

Edinburgh Research Explorer

Local Motion Phases for Learning Multi-Contact Character
Movements

Citation for published version:
Starke, S, Zhao, Y, Komura, T & Zaman, K 2020, 'Local Motion Phases for Learning Multi-Contact
Character Movements', ACM Transactions on Graphics, vol. 39, no. 4, 54.
https://doi.org/10.1145/3386569.3392450

Digital Object Identifier (DOI):
10.1145/3386569.3392450

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
ACM Transactions on Graphics

Publisher Rights Statement:
© ACM, YYYY. This is the author's version of the work. It is posted here by permission of ACM for your personal
use. Not for redistribution. The definitive version was published in PUBLICATION, {VOL#, ISS#, (DATE)}
http://doi.acm.org/10.1145/nnnnnn.nnnn

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1145/3386569.3392450
https://doi.org/10.1145/3386569.3392450
https://www.research.ed.ac.uk/en/publications/26efc759-f640-4e67-b9b1-3d1323507699

Local Motion Phases for Learning Multi-Contact Character Movements

SEBASTIAN STARKE, University of Edinburgh, UK and Electronic Arts, USA
YIWEI ZHAO, Electronic Arts, USA
TAKU KOMURA, University of Edinburgh, UK
KAZI ZAMAN, Electronic Arts, USA

Fig. 1. A selection of results using our method to generate ball-dribbling movements and interaction behaviours with other characters.

Training a bipedal character to play basketball and interact with objects, or
a quadruped character to move in various locomotion modes, are difficult
tasks due to the fast and complex contacts happening during the motion.
In this paper, we propose a novel framework to learn fast and dynamic
character interactions that involve multiple contacts between the body and
an object, another character and the environment, from a rich, unstructured
motion capture database. We use one-on-one basketball play and character
interactions with the environment as examples. To achieve this task, we
propose a novel feature called local motion phase, that can help neural
networks to learn asynchronous movements of each bone and its interaction
with external objects such as a ball or an environment. We also propose a
novel generative scheme to reproduce a wide variation of movements from
abstract control signals given by a gamepad, which can be useful for changing
the style of the motion under the same context. Our scheme is useful for
animating contact-rich, complex interactions for real-time applications such
as computer games.

CCS Concepts: • Computing methodologies→Motion capture; Neural
networks.

Additional Key Words and Phrases: neural networks, human motion, char-
acter animation, character control, character interactions, deep learning

Authors’ addresses: Sebastian Starke, University of Edinburgh, 10 Crichton Street,
Edinburgh, EH8 9AB, UK, sebastian.starke@ed.ac.uk, Electronic Arts, USA, sstarke@
ea.com; Yiwei Zhao, yiwzhao@ea.com, Electronic Arts, USA; Taku Komura, tkomura@
ed.ac.uk, University of Edinburgh, 10 Crichton Street, Edinburgh, EH8 9AB, UK; Kazi
Zaman, kzaman@ea.com, Electronic Arts, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0730-0301/2020/7-ART1 $15.00
https://doi.org/10.1145/3386569.3392450

ACM Reference Format:
Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local
Motion Phases for Learning Multi-Contact Character Movements. ACM
Trans. Graph. 39, 4, Article 1 (July 2020), 14 pages. https://doi.org/10.1145/
3386569.3392450

1 INTRODUCTION
There is a huge demand in simulating fast and complex interactions
that involve multiple contacts between a character and objects, an
environment, and other characters, especially in computer games
and films. For example, for basketball games, the players need to
dribble the ball while making various movements with different
foot-fall patterns to compete with the opponent characters.
Previous techniques to learn from unstructured motion capture

database have limitations in terms of scalability, realism and varia-
tion in the movements. Firstly, most techniques require aligning the
motions by a global temporal parameter such as the phase, which
is often difficult when the motion involves multiple contacts that
are asynchronous. Secondly, even when the motions are learned
by the controller, there can be issues reproducing a wide variation
of movements from low dimensional control signals such as those
provided by the user through keyboards or gamepads.

In this paper, we propose a novel data-driven framework to learn
fast and dynamic interactions that involve multiple contacts. We
make use of a large database of one-on-one basketball play as our
main example, where one player catches, dribbles and plays tricks
with the ball, while avoiding the opponent player who tries to
defend and intercept the ball. We design and train a neural character
controller that can learn and produce realistic offense and defense
actions under a unified framework, so that the players can easily
switch from the offense to the defense during the play.

To let the model learn movements that involve fast and complex
interactions where the contacts between the body and the ball or
the ground quickly switch in an asynchronous manner, we propose

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/3386569.3392450
https://doi.org/10.1145/3386569.3392450
https://doi.org/10.1145/3386569.3392450

1:2 • Starke et al.

a feature that we call local motion phase, which is defined based
on how each body part contacts external objects. The feature can
be computed automatically from unstructured motion capture data
using an evolutionary strategy. Using the local motion phase, the
network can learn the motion of individual body parts locally with-
out aligning the entire body motion using a global phase, which is
often difficult for fast and complex interactions that happens during
basketball plays.

To cope with the ambiguity between the low dimensional control
signal and a rich set of full body motion, we propose a novel genera-
tive model that can reproduce a wide variation of sharp movements
conditioned on the high-level control signal. Our generative control
model can convert an abstract control signal produced from the user
instructions into a wide variation of sharp control signals that can
be mapped to realistic full body motion with subtleties.
Once the system is trained from a large amount of motion cap-

ture data of basketball plays, the user can interactively control the
character to produce fast and asynchronous basketball skills, such
as dribbling, feinting, stealing and defending in real-time, which can
be useful for computer games and VR sports training. Our system
is also useful for learning other contact-rich movements, such as
sitting on a chair, opening a door and quadruped locomotion, in
higher quality compared to previous models, without any human
labelling.
The contributions of this paper can be summarized as follows:
• a neural character controller that can synthesize a large va-
riety of dynamic, asynchronous movements, such as move-
ments in basketball, in high quality,

• a scheme to automatically extract phase variables at local level
that can robustly align the motion sequences (see Section 5),

• a generative model that can convert an abstract, high-level
user control signal into a wide variation of sharp signals
that can be mapped to realistic character movements with
subtleties (see Section 6) and

• an evaluation of the scheme in comparison to existing ap-
proaches (see Section 9).

2 RELATED WORK
In this section, we review data-driven animation techniques that
are applicable for animating fast and dynamic movements with
multiple contacts. These can be classified into (1) motion blending
techniques that explicitly classify, segment and align motions, (2)
time-series models that do not require explicit motion alignment
and (3) physically-based methods that refer to/learn controllers from
motion capture data.

Learning Motion by Temporal Alignment. For synthesizing novel
motion using the motion capture data, a straightforward approach
is to align the motions of the same class along the timeline and
blend them with weights computed by the controller [Kovar and
Gleicher 2004; Min and Chai 2012; Rose et al. 1998; Rose III et al.
2001; Wiley and Hahn 1997]. Aligning the motion along the timeline
are either done manually/semi-automatically [Shin and Oh 2006],
by dynamic time warping (DTW) [Kovar and Gleicher 2004; Mukai
and Kuriyama 2005] or using contact states [Min and Chai 2012;
Safonova and Hodgins 2007]. Shin and Oh [2006] introduce the idea

of fat graphs, an extension of the motion graphs structure [Arikan
and Forsyth 2002; Kovar et al. 2002; Lee et al. 2002] where the edge
represents a set of motions that can be interpolated to synthesize
a novel motion. Heck and Gleicher [2007] construct a similar data
structure where the motions to be interpolated are aligned based
on nearest neighbor search and DTW [Kovar and Gleicher 2004].
Temporally aligning the motions based on the contact helps to

avoid effects such as foot skating. Safonova and Hodgins [2007]
construct interpolated motion graphs and only interpolate motions
that start/end with the same contact states. Min et al. [2012] propose
a similar data structure called motion graph++, where the motions
are represented by functional PCA; the optimal series of motions
that satisfy the constraints are computed by maximum a posteriori
estimation. Zhao et al. [2013] enhance the approach to synthesize
physically-plausible grasping behavior.
For motions such as those in basketball, the foot contact and

hand-ball contacts can happen asynchronously and switch very
quickly. Thus, explicitly classifying and aligning a large database of
motions based on contacts is not feasible.

Time Series Models. Time series models are those where the cur-
rent pose of the character is predicted from the previous motion and
possibly a control signal. Thanks to its nature, such models can be
used for real-time character control, which is our target application.
Human motion has been modelled with various time series models,
such as conditional Restricted Bolzmann Machine (cRBM) [Taylor
et al. 2007], Gaussian processes (GP) [Wang et al. 2008], recurrent
neural networks [Fragkiadaki et al. 2015; Harvey and Pal 2018; Lee
et al. 2018; Li et al. 2017; Villegas et al. 2018], Phase Functioned Neu-
ral Networks (PFNN) [Holden et al. 2017] and mixture-of-experts
models [Starke et al. 2019; Xia et al. 2015; Zhang et al. 2018].
LSTM-based approaches have been applied for motion predic-

tion [Fragkiadaki et al. 2015; Li et al. 2017], motion retargeting [Vil-
legas et al. 2018], keyframe animation [Harvey and Pal 2018] and
interactive character control [Lee et al. 2018]. The difficulty of us-
ing LSTM is in the tuning of its meta parameters: simple models
cannot produce realistic motions but overly complex models do not
generalize well. Especially for interactive character control, when
the internal memory state is high dimensional, they often suffer
from low responsiveness due to the large variation of the memory
state [Starke et al. 2019]. Given the user instruction, the system
needs to keep updating the memory until it reaches a state observed
during training for the character to start follow the user instructions.
Lee et al. [2018] overcome this by conducting a significant amount
of data augmentation; they expand 10-12min of data into 4 hours
by motion editing. On the other hand, this results in less variation
of the motion during runtime as the original motion dataset is not
very large. We tackle a problem of using a large motion capture
dataset to produce a wide variation of the motion during runtime.
Providing the phase variable [Holden et al. 2017], which repre-

sents the progression of the motion, helps to improve the quality of
the motion computed by time-series models. Holden et al. [2017]
define the phase based on the foot contact of bipedal locomotion
and produce hiqh quality locomotion that can adapt to different ter-
rain geometry. On the other hand, defining a phase for movements
that involve complex contact patterns requires handcrafting rules

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Local Motion Phases for Learning Multi-Contact Character Movements • 1:3

Fig. 2. The architecture of our system composed of the gating network and the motion prediction network. The gating network takes as input the local phase
segments, and computes the expert blending coefficients which are then used to generate the motion prediction network. The motion prediction network
takes as input the posture and user control variables to predict the motion from one frame into the next.

for defining the phase [Starke et al. 2019]. This is not feasible for
movements in basketball, where there is a wide range of fast and
dynamic movements.

Physically-based Character Animation. Physically-based character
animation, where the characters are controlled kinematically using
physical rules as constraints, or controlled by torques under physical
environments, can be applied for synthesizing motion that involves
fast, dynamic contacts.
Methods such as spacetime constraints [Witkin and Kass 1988]

let users provide the contact pattern as conditions, and then optimize
themotion using physically-based constraints. Liu and Popović [2002]
compute humanoid jumping motions by spacetime constraints. As
specifying such contact patterns can be difficult for fast and dynamic
movements, Ye and Liu [2012] propose to predict such contacts by
evolutionary strategies. The focus of these methods is to apply opti-
mization to compute a motion that satisfies physical constraints. In
our research, we are more interested in learning the way humans
produce such contacts as part of learning complex behaviors.
Another direction of physically-based character control is the

forward dynamics approach [Coros et al. 2010; Hodgins et al. 1995;
Raibert and Hodgins 1991; Yin et al. 2007], where joint torques are
computed and applied to the body to synthesize realistic movements.
Simulating movements with multiple contacts is known to be a dif-
ficult problem in such frameworks due to the instability introduced
by the contacts. Liu et al. [2010] propose a method to randomly add
minor offsets to the motion to guide the body to follow a given mo-
tion capture trajectory. Liu et al. [2016] learn a model with control
graph and linear feedback policies that can produce character move-
ments according to the user inputs in a stable manner. This idea
is further extended to learn basketball dribbling [Liu and Hodgins
2018], where deep reinforcement learning is applied to learn the
complex arm motion to control the ball. The amount of skills that
can be learned by this framework is limited, and there is a scalabil-
ity issue for learning a wide range of motions from a large motion
capture database due to the intense computation for openloop and
feedback policies.

DeepMimic [Peng et al. 2018] is proposed as a general deep re-
inforcement learning framework to follow motion capture data in
a physically-based environment. As it is designed to only follow
a short motion clip, Park et al. [2019] and Bergamin et al. [2019]
propose frameworks to follow longer sequences of motions pro-
duced by a small motion graph [Arikan and Forsyth 2002; Kovar
et al. 2002; Lee et al. 2002] or motion matching [Clavet 2016]. The
scalability of these methods is yet to be explored as they are trained
with a relatively small dataset. Our technique can potentially replace
the motion matching module of [Bergamin et al. 2019] for faster
synthesis of reference motions.
A different option to let a character follow a reference motion

capture data in a physically-based environment is model predictive
control: Hong et al. [2019] create a soccer player controller to dribble
a ball, and show its robustness with respect to other players tackling.
iLQG [Todorov and Li 2005] is used to compute the optimal set of
torques and gains to follow a referencemotion. The referencemotion
is selected by nearest neighbor search: again, our proposed method
can potentially be applied as a motion planner for this approach.

In summary, learning a rich set of interactions where the contacts
quickly switch in a complex manner from a large motion capture
dataset without manual human labelling is a problem yet to be
solved, either in a the kinematics or physically-based domain. We
propose a novel scheme to learn such complex skills from a very
large motion capture database.

3 SYSTEM OVERVIEW
Our deep learning framework is a mixture-of-experts scheme similar
to [Zhang et al. 2018] and [Starke et al. 2019]. The system consists of
the motion prediction network and the gating network (see Fig. 2).
The gating network computes a set of expert weights, and learns how
to dynamically combine them via blending coefficients to construct
the motion prediction network. The motion from one frame into
the next is then computed in an autoregressive fashion from the
current character state and the user-given control commands.
To enable the framework to learn basketball movements like

quick ball maneuvers or player-interaction movements from a large

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:4 • Starke et al.

motion database, we propose two main enhancements: first, train-
ing the system with local motion phases, and second, a generative
control model that takes as input the raw high-level user control
commands and generates a sharper variety of control signals.

The local motion phases are computed individually for each bone
that makes contacts with an object/environment and can encode
asynchronous movements of the limbs. This is fundamentally differ-
ent to the work in [Starke et al. 2019], where movements of different
actions are each assumed to be synchronised by a single global phase
variable - this requires a careful labeling process or defining explicit
rules about when the action is starting and ending, which can be
difficult and also sometimes ambiguous. The local motion phase
is computed by a uniform rule based on contacts of the individual
bones, and is simple to compute automatically.
The generative control model is introduced to produce a wide

variation of sharp movements from coarse high level control signals
provided by the user. When there are many motions that correspond
to the same input signal, a simple regression by a deterministic
model will result in an averaged motion where the sharpness is lost
with little variation. We cope with this problem by introducing a
generative model that takes as input the raw high-level user control
commands and random noise, and generates a sharper sequence
of control signals from that. This enables the system to not only
produce motions in higher quality, but also to generate variations
in a non-deterministic fashion.
In the following, we will first describe about the inputs and out-

puts of our system in Section 4. We then introduce the local motion
phase in Section 5, followed by the generative control model in
Section 6. The network training process is described in Section 7
and the user interface for character control is described in Section 8.
The experiments and evaluation are given in Section 9.

4 SYSTEM INPUTS AND OUTPUTS
Our system is a time-series model that predicts the state variables
of the character, the ball etc. in the next frame i + 1 given those in
the current frame i . The inputs and outputs are designed such that
our system can produce close interactions between the character
and an object, an environment and another character. Some vari-
ables for control and conditioning are application oriented: here
we mainly describe in the basketball setup, although the concept
is general and applicable to other motions such as maneuvers of
objects and interactions with the environment. For training, the
Cartesian features in the input and output are transformed into
the root coordinate system of the character at frame i and i + 1,
respectively. All features live in a time series window 1 T 1s

−1s within
which data of 13 uniformly-sampled points (6 each in the future and
past 1s window, and one for the current frame) are collected. How
the values are extracted from the motion capture data is explained
in Appendix A.1.

Inputs. The complete input vector Xi at frame i consists of five
components Xi = {XS

i ,X
V
i ,X

F
i ,X

R
i ,X

P
i } where each item is de-

scribed below.

1We use the notation T
t1
t0 = N to describe that we collect N samples of data within a

time window of t0 ≤ t ≤ t1 .

• Character State XS
i = {pi , ri , vi } represents the state of our

character with B = 26 bones at the current frame i . it consists of
the bone positions pi ∈ R3B , bone rotations ri ∈ R6B and bone
velocities vi ∈ R3B , where each bone rotation is formulated by its
pair of Cartesian forward and up vectors to create an unambiguous
and continuous interpolation space [Zhang et al. 2018].

• Control Variables XV
i = {Tpi ,T

r
i ,T

v
i , I

p
i , I

m
i ,Ai } are the vari-

ables used to guide the character to conduct various basketball
movements. It consists of the following channels that are sampled
in the past-to-current time window T 1s

−1s = 13.
– Root Trajectory T: For controlling the character locomotion, we
train our system on the horizontal path of trajectory positions
Tpi ∈ R2T , trajectory directions Tri ∈ R2T and trajectory veloci-
ties Tvi ∈ R2T (see Fig. 3, top left).

– Interaction Vectors I: A set of 3D pivot vectors Ipi ∈ R3T and its
derivative Imi ∈ R3T around the character, that together define
the dribbling direction, height and speed to direct a wide range of
dynamic ball interaction movements and maneuvers (see Fig. 3,
top right). We describe further details about interaction vectors
in Appendix A.1.

– Action Variables A: The action variables Ai ∈ R4T consist of
four actions that are defined as A = {Idle,Move,Control,Hold},
where each of them is between 0 and 1.

During runtime, the interaction vectors produce different effects
according to the action variables and the state of the opponent. If
the action state is in Move and Dribble, the character will dribble
the ball, and if in Stand and Hold, the character will move the ball
to the target location. When using the Shoot action, the interac-
tion vectors control height and speed for throwing the ball. If the
character is not controlling or holding the ball, IPi and IMi are con-
trolled by the opponent character, and induce the user character
to produce defence motion.

• Conditioning FeaturesXF
i = {B̂pi , B̂

v
i ,B

w
i ,Ci } are composed of

the following items that are each sampled along the past-to-current
time series window T 0s

−1s = 7.
– Ball Movement B̂: We use the past movement of the ball of posi-
tions B̂pi ∈ R3T and velocities B̂vi ∈ R3T to guide the prediction
for next frame. This conditioning is helpful since ball movement
is typically highly fast-paced. We further give the ball control
weights Bwi ∈ RT as input to the network, which were used to
transform the original ball parameters from Bi to B̂i in order to
learn the ball movement only within a control radius around the
character (see Appendix A.2).

– Contact Information C: Similarly, we condition the generated
motion on the contacts Ci ∈ R5T for feet, hands and ball that
appeared during the past to stabilize the movements (see Fig. 3,
left bottom).

• Opponent Information XR
i = {wi , di , g

p
i , g

r
i , g

v
i } are the vari-

ables that describe the state of the opponent character with respect
to the user character. Those consist of wi ∈ R

T , which are labels
that tell if the opponent is within the 5 meter radius (1 if within the
radius, otherwise 0), and gpi , g

r
i , g

v
i ∈ R2T are 2D vectors between

position samples of the user and opponent trajectories, as well the
direction and velocity of the opponent trajectory, all in the time

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Local Motion Phases for Learning Multi-Contact Character Movements • 1:5

Fig. 3. Some of the input features used to predict the character pose in the
next frame: (from top left to right bottom) The root trajectory T, interaction
vectors I, contact information C and opponent information XR .

window of T 1s
−1s = 13. Those are further weighted usingwi which

makes sure they are only active when the opponent is close, and
are also required to handle captured data where no opponent is
available. Finally, di ∈ RB are the distance pairs within 5m radius
between the corresponding B = 26 joints of the two characters at
current frame i (see Fig. 3, right bottom).

• Local Motion Phases XP
i = Θi ∈ R

2KT are each represented by
2D phase vectors of changing amplitude for K = 5 key bones for
feet, hands and ball, and are sampled along the past to future time
series window T 1s

−1s = 13. The details of the bone-level phase are
described in Section 5.

The bone-level phases XP
i are fed into the gating network, the

control variables XV
i are fed into the generative controller, and the

rest are fed into the motion prediction network.

Outputs. The output vector Yi+1 = {YS
i+1Y

V
i+1,Y

F
i+1,Y

P
i+1} for

the next frame i + 1 is computed by the motion prediction network,
and consists of the following four components.
• Character State YS

i+1 = {pi+1, ri+1, vi+1} is pose and velocity of
the character at next frame i + 1 with B = 26 bones.

• Future Control Variables YV
i+1 = {Tpi+1,T

r
i+1,T

v
i+1, I

p
i+1, I

m
i+1,

Ai+1} are the future control signals each sampled along the current
to future time series window T 1s

0 = 7 of the next frame i + 1.
During runtime, these features are blended with the given user-
guided control signals and fed into the input in the next frame,
such that the character produces plausible motion while following
the user instruction:

XV
i+1 = (1 − tτ)XV

user + t
τ YV

i+1, (1)

where XV
user are the control signals produced from the user inputs

by hand-crafted rules, t ranges from 0 to 1 as the trajectory gets
further into the future, and τ represents an additional bias that
controls the responsiveness of the character.

• Conditioning Features YF
i+1 = {B̂pi+1, B̂

r
i+1, B̂

v
i+1,B

w
i+1,Ci+1}

are computed for the next frame i + 1. Note that the output also
includes the delta ball rotation B̂ri+1, which is used to update the

orientation of the ball in the next frame. The predicted weights
B̂vi+1 are used again to transform the ball coordinates to the real
world values (see Appendix A.2).

• Local Motion Phase Updates XP
i+1 = {Θi+1,∆Θi+1} are com-

puted in a fully autoregressive fashion, and contain the phase
vectors Θi+1 ∈ R2KT as well as their updates ∆Θi+1 ∈ R2KT for
the K = 5 key bones, covering the current to future time series
samples T 1s

0s = 7 of the next frame. Since the network can update
all phases in an asynchronous and independent fashion and in
order to prevent error accumulation over multiple frames, we per-
form an interpolation to compute the new updated phase vectors
Θ′
i+1, which keeps their combination in a well-defined manifold:

Θ′
i+1 = λΘi+1 + (1 − λ)(Θi + ∆Θi+1). (2)

5 LOCAL MOTION PHASE
In this section, we describe our novel feature that we call the local
motion phase, which boosts the system to learn movements where
different parts of the body move asynchronously, such as those dur-
ing basketball plays. We first describe the motivation of introducing
the local motion phase, and then how to compute them from the
motion capture data.

5.1 Motivation of Using the Local Motion Phase
The use of a phase variable is typically defined based on semantically
meaningful start and end poses e.g. according to the foot-contact
pattern, and introduces a strong connection between timing and
movement. Such alignment is particularly helpful for neural net-
works to generate high-quality human locomotion [Holden et al.
2017] and scene interaction movements [Starke et al. 2019]. Intu-
itively, there are two main reasons why such phase information
leads to improved quality: First, it clusters the motion in a way that
the network only requires learning a smaller subset of poses, actions
and transitions for each phase state. Second, it forces the animation
to keep moving forward in time, whereas autoregressive motion
generators can otherwise easily get stuck in poses of similar timing,
resulting in unresponsive moments or missing motion details.

However, defining a global phase variable for asynchronousmove-
ments where different body parts move at different and consistently
changing frequencies/phase shifts, such as when playing basketball,
is extremely difficult or sometimes strictly not possible. In turn, any
motion that does not follow an identical pattern would inevitably
become blended with different motion states, which makes a sin-
gle global phase difficult to scale and impractical to be applied to
unstructured motion data.

To cope with this issue, we introduce the concept of local motion
phase, which inverts the original concept from using a single global
phase to instead describing the character motion by a set of multiple
independent and local phases for each bone. Here we define the
phase based on a simple rule; the contact transitions between the
bone and other objects/environment. This allows us to extract the
phase in a fully-automatic fashion (see Section 5.2), and also make
it generic to arbitrary movements. Using the local phase, the system
can learn to align the local limb movements individually, while also
integrating their movements to produce realistic full-body behavior.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:6 • Starke et al.

5.2 Computing the Local Motion Phase from Motion
Capture Data

The local phase is computed as a preprocess from the motion capture
data, by fitting a sinusoidal function

Ω(Fi , t) = ai · sin(fi · t − si) + bi , (3)

parameterized by Fi = {ai , fi , si ,bi } (i is the frame index), to a
filtered block function G(t) that represents the contact between the
bone and the object/environment (see Fig. 4).

This fitting is done by inferring Fi at every frame i that minimizes
the following RMSE loss defined in a window of N frames centered
at frame i:

L(Fi) =

√∑
t (Ω(Fi , t) − G(t))2

N
. (4)

G(t) is computed by first normalizing the original block function
(value set to 0 if no contact, and 1 if in contact)2 in a windowW of
60 frames (1 second) centered at frame j:

Gj =
c j − µCjW
σCjW

(5)

where c j is the original block function value, and µCjW
and σCjW

are
the mean and standard deviation of contacts within that window,
and then applying a Butterworth low-pass filter to the entire domain:

G(t) = B (G) . (6)

After applying this normalization, shorter contacts result in larger
positive values that are surrounded by smaller negative values and
vice versa to maintain similar importance for different contact dura-
tion (see Fig. 4(1,2,3)). The window size N in Eq. (4) is 60 (1 second)
but is adjusted according to the frequency of the surrounding con-
tacts. The cut-off frequency of the Butterworth low-pass filter is
set to 3.25, which is computed based on the Shannon-Nyquist sam-
pling theorem with respect to the time series window of T 1s

−1s = 13
samples that are trained in the network.
After optimizing Eq. (4), a 1D phase value can be computed by

ϕi = (fi · t − si) mod 2π ∈ R1 (7)

2Note that the contact labels are extracted automatically; see Appendix A.3 for the
process.

Fig. 4. Phase extraction method example applied to a single bone. The
raw contact information in (1) is normalized in (2) and low-pass filtered
in (3). The cyan curve in (4) then shows the fitting reconstruction, and the
extracted phase values are visualized in blue in (5). The height of the purple
bars illustrates the phase, the opacity illustrates the amplitude, and the
slope of the successive bars illustrates the frequency.

Fig. 5. Examples of local motion phase extractions for feet (LF,RF), hands
(LH,RH) and ball (B). The clip represents forward dribbling with switching
the hand dribbling the ball. The black curves are the target signals and the
cyan curves are the fitted curves computed by optimization. The resulting
phases are visualized by the blue bars and the amplitudes are visualized
by the opacity of the bars. Top is the results by the evolutionary strategy,
where the amplitude and phase information are extracted robustly, and the
bottom is gradient-based optimization which yields rather unstable and
noisy misalignments.

which together with the optimized amplitude parameter ai and max-
imum bone velocity magnitude | |vΦ | |∞ within a frequency-based
frame window Φ = 1

∆ϕi
enables to generate distinctive combina-

tions of local 2D phase vectors for each motion (see Fig. 4(4,5)):

Pi = | |vΦ | |∞ · ai ·

(
sinϕi
cosϕi

)
∈ R2. (8)

The obtained 2D vectors P for the bones cover information about
the timing and speed of the movement, and are fed into the gating
neural network as features (see Fig. 2). Their trajectories are smooth
as the loss Eq. (4) is defined in a sliding window whose center is
the current frame. In particular, modulating the phase vectors by
amplitudes has two key aspects in modeling important information
about the character motion: First, P becomes scaled to zero if a
bone is not moving, which is important as the phase ϕi is rather
undefined in such case. Second, it helps to distinctively separate
slower and faster movements of similar contact patterns, i.e. walking
and running or dribbling at different speeds. Therefore, it can also
function as a control variable of the motion; by scaling down the
amplitude, the motion of the limb can be inhibited. For example,
the motion of the arm opposite to the one dribbling the ball can be
reduced by scaling down its corresponding amplitude.
For fitting (minimizing Eq. (4)), we adopt an evolutionary strat-

egy from [Starke et al. 2018]. As our loss function is composed of
trigonometric functions, the optimization landscape follows a sim-
ilar non-convex shape, which results in many local minima. We
combine a global probabilistic optimization (genetic algorithm and
particle swarm optimization) with a local optimization technique
(BFGS). Such a combination can effectively combine the benefits in
robustness as well as scalability of evolutionary algorithms with
the speed, accuracy and continuity of gradient-based methods. The

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Local Motion Phases for Learning Multi-Contact Character Movements • 1:7

Fig. 6. Overview of the Generative Control Scheme.

optimization pipeline follows that of Starke et al. [2018], except we
apply it to finding the phase parameters where they use it to solve
an inverse kinematics problem. The global search first stochasti-
cally samples a swarm of signal parameters within a range of lower
and upper limits. The samples are recombined, randomly offset-
ted and then resampled by being combined with the best sample
in the swarm. The above procedure is repeated for generations to
explore and find good samples in the landscape. The BFGS then se-
lectively exploits some elite individuals within subregions to better
and more easily converge to solutions of high accuracy. We tested
several other gradient-free as well as gradient-based optimization
methods, including conjugate gradient, BFGS, Cobyla and Nelder-
Mead, which all performed poorly on this task when used alone
(see Fig. 5). Our chosen approach can robustly converge to suitable
signal parameters.
Our solution can quickly compute a smooth local phase trajec-

tory. Note that we solve the optimization problem per frame and
thus the number of parameter is small, which allows the evolution-
ary strategy to quickly converge to a global minimum. Due to the
large overlap of the sliding window, we can obtain a smooth phase
trajectory with temporal coherence.
In summary, the local motion phase can be extracted fully au-

tomatically from the full body motion and functions as a feature
that can produce high quality motion, which we will demonstrate
in Section 9.

6 GENERATIVE CONTROL MODEL
We now describe our generative control model, which is introduced
to produce a variation of realistic movements from the coarse user
control signal. Our idea is to produce a latent space of the control
signal via adversarial training of an encoder-decoder network, and
then produce a variation by adding noise to the latent code computed
from the user-control signal during runtime. The generative control
model is pretrained using the control signals computed from the
motion capture data.

The generative control model has three components: an encoder
E, which first takes a smoothed trajectory produced by blending
the user gamepad input signal and the autoregressive control signal
from the previous time step and encodes it into a latent code; a
decoder G that produces the control signal from the latent code;

finally, a discriminator D that distinguishes the generated control
signal from the ground truth control signal. The dimensionality of
the latent code is set low such that it becomes a bottleneck of the
network, and constructs a manifold of the control signal.

More specifically, the encoder E is defined as:

E(XV) = D(WE
1 D(ReLU(WE

0 XV + bE0)) + b
E
1), (9)

where WE
0 ∈ Rh×n,WE

1 ∈ Rm×h, bE0 ∈ Rh, bE1 ∈ Rm are the net-
work parameters, h = 512 is the number of hidden units in each
layer, n is the input dimension and m is the dimension of latent
space, where we set it to be n/2 to create the bottleneck, ReLU is
the activation function where we use Rectified Linear Unit, and
D is the dropout layer where the dropout rate is set to be 0.3 to
avoid overfitting during training and 0.0 at inference. Similarly, the
decoder G is defined as:

G(h) =WG
1 ReLU(W

G
0 h + bG0) + b

G
1 . (10)

where WG
0 ∈ Rh×m,WG

1 ∈ Rn×h, bG0 ∈ Rh, bG1 ∈ Rn are the net-
work parameters and h = 512 is the number of hidden units in each
layer. Finally, the discriminator D is defined as:

D(XV) = s(WD
3 ReLU(W

D
2 (W

D
1 ReLU(W

D
0 X

V

+bD0) + b
D
1) + b

D
2) + b

D
3).

(11)

where WD
0 ∈ Rh0×n,WD

1 ∈ Rh1×h0 ,WD
2 ∈ Rh2×h1 ,WD

3 ∈ R1×h2 ,

bD0 ∈ Rh0 , bD1 ∈ Rh1bD2 ∈ Rh2bD3 ∈ R1 are the network parameters,
h0, h1 and h2 are the number of hidden units in each layer set to
128, 64, 32, respectively, and s is the sigmoid function to map the
output to be a probability between 0.0 and 1.0.
The system is trained with reconstruction loss and adversarial

loss. We use XV , the control variables of the input vector X, as our
training data. It is encoded in to the latent space by the encoder:
h = E(XV). After the encoder, the original control signal is recon-
structed by the decoder XVr = G(h). The reconstructed signal is
evaluated by a L1 loss with the original signal Lℓ1 (X

V ,XVr) and the
adversarial loss Ladv(E,G,D):

Lall = Ladv + λℓ1Lℓ1 , (12)

where λℓ1 is a weight set to 5.0 to make sure that the Ladv and Lℓ1
have similar magnitude. The adversarial loss is defined by

Ladv(E,G,D) = Ereal [log(sreal)] + Efake
[
log(1 − sfake)

]
, (13)

where we denote the output score of the discriminator D on real
and fake inputs by sreal and sfake, respectively. The encoder, decoder
and discriminator are trained jointly.

During runtime,XV is computed by blending YV in the previous
cycle with the user input signals (see Eq. (1)). Then it is projected to
the latent space, and modified by adding a random noise sampled
from a Gaussian. With this, the control signal recovered by the
decoder will be containing valid variance which is very hard to
be hand-coded from gamepad input. Note that there is a tradeoff
between the scale of the noise and the response time of the character:
the larger the scale is, the less responsive the character becomes
due to the deviation from the user control signal.
We show some examples of an input and output control signal

in Fig. 7. It can be observed that the input trajectory is a smooth
trajectory while the output trajectories produced from different

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:8 • Starke et al.

Fig. 7. Example inputs/outputs of the generative control scheme.

noise samples have variation with fine details. Using these as input
to themotion prediction networkwill result in different bodymotion
as we present in Section 9.
The question that arises is that of how to manage the controlla-

bility of the character when adding noise in the latent space as we
do not condition the noise on the user instruction (see Section 10
for discussions about the design). We find the following approach
to be simple and effective. We sample noise vectors from different
random seed and use them as style variables. The animator can
pick them as the behavior style of each character. For increasing
the stochasticity, we can blend in and out the noise produced from
such seeds selected randomly during runtime.

We also evaluate how the motion deviates from the original mo-
tion when changing the level of noise amplitude to find a level that
can produce variations but stays close to the original control signal.
The plots of scaling the noise level and the resulting RMSE of the
control signals, as well as the corresponding motions are shown in
Fig. 8. When the noise level exceeds 1, which corresponds to the
standard deviation of the latent code of the generative control, the
synthesized motion starts to either deviate significantly from the
control signal or result in a corrupted motion. We find a level around
0.25 to 0.75 is suitable for producing variations while keeping the
motion under control.

7 NETWORK TRAINING
The training is done by first normalizing the input and the output
of the full dataset by their mean and standard deviation, pretraining
the generative control model and then training the main network
composed of the gating network and motion prediction network in
an end-to-end fashion. The processed data is exported from Unity
and used for training our framework implemented in TensorFlow.
For training the main network, similar to [Starke et al. 2019;

Zhang et al. 2018], we use the AdamWR optimizer with the warm
restart technique; the learning rate is initialized with the value of
1.0 · 10−4 and later adjusted by the weight decay rate with the initial
value of 2.5 · 10−3. Dropout rate is set to 0.7, hidden layer size in the
gating network is set to 128 and in the motion prediction network
to 512 respectively.

Since we predict the local motion phase updates for the next and
future frames to autoregress them back into the gating network in-
put, we use teacher force training [Li et al. 2017; Williams and Zipser
1989] to make the network adapt to its own prediction inaccuracies.
We slice each clip into sequences of 8 frames and use a uniform
probability of 0.5 to update the phase input of the next frame by
the output of the previous phase updates by Eq. (2). This helps to

Fig. 8. Impact of noise scale on motion variation and controllability. Note
that when the noise level is high, the character starts to deviate from the
original control signal. Here the character is dribbling in a circle (left) or
holding the ball while running (right).

Table 1. Motion capture data breakdown.

Label Duration Ratio
Total 211.6min 100%
Stand 39.1min 18.5%
Move 172.6min 81.4%
Dribble 115.9min 54.8%
Hold 12.7min 6.0%
Shoot 6.7min 3.2%

prevent the network from overfitting to future phase alignments
that it would see during training but not during inference.
The composition of our complete dataset of 3 hours used for

training is listed in Table 1, breaking down type and amount of
clips and how we separate them into different actions. All motion
is doubled by mirroring, downsampled from 60Hz capture to 30Hz,
and then exported twice by shifting the data by one frame. After
training, the data is compressed from ∼3GB raw motion capture
data (∼8GB generated training data) to ∼24MB network weights.

8 CHARACTER CONTROL SYSTEM
The character is controlled via a gamepad’s joysticks and buttons
(see Fig. 9) to offer a wide range of control signals to the user. The
mapping between the user input to the actions are designed as
follows. The translation and rotation motion are driven by the left
joystick; when the joystick is simply tilted, the character moves to
the direction without changing the orientation. When the joystick
is rolled, its rotation is integrated overtime and the character turns
its facing direction. When the joystick is pressed, the character

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Local Motion Phases for Learning Multi-Contact Character Movements • 1:9

sprints. Left and right triggers are used for spin, which will not
change the trajectory direction but selectively rotate the facing
direction of the character in a quick fashion. The right joystick is
mapped to the interaction vector I, and used to control the dribbling
locations around the character, which can produce movements such
as switching the ball between hands, around the body or between
legs. The dribbling height and frequency is controlled when the right
joystick is pressed and moved horizontally or vertically. Pressing
the Holding button will make the character stop dribbling and hold
the ball, or catch the ball alternatively. Pressing the shooting button
will make the character shoot the ball, where direction, height and
speed is controlled by the interaction vectors. When the character
is in the defending mode, pressing Attacking button will make the
character steal the ball from the opponent and take control of it.
Each player controls its own character, however, the network

instance can be shared between different characters which have the
same network weights. This effectively saves memory and storage
since we do not require training multiple networks for different
roles or actions.

9 EXPERIMENTS AND EVALUATION
Our animation system is implemented in the Unity engine, and the
neural network is queried through a socket interface to compute
the character movements. We conduct our experiments on a MSI
GT75 Titan gaming laptop with Intel i7-9750H processing cores and
a NVIDIA GeForce RTX2080 GPU, requiring 2-4ms per frame for
each character including user control processing, inference time
and scene rendering. We run the animation at 30Hz framerate.

9.1 Animated Results
We animate the character through the gamepad using the interface
described in Section 8. The example snapshots for various move-
ments are shown in Fig. 10. Realistic movements that appear similar
to the motion capture data with few artefacts can be synthesized

Fig. 9. Gamepad controls exposed to the user for directing a wide and
continuous range of different character movements and actions.

Fig. 10. Movement types that can be synthesized by our system.

in real-time. In addition to the complex character movements with
multiple contacts and quick maneuvers, the interactions between
multiple characters, such as stealing the ball and avoiding the op-
ponent, can be produced. The interactions of two characters are
produced by two players controlling each character via their own
gamepad.

To animate the physically-plausible ball motion during catching
and shooting movements, the ball motion is controlled via physical
simulation. When catching the ball, we let the network override the
simulated ball position and velocity with its predicted values based
on the hand contact predictions. Similarly, the physics override the
network predictions as the ball leaves the hands during shooting.
To animate stealing actions, we guide the hand of the character

to the ball via inverse kinematics; this automatically activates the
contact state of the hand and the ball and then the dribbling action
automatically. As the system is trained with a variation of stealing
motion, the corrupted motion by inverse kinematics are projected
to natural stealing motion through this process.
The readers are referred to the supplementary video for the ani-

mated results.

9.2 Quantitative Evaluation
We provide a quantitative evaluation of our system in terms of the
body movement, contact accuracy and responsiveness using a test
dataset. The control variables of the test data are extracted as de-
scribed in the Appendix, and given to our model as the input. Using
the output motion we compute values for each criterion. We com-
pare our method with other existing methods such as PFNN [Holden
et al. 2017], MANN [Zhang et al. 2018] and LSTM [Lee et al. 2018].
We also note that it is in general difficult to directly compare com-
plex animation systems, given that each system is a complex artefact
unto itself.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:10 • Starke et al.

Fig. 11. Angular joint updates for different movements. Forward / Back-
ward/ Sidestep: Medium-speed dribbling along straight line. Turn: Slow
dribbling along a small circle. Switching: Dribbling the ball between hands
while standing.

Fig. 12. Foot contact stability for different movements. Tested movements
are same as for Fig. 11, with Spin: 360° rotation while running forward,
which is a better motion for evaluating foot skating.

9.2.1 Body Movement. We quantify the body movement by the
sum of the absolute angle updates of all the joints per frame. Mo-
tions synthesized by neural networks tend to smooth the motion;
we found this metric provides a good indication of how agile and
unsmoothed the generated motion appears. Comparing the values
of our method with PFNN, MANN and LSTM in Fig. 11, our model
outperforms all types of motion. The difference is more significant
for movements where the data samples are rather sparse, such as
backward and turning motion. There is much more data for forward
motion where all the models train well, whereas our method does
not overfit to those but can reconstruct the other motions too.

9.2.2 Contact Accuracy. We evaluate the contact accuracy between
the feet and the ground. For that contact accuracy between the
feet and the ground, we compute the amount of foot skating by
summing the horizontal movements of the feet when their height
and vertical velocity are below thresholds and thus should be in
contact. As can be observed in Fig. 12, our method has the lowest
foot skating. We also plot the distance between the hand and the
ball during a dribbling motion in Fig. 13. To produce an accurate
dribbling, the distance needs to go zero for every bounce of the
ball; this happens only consistently for our model (black line) and
LSTM (magenta line), whereas the latter produces occasional ball
movement artefacts.

9.2.3 Responsiveness. The responsiveness of the character to the
user inputs is one of the most important aspects in character control,
and can be evaluated by measuring how much time is needed in
average to reach the target speed and orientation, as well as for
completing tasks such as spinning since the user input signal was
given. The plot of the average time required for completing the tasks

Fig. 13. The distance between the ball and the dribbling hand. Only our
model produces a curve where the distance reaches zero at every bounce,
while the other methods occasionally fail to bounce back to the hand.

Fig. 14. Response time of character movements to the given user controls.
Tested movements are same as for Fig. 11, with Stop: suddenly stopping
from a running motion, which is a better motion to evaluate the response
time.

are shown in Fig. 14. Our response is slightly worse than moving
forward compared to PFNN though almost the same; for other move-
ments our model outperforms the others. LSTM performs worse in
all cases, possibly due to the lack of data augmentation. Our original
dataset is already very large compared to those used for training
other LSTM models, such as [Lee et al. 2018] (3 hours vs. 10-12min).
Augmenting the data as done in [Lee et al. 2018] (2000% of the orig-
inal data), may improve the responsiveness significantly, although
will require much longer training time. Reducing the initial data
size and then doing a data augmentation may be feasible, although
that will result in less variation in the motion.

Fig. 15. Generated motion nuances from different noise seeds.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Local Motion Phases for Learning Multi-Contact Character Movements • 1:11

Table 2. The average movement in the body chain when deactivating each
local motion phase in degrees/frame (Left Foot, Right Foot, Left Hand, Right
Hand) andm/s (Ball).

Movement LF RF LH RH Ball
All Phases 399 391 169 306 3.89
P w/o LF 323 320 150 273 3.52
P w/o RF 326 325 268 156 3.49
P w/o LH 387 378 171 304 3.54
P w/o RH 390 387 296 169 3.72
P w/o Ball 363 358 163 283 3.56
No Phases 21 22 15 21 0.86

9.3 Generative Variations and Generalization
We show examples where we can vary the movements of the char-
acters by sampling noise (see Fig. 15). The variation in the control
signals produced by the noise sampling results in different body and
ball movements during holding, dribbling and interactions.

Our system can also synthesize novel combination of movements
that are not observed in the training set. For example, the dataset
contains the motion where the ball is dribbled behind the back while
moving forward and at the same position, but not while walking
backward or side-stepping (see Fig. 16, left). Our system can learn
these behaviors and combine them, allowing the character to drib-
ble behind the back while walking backward and side-stepping.
Similarly, the dataset does not contain data where the player holds
the ball and run, but our system can produce such movements by
providing such a control signal (see Fig. 16, right).

9.4 Character Interaction
We simulate a one-on-one basketball play by letting two players
freely control their own character using their gamepads (see Fig. 1).
Our system can automatically trigger realistic behaviors: the drib-
bling character points its free arm towards the opponent character
to block it from approaching. The defense character standing in the
way automatically spreads its arms to stop the dribbling character
from moving forward. These response motions are learned from the
training data where the players are interacting with each other. Note
that character movements during the interaction sometimes appear
confused or unrealistic due to the uncommon trajectories produced
by the user. The space of spatial relations between the characters is
very large and the training data only covers a small subset of such
space. The full character trajectory control (2D translation + 1D
translation) is also rather complex and it is not always easy for the
user to control the character to respond to the other character in

Fig. 16. Generalization to uncaptured movement combinations.

Fig. 17. The quadruped locomotion generated by our system: changing the
target velocity will produce different local motion phase patterns, resulting
in different locomotion modes.

a realistic manner. A higher-level controller that outputs a control
signals or partially blend the user control signals to them could
potentially improve the realism in path generation.

9.5 Evaluating the Influence of Local Motion Phases
Using a forward dribbling motion as an example, we evaluate the
influence of the local motion phases to the motion by deactivating
each of them and observing the effect. The average updates are
measured in degrees/frame for each selective bone chain, and inm/s
for the ball movement. The results are shown in Table 2. If either left
or right foot phase is deactivated, the other can slightly compensate
for the inactive one. If the left or right hand is deactivated, the
network automatically starts dribbling with the other hand that is
active. The ball movement shows higher redundancy in connection
with other phases. When all phases are turned off the character is
completely stiff and slides.

9.6 Quadruped Motion Learning
We also train a quadruped controller using the local motion phase
computed for every foot based on its contact with the ground. We
use the same architecture and control system as in MANN [Zhang
et al. 2018] but only switch the input to the gating network from
the feet velocity to the local motion phases. This greatly helps to
improve the response and generality of the control. As observed in
Fig. 17, different locomotion modes can be synthesized by simply
changing the target velocity of the character. For the sitting to
walk, the MANN has rather slow response from switching from
sitting to walking, where our system immediately starts to walk
given the user instruction. In terms of generalization, our model
can synthesize movements that are not observed during training,
such as side-stepping and quick turning (see supplementary video)
while MANN will simply slide the body without stepping for such
unobserved control signals.

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

1:12 • Starke et al.

Fig. 18. Snapshots of carrying a box and sitting down/standing up from a
chair and the corresponding local motion phases.

9.7 Object Interaction Learning
We apply the local motion phase to the object/environment interac-
tion examples in [Starke et al. 2019]. The snapshots of picking up
and putting down a box and sitting on and standing from a chair as
well as the corresponding local motion phases are shown in Fig. 18.
Our system can stably produce realistic movements automatically,
while [Starke et al. 2019] requires the motion to be aligned via a
global phase that is carefully handcrafted per action type.

10 DISCUSSION
Our system improves on the evolution of expert-based character
controllers [Holden et al. 2017; Starke et al. 2019; Zhang et al. 2018];
a common question refers to what enables the previous networks
to perform well on their given tasks, and why they cannot directly
be used for each other domain, i.e. biped, quadruped, interaction.
What all those models have in common is that they aim to segment
and dynamically interpolate the movements of the same class and
timing using jointly trained expert networks.
The PFNN [Holden et al. 2017] uses a global phase variable to

compute the blending weights of the experts for animating biped
locomotion. This is possible because the locomotion always follows
the same left-right foot-fall pattern. On the other hand, defining a
single phase variable is not possible for quadruped locomotion due
to inconsistency of the foot-fall pattern at different speed.
In MANN [Zhang et al. 2018], the handcrafted phase function

is replaced with a gating network that uses the foot velocities as
features. The foot velocities naturally produce a well-separating fea-
ture space to segment the movements depending on the locomotion
mode gaits - which unfortunately is not the case for regular biped
locomotion.
The NSM [Starke et al. 2019] utilizes the gating structure devel-

oped in MANN to learn various types of interaction motions such
as sitting on chairs, opening doors, carrying objects under a single
structure that enables to define a single global phase separately for
each task. The NSM generalizes the PFNN by expanding its initial
scope from pure locomotion to different types of scene interaction
motions. However, labeling and defining rules for eachmotion phase
as well as requiring structured motion capture data of synchronized
movements remains an issue.
With our enhancement of using the local motion phase, we can

• expand the scope of movements to fast-paced, asynchronous
interactions with dynamic objects and other characters,

• overcome limitations of global phases in order to handle un-
structured biped locomotion,

• improve quadruped motion in generating more detailed and
responsive movements and

• produce variations within same actions using a generative
control scheme.

Alternative Design of the Generative Control Scheme. An alterna-
tive structure for the generative control scheme could be cGAN [Mirza
and Osindero 2014], for example as applied to add photo-realistic de-
tails to images [Ledig et al. 2017], or stylized details to terrains [Zhao
et al. 2019]; we experimented with such a structure but found this
is not straightforward. For such a design, we need to define a con-
dition extracted from the ground truth control signal. If we use a
filtered, smooth control signal as a condition (as a smoothed terrain
is used as a condition in [Zhao et al. 2019]), during the training
we are making an assumption that the control signals produced by
the user control has similar properties to those produced by the
smoothing filter. This is a very strong assumption and we find this is
not necessarily the case. A better way to extract the condition is that
we use the actual control signals from the user to train the cGAN
on. But capturing those control signals from the user, and then
mapping them to the corresponding motion is not straightforward
and may require manual and labor intensive processes. Our design
to construct a latent space of the control signal in an autoencoder
fashion and adding noise at runtime can effectively produce a large
variation of movements observed during training.

Limitations. The system will fail when the control signal given to
the network is far from what have been observed during training.
For example, when the user moves the body and the ball in random
directions using the two joysticks, a very random control vector can
be produced, and the generative control model will have difficulty
in projecting it to a realistic control signal, resulting in penetrations
etc. The unobserved control signal can mislead the output of the
motion prediction network. Fixing this will require either preparing
a generative control model that is trained with noise values at the
level of such random user control, or preparing a logic that filters
unrealistic control signals.

11 CONCLUSION AND FUTURE WORK
We propose a novel feature called the local motion phase, which
together with our mixture-of-experts architecture can learn fast
and dynamic movements during basketball play. The features are
extracted by a hybrid global and local optimization technique from
unstructured motion capture data. We also propose a novel genera-
tive control model that can produce a wide variation of movements
from abstract control signals. Fast and complex interactions between
the character and the ball, or with another character can be syn-
thesized in real-time after training the system with motion capture
data of basketball plays.

One of the future work is that currently the local phase is defined
based on contacts: extending this to non-contact movements is the
next step. Another issue is the long turnaround time after making
changes: current character control models need to be retrained from
scratch when the control signal is readjusted. Learning the pure

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

Local Motion Phases for Learning Multi-Contact Character Movements • 1:13

motion manifold and the latent mapping from a decoupled control
system will be interesting to significantly reduce the turnaround
time. Finally, it will be interesting to extend our framework for
physically-based animation by combining it with physically-based
motion tracking methods [Bergamin et al. 2019; Hong et al. 2019;
Park et al. 2019].

ACKNOWLEDGMENTS
We thank Fabio Zinno for his help acquiring the basketball dataset
and the fruitful discussions on this research, as well as Matteo Loddo
for skinning the character model. We further want to thank Mohsen
Sardari, Harold Chaput, Daniel Guinn and Navid Aghdaie for the
various support throughout this project. Finally, we also wish to
thank the anonymous reviewers for their constructive comments.

REFERENCES
Okan Arikan and David A Forsyth. 2002. Interactive motion generation from examples.

ACM Trans on Graph 21, 3 (2002), 483–490. https://doi.org/10.1145/566654.566606
Kevin Bergamin, SimonClavet, Daniel Holden, and James Richard Forbes. 2019. DReCon:

data-driven responsive control of physics-based characters. ACM Trans on Graph
38, 6 (2019), 206. https://doi.org/10.1145/3355089.3356536

Simon Clavet. 2016. Motion matching and the road to next-gen animation. In Proc. of
GDC.

Stelian Coros, Philippe Beaudoin, and Michiel Van de Panne. 2010. Generalized biped
walking control. ACM Trans on Graph 29, 4 (2010), 130. https://doi.org/10.1145/
1778765.1781156

Katerina Fragkiadaki, Sergey Levine, Panna Felsen, and Jitendra Malik. 2015. Recurrent
network models for human dynamics. In Proc. ICCV. 4346–4354. https://doi.org/10.
1109/ICCV.2015.494

Félix G. Harvey and Christopher Pal. 2018. Recurrent Transition Networks for Character
Locomotion. http://arxiv.org/abs/1810.02363

Rachel Heck and Michael Gleicher. 2007. Parametric motion graphs. In Proc. I3D.
129–136. https://doi.org/10.1145/1230100.1230123

Jessica K Hodgins, Wayne L Wooten, David C Brogan, and James F O’Brien. 1995. Ani-
mating human athletics. In Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques. 71–78. https://doi.org/10.1145/218380.218414

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Trans on Graph 36, 4 (2017), 42. https://doi.org/10.1145/
3072959.3073663

Seokpyo Hong, Daseong Han, Kyungmin Cho, Joseph S Shin, and Junyong Noh. 2019.
Physics-based full-body soccer motion control for dribbling and shooting. ACM
Trans on Graph 38, 4 (2019), 1–12. https://doi.org/10.1145/3306346.3322963

Lucas Kovar and Michael Gleicher. 2004. Automated Extraction and Parameterization
of Motions in Large Data Sets. ACM Trans on Graph 23, 3 (2004), 559–568. https:
//doi.org/10.1145/1186562.1015760

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2002. Motion graphs. ACM Trans
on Graph 21, 3 (2002), 473–482. https://dl.acm.org/doi/10.1145/566654.566605

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham,
Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang,
et al. 2017. Photo-realistic single image super-resolution using a generative adver-
sarial network. In Proc. IEEE CVPR. 4681–4690. https://ieeexplore.ieee.org/abstract/
document/8099502

Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hodgins, and Nancy S Pollard.
2002. Interactive control of avatars animated with human motion data. ACM Trans
on Graph 21, 3 (2002), 491–500. https://doi.org/10.1145/566654.566607

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive Character Animation
by Learning Multi-objective Control. ACM Trans on Graph 37, 6 (2018). https:
//doi.org/10.1145/3272127.3275071

Zimo Li, Yi Zhou, Shuangjiu Xiao, Chong He, Zeng Huang, and Hao Li. 2017. Auto-
conditioned recurrent networks for extended complex human motion synthesis.
arXiv preprint arXiv:1707.05363 (2017). http://arxiv.org/abs/1707.05363

C Karen Liu and Zoran Popović. 2002. Synthesis of complex dynamic character motion
from simple animations. ACM Trans on Graph 21, 3 (2002), 408–416. https://doi.
org/10.1145/566654.566596

Libin Liu and Jessica Hodgins. 2018. Learning basketball dribbling skills using trajectory
optimization and deep reinforcement learning. ACM Trans on Graph 37, 4 (2018),
142. https://dl.acm.org/doi/10.1145/3197517.3201315

Libin Liu, Michiel Van De Panne, and KangKang Yin. 2016. Guided learning of control
graphs for physics-based characters. ACM Trans on Graph 35, 3 (2016), 29. https:
//doi.org/10.1145/2893476

Libin Liu, KangKang Yin, Michiel van de Panne, Tianjia Shao, and Weiwei Xu. 2010.
Sampling-based contact-rich motion control. ACM Trans on Graph 29, 4 (2010), 128.
https://doi.org/10.1145/1778765.1778865

Jianyuan Min and Jinxiang Chai. 2012. Motion graphs++: a compact generative model
for semantic motion analysis and synthesis. ACM Trans on Graph 31, 6 (2012), 153.
https://doi.org/10.1145/2366145.2366172

Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784 (2014). http://arxiv.org/abs/1411.1784

Tomohiko Mukai and Shigeru Kuriyama. 2005. Geostatistical motion interpolation.
ACM Trans on Graph 24, 3 (2005). http://doi.acm.org/10.1145/1073204.1073313

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learning
predict-and-simulate policies from unorganized human motion data. ACM Trans on
Graph 38, 6 (2019), 205. https://doi.org/10.1145/3355089.3356501

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel van de Panne. 2018. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Trans on Graph 37, 4 (2018), 143. https://doi.org/10.1145/3197517.3201311

Marc H Raibert and Jessica K Hodgins. 1991. Animation of dynamic legged locomotion.
In ACM Siggraph Computer Graphics, Vol. 25. ACM, 349–358. https://doi.org/10.
1145/127719.122755

Charles Rose, Michael F. Cohen, and Bobby Bodenheimer. 1998. Verbs and Adverbs:
Multidimensional Motion Interpolation. IEEE Computer Graphics and Applications
18, 5 (1998), 32–40. http://dx.doi.org/10.1109/38.708559

Charles F Rose III, Peter-Pike J Sloan, and Michael F Cohen. 2001. Artist-Directed
Inverse-Kinematics Using Radial Basis Function Interpolation. Computer Graphics
Forum 20, 3 (2001), 239–250. https://doi.org/10.1111/1467-8659.00516

Alla Safonova and Jessica K Hodgins. 2007. Construction and optimal search of inter-
polated motion graphs. ACM Trans on Graph 26, 3 (2007). https://doi.org/10.1145/
1276377.1276510

Hyun Joon Shin and Hyun Seok Oh. 2006. Fat graphs: constructing an interactive
character with continuous controls. In Proc. SCA. 291–298. http://dx.doi.org/10.
2312/SCA/SCA06/291-298

Sebastian Starke, Norman Hendrich, and Jianwei Zhang. 2018. Memetic Evolution for
Generic Full-Body Inverse Kinematics in Robotics and Animation. IEEE Transactions
on Evolutionary Computation 23, 3 (2018), 406–420.

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine
for character-scene interactions. ACM Trans on Graph 38, 6 (2019), 209. https:
//doi.org/10.1145/3355089.3356505

Graham W Taylor, Geoffrey E Hinton, and Sam T Roweis. 2007. Mod-
eling human motion using binary latent variables. In Advances in neu-
ral information processing systems. 1345–1352. https://papers.nips.cc/paper/
3078-modeling-human-motion-using-binary-latent-variables

Emanuel Todorov and Weiwei Li. 2005. A generalized iterative LQG method for locally-
optimal feedback control of constrained nonlinear stochastic systems. In Proceedings
of the 2005, American Control Conference, 2005. IEEE, 300–306.

Ruben Villegas, Jimei Yang, Duygu Ceylan, and Honglak Lee. 2018. Neural Kinematic
Networks for Unsupervised Motion Retargetting. In Proc. IEEE CVPR. https://doi.
org/10.1109/CVPR.2018.00901

J.M. Wang, D.J. Fleet, and A. Hertzmann. 2008. Gaussian Process Dynamical Models
for Human Motion. IEEE PAMI 30, 2 (Feb 2008), 283–298. https://doi.org/10.1109/
TPAMI.2007.1167

Douglas J Wiley and James K Hahn. 1997. Interpolation synthesis of articulated figure
motion. IEEE Computer Graphics and Applications 17, 6 (1997), 39–45. https:
//doi.org/110.1109/38.626968

Ronald J Williams and David Zipser. 1989. A learning algorithm for continually running
fully recurrent neural networks. Neural computation 1, 2 (1989), 270–280. https:
//doi.org/10.1162/neco.1989.1.2.270

AndrewWitkin andMichael Kass. 1988. Spacetime constraints. ACM Siggraph Computer
Graphics 22, 4 (1988), 159–168. https://doi.org/10.1145/54852.378507

Shihong Xia, Congyi Wang, Jinxiang Chai, and Jessica Hodgins. 2015. Realtime style
transfer for unlabeled heterogeneous human motion. ACM Trans on Graph 34, 4
(2015), 119. https://doi.org/10.1145/2766999

Yuting Ye and C Karen Liu. 2012. Synthesis of detailed handmanipulations using contact
sampling. ACM Trans on Graph 31, 4 (2012). https://doi.org/10.1145/2185520.2185537

KangKang Yin, Kevin Loken, and Michiel Van de Panne. 2007. Simbicon: Simple biped
locomotion control. ACM Trans on Graph 26, 3 (2007), 105. https://doi.org/10.1145/
1276377.1276509

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Trans on Graph 37, 4 (2018). https:
//doi.org/10.1145/3197517.3201366

Wenping Zhao, Jianjie Zhang, Jianyuan Min, and Jinxiang Chai. 2013. Robust realtime
physics-based motion control for human grasping. ACM Trans on Graph 32, 6 (2013).
https://doi.org/10.1145/2508363.2508412

Yiwei Zhao, Han Liu, Igor Borovikov, Ahmad Beirami, Maziar Sanjabi, and Kazi Zaman.
2019. Multi-theme generative adversarial terrain amplification. ACM Trans on Graph
38, 6 (2019), 200. https://doi.org/10.1145/3355089.3356553

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

https://doi.org/10.1145/566654.566606
https://doi.org/10.1145/3355089.3356536
https://doi.org/10.1145/1778765.1781156
https://doi.org/10.1145/1778765.1781156
https://doi.org/10.1109/ICCV.2015.494
https://doi.org/10.1109/ICCV.2015.494
http://arxiv.org/abs/1810.02363
https://doi.org/10.1145/1230100.1230123
https://doi.org/10.1145/218380.218414
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/3306346.3322963
https://doi.org/10.1145/1186562.1015760
https://doi.org/10.1145/1186562.1015760
https://dl.acm.org/doi/10.1145/566654.566605
https://ieeexplore.ieee.org/abstract/document/8099502
https://ieeexplore.ieee.org/abstract/document/8099502
https://doi.org/10.1145/566654.566607
https://doi.org/10.1145/3272127.3275071
https://doi.org/10.1145/3272127.3275071
http://arxiv.org/abs/1707.05363
https://doi.org/10.1145/566654.566596
https://doi.org/10.1145/566654.566596
https://dl.acm.org/doi/10.1145/3197517.3201315
https://doi.org/10.1145/2893476
https://doi.org/10.1145/2893476
https://doi.org/10.1145/1778765.1778865
https://doi.org/10.1145/2366145.2366172
http://arxiv.org/abs/1411.1784
http://doi.acm.org/10.1145/1073204.1073313
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/3197517.3201311
https://doi.org/10.1145/127719.122755
https://doi.org/10.1145/127719.122755
http://dx.doi.org/10.1109/38.708559
https://doi.org/10.1111/1467-8659.00516
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/1276377.1276510
http://dx.doi.org/10.2312/SCA/SCA06/291-298
http://dx.doi.org/10.2312/SCA/SCA06/291-298
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3355089.3356505
https://papers.nips.cc/paper/3078-modeling-human-motion-using-binary-latent-variables
https://papers.nips.cc/paper/3078-modeling-human-motion-using-binary-latent-variables
https://doi.org/10.1109/CVPR.2018.00901
https://doi.org/10.1109/CVPR.2018.00901
https://doi.org/10.1109/TPAMI.2007.1167
https://doi.org/10.1109/TPAMI.2007.1167
https://doi.org/110.1109/38.626968
https://doi.org/110.1109/38.626968
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1162/neco.1989.1.2.270
https://doi.org/10.1145/54852.378507
https://doi.org/10.1145/2766999
https://doi.org/10.1145/2185520.2185537
https://doi.org/10.1145/1276377.1276509
https://doi.org/10.1145/1276377.1276509
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/2508363.2508412
https://doi.org/10.1145/3355089.3356553

1:14 • Starke et al.

A AUTOMATED DATA ANNOTATION
In this section, we describe the process of extracting all state vari-
ables from the data that is required for training. To reduce manual
labor and avoid data inconsistency due to labeling errors, we de-
sign an automated workflow for feature extraction. All motion data
processing is performed in the Unity engine. All features live in
a time series window T 1s

−1s that can cover information of up to 13
uniformly-sampled points within 1s (6 samples) in the past and
future around 1 centered root sample at current frame i .

A.1 Extracting Control Variables
To synthesize a wide variation of locomotion and dribbling move-
ments of different speeds, facing directions and interactive maneu-
vers, we extract three main control channels from the data: trajec-
tory path Ti , action labels Ai and interaction vectors Ii . All control
variables are extracted for each time series sample within T 1s

−1s .
The trajectory T is computed by projecting the hip bone and

applying a Gaussian kernel G on the root rotation to prevent over-
fitting to the data, similar to [Holden et al. 2017]. In addition, since
basketball plays cover fast movements such as spiral turns and quick
ball switching maneuvers that can happen in a very short time win-
dow, we develop an adaptive filter that can take into account such
quick movements:

r = G(wRRT ,σ) (14)

where r is the smoothed root orientation, RT is the global orienta-
tion of the root around the vertical axis, σ is the standard deviation
set to 1

4T
1s
−1s andwR is a weighting computed by applying another

Gaussian filter to ÛRT :

wr = G(ÛRT ,σ). (15)

This has a nice effect where movements of the same gradient will
produce amore narrowfilter width and keep their important content,
and movements of oscillating or noisy gradient will sum up to zero
and produce a wider filter width to remove such artefacts.

The action labels A describes whether the character is in the state
of Stand orMove, and in the Dribble, Hold or Shoot state with respect
to the ball. To compute the labels for Stand orMove, we compute the
root velocity magnitude and transform it into a continuous value
between 0 and 1 using a smooth-step function with threshold 0.5m/s.
Thus, the sum of both of them always equals 1. For the Dribble label,
we detect contact labels within the time series window to extract
whether the character is interacting with the ball or not. Similarly,
the Hold label is set active when both hands are in contact with
the ball. To extract Shoot labels, we determine whether the ball is
leaving contact with the hands and is above a certain height and
velocity threshold.

The interaction vector features I are used to direct the ball control,
such as the ball dribbling property, i.e. location, speed and height,
controlling switching and special turning maneuvers, and also the
ball position while holding. At every time series sample, the 3D
vector pair Ipi and Imi , are computed by:

Ipi = (x̂i ,hi , ẑi) Imi = (
dx̂i
dt
,

dhidt

 , dẑidt
) (16)

where (x̂i , ẑi) is the horizontally-normalized vector around the char-
acter root, and hi the desired vertical height, and Imi is computed by
their temporal finite difference. To process the horizontal control
vectors, we also apply the same gradient-based Gaussian filtering
as for the computation of the root trajectory in Eq. (14):

h = G(wHHT ,σ), (17)

where h is the output height, HT is the original height curve, σ is
the standard deviation in Eq. (14), andwH is a weighting given by

wH = G(CT ,σ) (18)

where CT is a block function representing the contact between the
hand and the ball, which is obtained by the method described in
Section A.2. This setting allows continuous control of the character
between different actions as well as switching between offense and
defense during runtime.

A.2 Extracting Ball Movements
The position and velocity of the ball is extracted from the motion
capture data. However, there are numerous clips where the ball
movement leaves the view of the optical motion capture, or when
performing regular locomotion and not interacting with the ball, in
which case the ball data is either missing or invalid. In such case, we
clamp or project the ball to a position on a capsule surface around
the character. More specifically, the ball coordinates within a radius
of r = 2.5 around the character root are learned as:

B̂ = wbB (19)

where B are the parameters of the ball, including its position, veloc-
ity, upward vector and forward vector of the ball in the root space,
andwb is a weighting computed bywb = 1.0 − ∥bp ∥/r where bp is
the horizontal position of the ball in the root space. During runtime,
computing the actual ball parameters can be done by dividing B̂ by
the predictedwb . This transforms the features within a reasonable
distribution around the character and helps the network to better
learn the ball movement. We wish the network to only learn move-
ments of the ball in which range the character can actually interact
with it.

A.3 Detecting Contact Labels
The required contact labels are automatically obtained by evaluat-
ing a primary condition for distance and secondary condition for
velocity as denoted in Eq. (20). First, we perform collision checks
within a specified distance threshold around the character bone.
If this holds true, we check another threshold for the maximum
velocity difference of the two contacting colliders to filter wrongly
extracted and sliding contacts. This can be denoted as

cki =

{
1 if | |pki − p· | | ≤ dmax ∧ ||vki − v· | | ≤ vmax

0 otherwise
(20)

where pki , p
· and vki , v

· are the position and velocity of bone k at
frame i and those of another collider object (·) and dmax , vmax
are threshold parameters (dmax adjusted according to the collider
objects and vmax = 1).

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 System Inputs and Outputs
	5 Local Motion Phase
	5.1 Motivation of Using the Local Motion Phase
	5.2 Computing the Local Motion Phase from Motion Capture Data

	6 Generative Control Model
	7 Network Training
	8 Character Control System
	9 Experiments and Evaluation
	9.1 Animated Results
	9.2 Quantitative Evaluation
	9.3 Generative Variations and Generalization
	9.4 Character Interaction
	9.5 Evaluating the Influence of Local Motion Phases
	9.6 Quadruped Motion Learning
	9.7 Object Interaction Learning

	10 Discussion
	11 Conclusion and Future Work
	Acknowledgments
	References
	A Automated Data Annotation
	A.1 Extracting Control Variables
	A.2 Extracting Ball Movements
	A.3 Detecting Contact Labels

