Edinburgh Research Explorer

An Assessment of Locally Least-Cost Error Recovery

Citation for published version:
Anderson, SO, Backhouse, RC, Bugge, EH & Stirling, CP 1983, 'An Assessment of Locally Least-Cost Error
Recovery', The Computer Journal, vol. 26, no. 1, pp. 15-24. https://doi.org/10.1093/comjnl/26.1.15

Digital Object Identifier (DOI):
10.1093/comijnl/26.1.15

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
The Computer Journal

Publisher Rights Statement:
Open Access Document

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Nov. 2022

https://doi.org/10.1093/comjnl/26.1.15
https://doi.org/10.1093/comjnl/26.1.15
https://www.research.ed.ac.uk/en/publications/3038d7a2-d9e4-4790-8427-2007ad92fe3f

An Assessment of Locally Least-Cost Error

Recovery®

S. O. Anderson, R. C. Backhouse,} E. H. Bugge and C. P. Stirling
Department of Computer Science, Heriot-Watt University, Edinburgh, UK

Locally least-cost error recovery is a technique for recovering from syntax errors by editing the input string at the point
of error detection. An informal description of a parser generator which implements the technique is given. The
generator takes as input an extended BNF description of a language together with a set of primitive edit costs and
outputs a recursive descent syntax analyser including error recovery. Criteria for assessment of the technique are
offered. Using these criteria the technique is assessed with respect to a database of over 100 example programs, and
compared with an alternative local error recovery technique, that of follow set error recovery. The conclusion is that
locally least-cost error recovery is more effective than follow set error recovery but much less economical in its use of
storage space. The least-cost parser also runs between 15 and 209, slower than the follow set parser.

1. INTRODUCTION

Locally least-cost error recovery is a technique for
recovering from syntax errors by editing the input string
at the point of error detection. It was developed from
earlier theoretical work on syntactic error correction'™>
using an idea inspired by Fischer, Milton and Quiring.*
The theory on which the method is based is described by
Backhouse (Ref. 5, Chapt. 6) where the method is applied
to the ‘toy’ programming language PLO invented by
Wirth.®

Locally least-cost error recovery is essentially table-
driven and not amenable to hand-encoding. But, by the
end of 1980, we had completed the development of a
parser generator which implements the technique. The
generator inputs an extended BNF description of a
language together with a set of primitive edit costs and
outputs a recursive descent syntax analyser including
locally least-cost error recovery and associated error
messages. The purpose of this paper is to assess in some
detail the usefulness of this tool and the effectiveness of
locally least-cost error recovery.

A number of parser generators, automatically generate
error recovery. Lewi et al.” employ a notion of synchro-
triples to add error recovery to a recursive descent syntax
analyser which, like ours, is generated from an extended
BNF grammar. Pai and Kieburtz® use fiducial symbols
to direct the error recovery in a table-driven parser
generated from an LL(1) grammar. Error repair as the
basis for error recovery has been used by Feyock and
Lazarus® and Réhrich;!? the idea of edit costs to choose
among possible repairs goes back to Graham and
Rhodes.!! Closest to our own is the work of Fischer,
Milton and Quiring* whose notion of insertion-only error
correction is generalized by our notion of locally least-
cost repair.

* This work was supported by grants from the UK Science and
Engineering Research Council and the Carnegie Trust for the
Universities of Scotland.

t Present address: Dept of Computer Science, University of Essex,
Wivenhoe Park, Colchester, CO4 3SQ, UK.

Few assessments of error recovery schemes have been
given in any detail. Some evaluate the performance of
their schemes on one short program; others just provide
one or two small examples of the error recovery achieved.
Our assessment is based on comparing the performance
of locally least-cost error recovery with follow set error
recovery® 213 over 126 Pascal programs collected by
Ripley and Druseikis.'*

Section 2 of this paper gives an overview of the
principal elements of locally least-cost error recovery and
Section 3 describes the parser generator. Sections 4 and
5 discuss the basis for our assessment of the technique
and Section 6 discusses its effectiveness in producing
good error recovery and its efficiency with respect to
storage and time overheads. Section 7 summarizes our
results and examines the remaining weaknesses of the
technique.

2. LOCALLY LEAST-COST ERROR RECOVERY

The principal idea governing locally least-cost error
recovery is that the input symbol at an error-detection
point may always be edited to some string which allows
the parse to continue normally. The choice of string to
which the input symbol is to be edited is effected by
assigning costs to the primitive edit operations of
inserting or deleting a single symbol, or changing one
symbol to another. For example, suppose the parser
encounters the following assignment within a Pascal
program. (The ellipsis dots indicate unknown symbols
following the identifier c.)

a=2c...

An error is detected on reading the input symbol c; it
may be repaired by editing ¢ to the empty word—
effectively deleting c—Dby editing ¢ to one of ‘+¢’, ‘*¢’,
‘—¢’ etc.—effectively inserting an arithmetic operator—
or by editing c to ‘;c’—effectively inserting a semicolon.
Which string is chosen depends on the relative costs,
assigned by the compiler writer, of deleting c, inserting

CCC-0010-4620/83/0026—-0015 $05.00

© Wiley Heyden Ltd, 1983

THE COMPUTER JOURNAL, VOL. 26, NO. 1,1983 15

#T0Z ‘6 9unr uo AysieAlun ybinquip3 e /Bio'sfeulnolpioxo’ Jufwoo//:dny woiy papeoumoq

Downloaded from http://comjnl.oxfordjournals.org/ a Edinburgh University on June 9, 2014

