝑖𝑛𝑠 − 𝑞𝑎𝑐  (5) 

where 𝐶𝑎𝑖𝑟  is the thermal mass of air (J/K), 𝑇𝑟𝑜𝑜𝑚 is the room 

temperature (K), 𝑞𝑎𝑐 is the cool air outflow from the A/C and 

𝑞𝑔𝑎𝑖𝑛𝑠 are the heat gains within the room (W). 

Fig. 4. An example of household cooling demand 

 

The heat gain across each building fabric component in the 

room is modelled separately and combined to calculate the 

room heat gain. For the walls, both internal and external walls 

(active surfaces) are modelled. For single room apartments and 

flats, they are modelled as externally located in the buildings, 

e.g., apartment blocks.  The heat flow across the building fabric 



can be expressed using [32]: 

 𝑞𝑡 = 𝑘((𝑇𝐸𝑀 − 𝑇𝑟𝑜𝑜𝑚) + (𝑇𝑆,𝑡 − 𝑇𝐸𝑀)𝑓) (6) 

where 𝑞𝑡 is the heat gain (W) at time t, 𝑇𝑆,𝑡 is the sol-air 

temperature (K), 𝑇𝐸𝑀 is the mean sol-air temperature over 24 

hours and k (W/K) is the product of thermal transmittance 

(W/m2K) of the building fabric and its area (m2). f is the 

decrement factor that accounts for the time lag effect of heat 

flow across the building fabric due to the thermal inertia of the 

material [33]. The sol-air temperature models the effective 

external building fabric temperature accounting for the 

incident radiation 𝐸𝑡 (W/m2) on the vertical surfaces:  

                        𝑇𝑆,𝑡 =  𝑇𝐸,𝑡 +  
𝛼𝐸𝑡

ℎ𝑂

 (7) 

where 𝑇𝐸,𝑡 is the external air temperature (K) and ℎ𝑂 is the heat 

transfer coefficient for radiation and convection at the outer 

surface (W/m2).  

The cooling model operates during two time periods, the 

night-time sleep period, and the day-time active period. For 

night-time cycles, the A/C is activated at sleep times and 

operates till the wake-up time. For the daytime cycle, the A/C 

is activated when the household is active and for the duration 

of that active period and switched off otherwise. To account 

for the operation of the A/C unit (5) can be rewritten as: 

 𝐶𝑎𝑖𝑟

𝑑𝑇𝑖

𝑑𝑡
=  𝑞𝑔𝑎𝑖𝑛𝑠 − 𝑤𝑞𝑎𝑐     (8) 

where w is the thermostat status (either on or off). Thermostat 

operation is governed by [34]: 

 𝑤 =  { 
0,          𝑇𝑟𝑜𝑜𝑚 ≤  𝑇𝑠 − ∆ 
1,         𝑇𝑟𝑜𝑜𝑚  ≥  𝑇𝑠 + ∆ 

    (9) 

where 𝑇𝑠 is the set-point temperature (K) chosen by the 

household for comfort, and Δ is the dead-band. The A/C is 

switched on when room temperature exceeds the upper bounds 

and switched off below the lower bound.  

The resulting A/C demand is given by: 

 𝐷𝑎𝑐 =  𝑤𝑞𝑎𝑐/𝐸𝐸𝑅   (10) 

where EER is the energy efficiency ratio (9.47Btu/h.W). An 

A/C system is rated at 2.6kW with a 6m3/min airflow rate [31]. 

Natural infiltration is modelled as 0.5 room air changes per 

hour [33]. 

Fig. 4 shows an example of A/C operation in a 2-bedroom 

flat. It operates from 9am-1.30pm and from 5.30pm-12.00am 

when the household is active, and the maximum comfort level 

is exceeded. It is off during the inactive afternoon period and 

when the temperature is below the maximum comfort level in 

the morning when the household occupants are asleep. Cooling 

demand between 9.00pm-12am represents the aggregate 

cooling demand from each A/C unit in the 2 bedrooms. 

 

2.5 Household Demand 

The total household active power demand 𝐷ℎℎ is the sum of 

demand D from all household appliances A including the A/C: 

 
𝐷ℎℎ(𝑡) = ∑ 𝐷𝑎(𝑡)

𝐴

𝑎=1

 (11) 

2.6 Aggregation Model 

To aggregate the demand profiles generated from the 

simulated households, we develop a bottom-up model that 

allows for flexibility in the aggregation grouping criteria, 

including socioeconomic and spatial information, using the 

after diversity maximum demand (ADMD) method.  

The ADMD method is typically applied in low voltage 

networks to forecast demand, and estimation is a challenging 

exercise due to differences in customer characteristics. In 

practice, the ADMD value tends toward the average demand 

of a diverse customer group. The use of the residential model 

enables study of the ADMD within the same customer 

consumption category and limits the averaging effect on peak 

demand.  

The ADMD value is calculated from the time series residential 

demand model output. The model is run multiple times for a 

customer demand class and the ADMD values are then used to 

estimate the peak demand using the customer population for 

each State. The ADMD value is given by: 

𝐴𝐷𝑀𝐷 =  lim
𝐽 →∞

1

𝐽
∑ 𝑀𝐷𝑗

𝐽

𝑗=1

(𝑡) (12) 

where 𝑀𝐷𝑗 (MW) is the demand of customer j of a group of 

customers J, at the period of maximum simultaneous demand. 

A single distribution company (DISCO) typically supplies 

several administrative areas, consisting of customers in 

different tariff classes. To perform regional aggregation, the 

peak demand PD (MW) for each DISCO can be expressed as: 

𝑃𝐷(𝑡) =  ∑ ∑ 𝑅𝐶𝑔,𝑛 𝐴𝐷𝑀𝐷𝑔,𝑛(𝑡) 

𝑁

𝑛=1

𝐺

𝑔=1

  (13) 

where g is each administrative area in the DISCO region (G is 

all areas served by each DISCO), ADMD is the after diversity 

maximum demand value (W) for each customer class n (N 

customer classes), and RC is the number of customers in each 

customer class. The demand values for each DISCO are then 

combined to determine national values. 

3. Case Study 

The purpose of this case study is to demonstrate and validate 

the use of our residential electricity demand model. We apply 

our model to generate regional and national aggregate demand 

estimates for Nigeria with emphasis on peak demand; 

estimates which, to date, are not publicly available. In Nigeria, 

11 distribution companies with locational monopolies serve 

6.4 million customers (Fig. 5), with 84% of those residential 

[35]. In Nigeria, the customer class or tariff class as defined by 

the electricity regulator based on its definition of peak demand 

for each class. It categorizes residential customers according to 

their energy use: R1 customers use the least energy (<100W), 

R2 customers consist of single and 3-phase customers typically 

in apartments and whole buildings (< 12kW), R3 represents 

maximum demand customers (< 400kW) typical of small 

estates and government houses, and R4 customers represent 

the largest demand class (<16MW).  



 
Fig. 5. Nigeria Population Distribution 

 

 
Fig. 6. Cooling Degree Days - Nigeria 

 

Published national socioeconomic data on building stock, 

appliance ownership, and customer population are used to 

create household profiles in each tariff class at State level 

which is then aggregated. 

In estimating demand, the uncertainty in peak demand must 

be accounted for. This uncertainty is treated by applying a 

scenario-based approach to the socioeconomic data; 

specifically, we use three appliance ownership scenarios for 

the entire country. We use 2015 weather conditions for each 

State in the residential demand model, using reanalysis 

weather data, such that the time series reflects variability in 

ambient conditions between the various states (Fig. 6). 

 

3.1 Socioeconomic Data 

3.1.1  Household Survey 

Two questionnaires were used: one administered through face-

to-face interviews, and one conducted online. Both were 

carried out between March and May 2016 in the nation’s 

capital, Abuja, which was selected for this study due to its 

population diversity and fair representation of people 

originating from all over the country. The questionnaires were 

distributed through the Abuja Electricity Distribution 

Company (AEDC). 

The sampling methodology recommended by [36] was used 

to determine the sample size. An assumed 5% error margin and 

99% confidence interval level required a target sample size of 

750 for the face-to-face survey. With an adjusted confidence 

interval level of 95%, and the same error margin, a sample size 

of 350 respondents was targeted for the online survey. 

532 respondents fully completed the face-to-face survey 

(71% response rate) and 305 completed the online survey (88% 

response rate). Table 1 provides a breakdown of the face-to-

face respondents. While income-related questions were not 

included in the survey due to their invasive nature, urban 

(54%) and rural (46%) residential customers are both well 

represented, limiting the risk of wealth bias. The tariff class 

representation is also reflective of the national domestic 

customer distribution [35]. The average household occupancy 

was 4.35, similar to official national estimates of 4.5 [37]. 

Results from the household survey is available in [38]. 

 

Table 1 

Description of Household Survey Respondents 

Variables Classification Number (%) 

Data from 

[34,36] (%) 

Settlement 
Type 

Rural 243 (46) 65 
Urban 289 (54) 35 

Tariff class 

R1 42 (8) 2.9 

R2 445 (84) 97 

R3 & R4 10 (2) 0.1 
Unmetered 35 (7) N/A 

 

3.1.2 Building Characteristics 

The model assigns a building type to each profile, with 

probabilities based on the national distribution of building 

stock type: single room apartments (68%), flats (6%), duplex 

(1%) and whole buildings (25%) [37]. Single room apartments, 

typical of high-density residential areas in Nigeria, usually 

have just one window and one door. Other building types 

representative of medium and low-density residential areas are 

allocated bedrooms using data from [39], and have been 

designed using [40]. For walls, sandcrete blocks have been 

selected for the model; these are extensively used in the 

building industry in Nigeria. They are hollowed blocks, with 

one-third of a typical block volume, and a density of 

1,947kg/m3 [41]. The window area is are modelled as 24% of 

the area of the external walls. Single-glazed windows, typical 

of Nigerian homes, and usually fitted with mosquito nets, have 

been assigned an internal shading factor of 0.8. Additionally, 

an orientation relative to due south is assigned to each building; 

this affects levels and timing of sol-air temperatures, but the 

effect is relatively small (~2% difference between best- and 

worst-case building orientation).  

 

3.1.3 Appliance Ownership 

Appliance ownership data for selected appliances from the 

survey is presented by customer tariff class in Table 2. R1 

customers, typically rural and low-income customers, have the 



lowest appliance ownership rates for all appliances, especially 

for high rated power appliances.  R2 customers, typically urban 

customers, have higher appliance ownership rates than R1 

customers. R3 customers, which are typically high income and 

residential estate customers, have the highest appliance 

ownership rates. 

Ownership of high-power rated appliances are high 

compared to the national figures for Nigeria as show in Table 

3. The low national ownership rates from the published 

statistics for Nigeria are impacted by the electrification rate of 

(51.3%) in the country [37]. The National Bureau of Statistics 

(NBS) survey includes unelectrified respondents which 

reflects in the low appliance ownership figures, as the quality 

of electricity supply is expected to influence electrical 

appliance purchases. With a higher electrification rate in 

Nigeria’s urban areas, the appliance ownership is higher than 

that of the national average. The disparity in ownership rates 

could also be attributed to the survey location, Abuja (FCT), 

having higher population wealth indicators compared to the 

national average [42]. 

 

Table 2 

Survey electrical appliance ownership by tariff class (%) 

Appliance R1 R2 R3 & R4 

Fan 88 96 100 

Refrigerator 38 70 100 
Freezer 5 41 70 

Microwave Oven 5 35 100 
Kettle 21 43 70 

Shower 0 14 40 

Electric Cooker 17 27 100 
Television 86 93 100 

Electric Iron 69 88 80 

 

Table 3 

High power rated appliance ownership comparison (%) 

Appliance 
Survey Nigeria 

(All) 

Nigeria 

(Urban) 

Washing machine 23 1.5 3 
Electric cooker 26 3.4 5.8 

Electric shower 31 N/A N/A 

Microwave oven 35 3 6 
Air conditioner 39 2.6 5.1 

 

Table 4 

Appliance ownership scenarios 
Tariff Class Low Medium High 

R1 Rural States Urban 

R2 States Urban Survey 

R3 & R4 Survey Survey  Survey  

 

The appliance ownership data from the survey undertaken 

in Abuja cannot be applied to all States in Nigeria due to 

differences in household income across the country, therefore 

the 2015 national appliance ownership data and survey results 

[42] were both used in the model. However, the national data 

on appliance ownership is presented at regional, rural, and 

urban levels and cannot be directly used since it represents 

appliance ownership across all tariff classes within a region. 

There are six regions comprising of at least five States, while 

rural and urban data are representative of the entire country. 

In order to map appliance ownership to electricity customers 

within each State, account for uncertainty in assumptions, and 

also represent the demand impact of economic development, 

manifesting itself through appliance ownership, three 

scenarios have been developed for each tariff class, as shown 

in Table 4. The ‘Rural’ level represents nationally low rates of 

appliance ownership in rural areas. The ‘Urban’ level 

represents nationally high rates of appliance ownership in 

urban areas. The ‘State’ level gives the rates of appliance 

ownership in individual States which lie between rural and 

urban levels.  

The scenarios show progressively greater appliance use 

within classes. For (typically rural) R1 customers the ‘Rural’ 

level is used for the low scenario, increasing to ‘Urban’ levels 

in the high scenario. For R2 customers, we consider a range 

from ‘State’ to ‘Survey’ levels. High (‘Survey’) rates are used 

in all scenarios for R3 and R4 customers with incremental 

adjustments made to the AC ownership in the Medium and 

High scenarios. 

The appliances used in the model are based on their 

prevalence at the national level. Household profiles within the 

same tariff class are generated for each simulation. The list of 

appliances for each scenario can be obtained from [38]. 

 

3.1.4 Thermal Comfort Level 

Outdoor temperatures are the main determinant of A/C 

usage, and the relationship between indoor and outdoor 

temperature defines household comfort thresholds [43]. A 

thermal comfort study for Nigeria revealed an indoor 

temperature range of between 23.5 and 26.6°C [44]; 

households are sampled from a uniform distribution within this 

range. 

 

3.1.5 Customer Population 

The residential customer population data for each DISCO 

has been obtained from [35] and used for the weighted 

summation in Eq. 13 to derive the peak demand. 
 

3.2 Weather Data 

The lighting and A/C models use ambient weather data. The 

sol-air temperature requires temperature and radiation time 

series. These are derived from NASA’s MERRA-2 dataset [45] 

which is available on an approximately 5050 km longitude-

latitude grid. Hourly 2-metre air temperature data has been 

used directly for 𝑇𝐸,𝑡 while total irradiance 𝐸𝑡  is calculated 

from the surface incoming shortwave flux and extra-terrestrial 

radiant flux. The radiation variables are used to calculate 

diffuse and direct radiation which varies with surface 

orientation (and have been applied to hourly solar PV 

modelling [46]. The Boland-Ridley-Lauret method [47], has 

been adopted for diffuse fraction estimation given its 

predictive strengths over comparable models and ease of 

application [48]. Well-established trigonometric relationships 

[31] with latitude and longitude are straightforward to apply to 

the hourly temperature and irradiance data to simulate the 

external temperature of the building. 



4. Results 

4.1 Residential Demand Model Validation 

Using the above models and data, we simulate energy 

consumption at tariff class level. Aggregate demand data for 

each tariff class was generated by simulating 1,000 household 

profiles, as no significant change was observed in the model 

output data for larger simulation sets. A full year simulation of 

demand in Abuja FCT was performed for each tariff class with 

the survey appliance ownership data to assess model 

performance. 

Appliance ownership is the source of energy consumption 

disparity among tariff classes as shown in Fig 6. An individual 

R3 customer tariff class represents the demand of a small estate 

of about 200 units, hence the results presented here indicate a 

typical household within that estate. The demand profile 

presented is the simulated demand profile of a customer within 

that estate.  All three profiles have morning and evening peaks, 

representative of typical residential demand profiles, however, 

the peaks are only prominent in the demand profiles for the R2 

and R3 classes who typically own more electrical appliances 

and demand more energy than R1 customers. 

From Fig 7, the daily aggregate mean ( std. dev.) energy 

use reveals R3 customers have the highest energy use 19.6 

(3.3) kWh, R2 customers use 10.8 (1.6) kWh and R1 

customers use 2.1 (0.2) kWh. Floor area contributes to this as 

R2 and R3 customers typically occupy larger buildings 

requiring more cooling.  

The annual aggregate mean ( std. dev.) energy use by building 

type shows that, unsurprisingly, whole buildings have the 

highest consumption at 4.8 (0.7) MWh, duplexes use 4.0 

(0.6) MWh, flats use 3.6 (0.6) MWh and single-room 

apartments use 3.1 (0.5) MWh. The impact of the 

socioeconomic assumptions chosen for each scenario can be 

observed on the average daily peak demand per tariff class 

shown in Fig 8. The R1 customers average daily peak demand 

range between 0.23 - 0.74kW, R2 customer results range 

between 0.55 – 1.10kW, while the R3 customer results range 

between 1.21 – 2.24kW. 

To validate these results, we use the UNDP measured 

profiles for Abuja FCT obtained between March and April 

2012 [15], with modelled demand for Abuja FCT using 

MERRA-2 weather data for the same period. The load profiles 

from the UNDP study represent only the hours with grid supply 

and does not include the periods of load shedding. Since the 

UNDP study omits details on the building types and tariff 

classes of measured households, comparisons are made with 

simulation results for R2 tariff customers for the ‘high’ 

scenario. This is reasonable as the UNDP study is limited to 

households with A/C and the R2 tariff class, with A/C 

ownership, and represents over 95% of residential demand 

[30]. Validation result data is presented in [38]. 

Aggregate demand profiles of the modelled and measured 

data are presented in Fig. 9, with modelled data presented as 

averages for individual months (February to April, the dry 

season) and overall. There is a good similarity with peaks  

 
Fig. 6. Hourly demand profile by Tariff Class  

 
Fig. 7. Mean daily energy consumption by Tariff Class 

 
          Fig. 8. Mean daily peak demand by Tariff Class and Scenario 

 

 
Fig. 9. Residential load profile: modelled vs measured data [15]  



 

occurring in the same period, but modelled data shows an 

earlier pick up of afternoon load (12pm) which can be 

attributed to the concentration of activities resulting from the 

coarser time resolution of the TUS. Early morning 

temperatures increase from February to April and this is seen 

in the modelled early morning cooling load for those months, 

demonstrating the temperature sensitivity of the model. The 

statistical similarity with measured profiles (r = 0.97, RMSE = 

0.04, bias = 6%) suggests the model is suitable for simulating 

aggregated load profiles for Nigerian households. 

  

4.2 National Residential Demand 

Each of the 11 DISCOs serves one or more of the 37 States. 

Each State is modelled as 4 loads, one per tariff class. 

Modelling each State separately as presented in Fig 10 allows 

the spatial variations in weather to influence demand. An 

individual set of profiles is generated from the demand model 

for each tariff class for each State within the DISCO (total: 

1000 profiles  4 tariff classes  37 States). Using the 

residential customer population of each State, the ADMD 

model generates hourly peak demand, which is then 

aggregated for each DISCO. Aggregation is performed for 

each appliance scenario. 

 

 
Fig. 10. Residential Demand Aggregation Framework 

 

The results for the 4 States served by Abuja Electricity 

Distribution Company are shown in Table 5. While all States 

have R2 and R3 customers, wealthier and more urbanized 

States have more R4 and fewer R1 customers. All tariff classes 

are present in AEDC. 66% of residential customers served by 

AEDC live in single-room apartments, 10% live in flats, 23% 

live in whole buildings, and 1% in duplexes. The dominance 

of single room apartments limits appliance ownership and 

space cooling. The differences in appliance ownership results 

in a range of peak demand values. Given the current low 

appliance ownership in AEDC (e.g. 0.7% A/C ownership), as 

ownership levels reach national urban levels, significant 

increases in peak demand are observed. Between ‘low’ and 

‘high’ scenarios there is an overall 67% increase in peak 

demand, with R1 demand increasingly more (307%) than 

R3/R4 (68%).  

National residential peak demand estimates and time series 

data for 2015 are generated with the ADMD model. Table 6 

shows the national aggregate peak demand estimate for the 

scenarios along with individual DISCO demand at this peak 

(note that not all DISCOs experience peak simultaneously). 

Across the scenarios, the demand estimates for DISCOs with 

the highest values are largely driven by a combination of high 

customer population (Ibadan) and high appliance ownership 

(Ikeja, Enugu and Benin). From the ‘low’ to ‘high’ scenarios, 

significant change is seen in Kano (185%), Kaduna (136%), 

Yola (132%) and Jos (128%), the DISCOs with the lowest 

estimates, due to the increase in appliance ownership in their 

States of coverage, which catch up to the national urban 

estimates. An increase in per capita energy consumption in 

these 4 DISCOs is also driven by an increase in cooling 

demand resulting from the effect of warmer temperatures in 

their States of coverage. 

 

Table 5 
AEDC Domestic Peak Demand Estimates (MW) 

Tariff Class Low Medium High 

R1 1.5 4.6 6.1 

R2 318 406 526 
R3 & R4 25 41 42 

Model Total 345 451 575 

 

Table 6 
National Domestic Peak Demand by DISCO (MW). 

Distribution Company Low Medium High 

Abuja 345 451 575 
Benin 482 610 773 

Eko 406 432 527 

Enugu 483 544 826 
Ibadan 622 777 1,205 

Ikeja 531 576 703 

Jos 199 351 452 
Kaduna 156 233 368 

Kano 116 216 329 

Port Harcourt 415 483 669 
Yola 77 110 178 

National 3,829 4,783 6,605 

[14] 3,732 4,183 4,917 

 

The national peak demand estimates indicate a range of 

values between 3,829 and 6,605 MW. A 73% change between 

‘low’ and ‘high’ in comparison to the individual DISCO 

demand growth rates reflects the diversity in affluence and 

climate-driven need for A/C. The differences between 

scenarios are also visible in the weekday hourly national 

residential demand time series, which are also compared to 

national weekday load curves which also includes non-

residential demand [49] in Fig. 11. The profiles exhibit patterns 

typical of residential households with 2 diurnal peaks, unlike 

the national load curves (including non-residential demand) 

which for reasons previously mentioned, tend to be flat and are 

unrepresentative of hourly responses in demand. As they are 

based on the same underlying household behavior data across 

the different locations, the 3 profiles exhibit similar patterns. 

However, the socioeconomic variables drive differences in 

hourly magnitude. The monthly peak demand pattern shown in 



Fig. 12 is reflective of the underlying cooling demand in each 

DISCO. Although less prominent in the low and medium 

scenarios, the effect of cooling demand increases over the dry 

season months (November – April) is observed in the high 

scenario.  

A direct comparison with the PHCN study estimates for 

2015 is not possible due to the scenarios having a completely 

different basis and socioeconomic assumptions. However, it is 

useful to compare the range of peak demand estimates from the 

bottom-up model with those from PHCN. These cover values 

between 3,732 and 4,917 MW, only 43% of the range covered 

by our bottom-up model. 
 

 
Fig. 11. Aggregate national residential demand time series 

 

 
Fig. 12. Monthly Peak Demand Pattern 

 

The PHCN study employed energy sales as the baseline 

(which inherently relates to suppressed load), constant per 

capita energy use and the same growth rates for all customers. 

As a result, there is less differentiation of energy use between 

customers. The demand in the modelled ‘low’ scenario is 

around 5% lower than PHCN’s lowest estimate partly because 

of the appliance statistics used for the low scenario included 

non-electrified customers. The ‘high’ scenario peak demand is 

32% higher than the top of PHCN’s range. The much greater 

appliance ownership rates from the household survey 

translates to higher per capita consumption than in the PHCN 

study. This suggests PHCN significantly underestimated 

demand from higher rates of socioeconomic change. Previous 

demand forecast studies undertaken in Nigeria and limited by 

suppressed demand data, give 2015 demand forecasts ranging 

from 3.2GW [7] to 35GW [8]. The lower end of the range is 

closer to the forecast results from the current study and PHCN 

forecasts. Since it represents total demand, its domestic 

demand component will be significantly lower than the 

unsuppressed domestic demand forecasts discussed in this 

paper. Hence the use of suppressed demand data in forecasting 

causes an underestimation of the demand.  

5. Discussion 

In this paper, we have presented a weather-sensitive 

bottom-up stochastic demand estimation model which relies on 

socioeconomic information, survey results of household 

activity patterns in and reanalysis weather data, instead of 

measured demand data which is often problematic in 

developing countries. The model can simulate residential 

electrical demand at the level of individual households, 

regional, and national level. The explicit representation of 

appliance ownership by tariff class allows for projections of 

aggregate demand that assess the sensitivity of customer 

groups to the impact of electrical appliance ownership changes 

resulting from evolving socioeconomic conditions. The 

inclusion of weather sensitive demand, notably A/C (and 

lighting) is important given the diversity in climate across 

countries.  

To demonstrate and validate the model, we have applied it 

to the Nigerian power system. In the absence of a national TUS 

database for Nigeria, a householder survey diary was 

employed to capture as best as possible household electricity 

consumption patterns under constant power supply conditions. 

This TUS is itself the first of its kind for Nigeria and provides 

a reasonably robust basis for an analysis of unsuppressed 

demand, which has not previously been possible at this level 

of detail.  

Ultimately, the household diary is limited in its ability to 

accurately replicate all households in Nigeria, as it is restricted 

in volume, time resolution and location. For example, surveys 

for the UK cover 25,000 people across the country and have a 

10-minute recording window, which would allow a more 

refined approach in modelling. However, if the survey day 

coincides with supply interruptions, as is almost inevitably in 

a developing country, it may not reflect true unsuppressed 

demand. Locational diversity would also help capture ‘local’ 

practices, which may be important given the cultural diversity 

in Nigeria. 

There are other areas where development could valuable. 

The estimates are limited to customers that are currently 

connected to distribution networks, but this could be extended 

to capture non-electrified households. Although the TUS was 

designed explicitly to gain an understanding of unsuppressed 

demand, the dynamic nature of the model presents 

opportunities to extend the analysis to more realistic views of 

energy use under outage and recovery periods.  



It also allows for analysis of the socioeconomic indicators 

on energy planning. The current tariff regulation in Nigeria 

stipulates a monthly demand of 50kWh for R1 customers. 

However, our model shows consumption of up to 63kWh, 

caused by higher appliance ownership in Abuja FCT. This is 

significant for energy tariffs because R1 customers are 

subsidized by other tariff groups meaning any breach of load 

allocation will cause commercial losses for DISCOs [35].  

The Nigerian case study focused on peak demand, as this is 

a key indicator of generation and network capacity 

requirements. However, the model is a time series model and 

can be applied to a wide range of traditional and more recent 

network operational and planning applications including grid 

integration of renewables. Future demand estimates can be 

achieved by updating the model with revised national 

socioeconomic data and projected future weather conditions. 

6. Conclusion 

The frequency of load shedding currently being 

experienced in many developing countries means that 

traditional methods of demand forecasting are inadequate for 

projecting future use. The availability of load time series and 

curves that can be produced using the bottom-up model 

described in this paper are valuable to a wide range of 

stakeholders, from operational and long-term planners to 

policy makers. They can help optimize grid operations, 

facilitate power planning studies, including smart grid 

assessments in rural and urban electrification projects. If the 

socioeconomic model is to be extended to increase the current 

electrical appliance suite, along with adjustments to the 

appliance efficiencies, it could also be helpful for bottom-up 

energy efficiency studies.  

Further developments are possible, and facilitated by the 

flexible nature of the model, but we have demonstrated the 

usefulness and relevance of our models, in the process 

obtaining data on Nigerian electricity demand, which will itself 

be useful to the Nigerian electricity sector.  
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