COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness

Citation for published version:

Digital Object Identifier (DOI):
10.1172/JCI45693

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Clinical Investigation

Publisher Rights Statement:
© 2011, American Society for Clinical Investigation

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
COQ6 mutations in human patients produce nephrotic syndrome with sensorineural deafness

Saskia F. Heeringa,1 Gil Chernin,1 Moumita Chaki,1 Weibin Zhou,1 Alexis J. Sloan,2 Ziming Ji,3 Letian X. Xie,3 Leonardo Salvati,4 Toby W. Hurd,1 Virginia Vega-Warner,1 Paul D. Killen,5 Yehoash Raphael,5 Shazia Ashraf,1 Bugsu Ovunc,1 Dominik S. Schoeb,1 Heather M. McLaughlin,1,6 Rannar Airik,1 Christopher N. Vlangos,1 Rasheed Gbadebesin,1 Bernward Hinkes,1,7 Pawaree Saisawat,1 Eva Trevisson,4 Mara Doimo,4 Alberto Casarin,4 Vanessa Pertegato,4 Gianpietro Giorgi,4 Holger Proksch,6,9 Agnès Rötig,10 Gudrun Nürnberg,11,12,13 Christian Becker,11 Su Wang,5 Fatih Oxlutin,14 Rezan Topaloglu,14 Ayşin Bakaloglu,14 Sevcan A. Bakaloglu,15 Dominik Müller,16 Antje Beissert,17 Sevgi Mir,18 Afgı Berdeli,18 Seza Özen,14 Martin Zenker,19 Verena Matejjas,7 Carlos Santos-Ocaña,20 Placido Navas,20 Takehiro Kusakabe,21 Andreas Kispert,22 Sema Akman,23 Neveen A. Soliman,24 Stefanie Krick,2 Peter Mundel,2 Jochen Reiser,2 Peter Nürnberg,11,12,13 Catherine F. Clarke,3 Roger C. Wiggins,5 Christian Faul,2 and Friedhelm Hildebrandt1,6,25

1Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA. 2Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA. 3Department of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, Los Angeles, California, USA. 4Department of Pediatrics, University of Padua, Padua, Italy. 5Department of Internal Medicine, Department of Pathology, and Department of Otolaryngology and 6Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA. 7Institute of Human Genetics, University Hospital of Erlangen, Erlangen, Germany. 8Institute of Human Genetics, Helmholtz Zentrum Munich, German Research Center for Environmental Health, Neuherberg, Germany. 9Institute of Human Genetics, Klinikum rechts der Isar, Technical University Munich, Munich, Germany. 10INSERM U781, Hôpital Necker-Enfants Malade, Université René Descartes, Paris, France. 11Cologne Center for Genomics, 12Center for Molecular Medicine Cologne (CMMC), and 13Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany. 14Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey. 15Department of Pediatric Nephrology, Gazi University Faculty of Medicine, Ankara, Turkey. 16Department of Pediatric Nephrology, Charité, Berlin, Germany. 17University Children’s Hospital, Würzburg, Germany. 18Department of Pediatrics, Ege University, Izmir, Turkey. 19Institute of Human Genetics, University Hospital of Magdeburg, Magdeburg, Germany. 20Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC and CIBERER, ISCIII, Seville, Spain. 21Department of Biology, Faculty of Science and Engineering, Konan University, Kobe, Japan. 22Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany. 23Department of Pediatric Nephrology, Akdeniz University, School of Medicine, Antalya, Turkey. 24Department of Pediatrics, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt. 25Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA.

Steroid-resistant nephrotic syndrome (SRNS) is a frequent cause of end-stage renal failure. Identification of single-gene causes of SRNS has generated some insights into its pathogenesis; however, additional genes and disease mechanisms remain obscure, and SRNS continues to be treatment refractory. Here we have identified 6 different mutations in coenzyme Q10 biosynthesis monoxygenase 6 (COQ6) in 13 individuals from 7 families by homoyogosity mapping. Each mutation was linked to early-onset SRNS with sensorineural deafness. The deleterious effects of these human COQ6 mutations were validated by their lack of complementation in coq6-deficient yeast. Furthermore, knockdown of Coq6 in podocyte cell lines and coq6 in zebrafish embryos caused apoptosis that was partially reversed by coenzyme Q10 treatment. In rats, COQ6 was located within cell processes and the Golgi apparatus of renal glomerular podocytes and in stria vascularis cells of the inner ear, consistent with an oto-nail disease phenotype. These data suggest that coenzyme Q10–related forms of SRNS and hearing loss can be molecularly identified and potentially treated.

Introduction

Nephrotic syndrome (NS), a malfunction of the kidney glomerular filter, leads to proteinuria, hyperalbminemia, and edema. Steroid-resistant NS (SRNS) represents a frequent cause of end-stage renal failure (ESRF), which requires renal replacement therapy for survival. Identification of single-gene causes of NS (1–7) has generated the first insights (8, 9) into its pathogenesis: (a) that single-gene causes of NS result in SRNS (10, 11) with very few exceptional cases that respond to treatment (3, 12); (b) that SRNS-causing genes are expressed in a specialized cell type, the glomerular podocyte (13); and (c) that the pathohistology ranges from the intrauterine-onset severe developmental phenotype of diffuse mesangial sclerosis (DMS) to the childhood-onset phenotype of focal segmental glomerulosclerosis (FSGS). Two-thirds of all SRNS cases with onset in the first year of life (14) and 10%–28% of all childhood cases (15) are caused by single-gene mutations in 1 of only 4 genes, NPHS1 (1), NPHS2 (2), LAMB2 (16), and WT1 (17). However, the molecular cause of more than 80% of all cases of SRNS is unknown, and treatment options have yet to be discovered. We therefore performed total genome search for linkage to identify further causative recessive genes.

Authorship note: Saskia F. Heeringa and Gil Chernin contributed equally to this work.

Conflict of interest: The authors have declared that no conflict of interest exists.

Citation for this article: J Clin Invest. 2011;121(5):2013–2024. doi:10.1172/JCI45693.
Results

COQ6 mutations cause SRNS with sensorineural deafness (SND). To identify further single-gene causes for SRNS, we performed a genome-wide search for linkage in 14 different consanguineous families with SRNS. Calculating lod under the hypothesis of locus heterogeneity yielded a significant maximum heterogeneity lod score of 4.9 ($\alpha = 0.05$) on human chromosome 14q24.3, covering a region of 6.4 Mb (Figure 1A). Of 7 families homozygous at this locus (SRNS2), families A1072 and F1082 from Turkey revealed haplotype sharing (Figure 1B), restricting the critical genetic region to 2.1 Mb under the hypothesis that an ancestor common to both families introduced the disease allele (i.e., homozygosity by descent). This interval contained 32 positional candidate genes (Figure 1C).

Exon sequencing of COQ6 yielded homozygous mutations in 3 of the 7 families homozygous at the SRNS2 locus (Table 1). In both affected individuals of family A1072, we detected a homozygous A353D substitution (Figure 1G and Table 1), which was also found in family F1082, as predicted from haplotype sharing at SRNS2 (Figure 1B). All 3 affected individuals that were examined in the northern Lebanese family F252 exhibited the homozygous change G225R (Figure 1G and Table 1). This mutation was shared by 3 affected individuals of family A234 from southern Turkey (Table 1), most likely as a founder effect. Both missense mutations altered amino acid residues that are uniformly conserved from E. coli to humans (Figure 1G). Another individual with SRNS from Turkey revealed 2 compound heterozygous truncating mutations, W447X and A353D (Figure 1G and Table 1), which we believe to be novel.

As NPHS type 5 appears recessive, the second mutation most likely resulted from alternative splicing (www.aceview.org). Full-length protein-truncating COQ6 mRNAs were absent from more than 90 healthy control subjects from central Europe and 60 healthy control subjects from Turkey. Segregation of mutations in the 7 families homozygous at the SRNS2 locus (Table 1) with SRNS yielded homozygous mutations in 3 additional families. We thus identified mutations in 20 of the 7 families homozygous at the SRNS2 locus (Table 1). In both families A1072 and F1082 from Turkey, we detected a homozygous nonsense mutation, A1072T (Figure 1G and Table 1). This mutation was shared by 3 affected individuals of family A234 from southern Turkey (Table 1), most likely as a founder effect. Both missense mutations altered amino acid residues that are uniformly conserved from E. coli to humans (Figure 1G). Another individual with SRNS from Turkey revealed 2 compound heterozygous truncating mutations, W447X and A353D (Figure 1G and Table 1), which we believe to be novel.

To test this hypothesis, we examined all 6 COQ6 mutations for potential deleterious effects by complementation in yeast strains. Yeast cells harboring a deletion mutation in the COQ6 gene were unable to grow on yeast extract/peptone/glycerol media (YPG; in which glycerol acts as a nonfermentable carbon source) and were deficient in CoQ$_6$ (Figure 2, D and E, and ref. 18). Expression of human WT COQ6 with an aminoterminal yeast mitochondrial leader sequence rescued both YPG growth and CoQ$_6$ content (Figure 2, D and E), although not as robustly as did yeast harboring the WT COQ6 gene (pSR1-1; Figure 2, D and E). Rescue of growth on YPG was observed with either low–copy number (pQM; Figure 2D) or high–copy number (pRCM; data not shown) expression constructs. Both constructs also rescued the deficiency in CoQ$_6$ content (Figure 2E). In contrast, none of the COQ6 constructs harboring the human mutations (Figure 1G and Table 1) were able to rescue the growth deficiency phenotype or CoQ$_6$ content phenotypes (Figure 2, D and E), thereby demonstrating the deleterious effects of these mutations.
Figure 1
Positional cloning of COQ6 mutations in individuals with NS and SND. (A) LOD score profile across the human genome in affected children from 14 consanguineous kindreds with SRNS. Parametric heterogeneity LOD (HLOD) scores are plotted against human chromosomal mapping positions, concatenated from p-ter (left) to q-ter (right). (B) Within the SRNS2 locus, haplotypes from 250k SNP analysis are shown for 3 of the 7 families with homozygosity at the SRNS2 locus. Alleles are colored light green (AA), dark green (BB), and red (AB). (C) The 32 genes within the SRNS2 locus; 3 genes preferentially expressed in kidney podocytes are underlined. Mutations were found in COQ6. Transcriptional direction is indicated by < or >. (D) COQ6 extends over 13.2 kb and contains 12 exons (boxes). (E) Exon structure of COQ6 cDNA. Arrows indicate relative positions of mutations (see G). Positions of peptides for antibody generation are shown in yellow. (F) Domain structure of COQ6 protein. Extent of the mono-oxygenase domain is shown in relation to encoding exon position. (G) 6 different COQ6 mutations in 7 families with SRNS. Family number and amino acid change (see Table 1) are given above sequence traces. Arrows denote positions of mutations in relation to exons and protein domains. For the 2 missense mutations, G255R and A363D, full conservation across evolution of altered amino acid residues is illustrated.
Recessive COQ6 mutations detected in 5 families with NS and deafness

<table>
<thead>
<tr>
<th>Patent ID</th>
<th>Origin</th>
<th>Consanguinity</th>
<th>Nucleotide mutation</th>
<th>Protein sequence change</th>
<th>Exon</th>
</tr>
</thead>
<tbody>
<tr>
<td>F234-43</td>
<td>Lebanon</td>
<td>Y</td>
<td>7636-G&gt;A</td>
<td>G255R</td>
<td>2</td>
</tr>
<tr>
<td>F234-46</td>
<td>Lebanon</td>
<td>Y</td>
<td>7636-G&gt;A</td>
<td>G255R</td>
<td>2</td>
</tr>
<tr>
<td>F234-51</td>
<td>Lebanon</td>
<td>Y</td>
<td>7636-G&gt;A</td>
<td>G255R</td>
<td>2</td>
</tr>
<tr>
<td>F234-41</td>
<td>Turkey</td>
<td>Y</td>
<td>7636-G&gt;A</td>
<td>G255R</td>
<td>2</td>
</tr>
<tr>
<td>A1072-22</td>
<td>Turkey</td>
<td>Y</td>
<td>1058-C&gt;A</td>
<td>A353D</td>
<td>9</td>
</tr>
<tr>
<td>A1072-21</td>
<td>Turkey</td>
<td>Y</td>
<td>1058-C&gt;A</td>
<td>A353D</td>
<td>9</td>
</tr>
<tr>
<td>A3331-21</td>
<td>Turkey</td>
<td>N</td>
<td>1341-G&gt;A</td>
<td>W447X</td>
<td>11</td>
</tr>
</tbody>
</table>

Histology and clinical presentation

<table>
<thead>
<tr>
<th>Kidney disease/treatment</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>B onset (yr) ESRF (yr) treatment</td>
<td>FS5S (6.8)</td>
<td>FS5S (1.2)</td>
<td>FS5S (1.1)</td>
<td>FS5S (2.5)</td>
<td>FS5S (6)</td>
</tr>
<tr>
<td>Age at diagnosis (yr)</td>
<td>9.3</td>
<td>1.2</td>
<td>&lt;1.0</td>
<td>0.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Age at ESRF (yr)</td>
<td>9.3</td>
<td>1.2</td>
<td>&lt;1.0</td>
<td>0.3</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Extrarenal manifestations

<table>
<thead>
<tr>
<th>Consanguinity</th>
<th>Nucleotide mutation</th>
<th>Protein sequence change</th>
<th>Exon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>7636-G&gt;A</td>
<td>G255R</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>7636-G&gt;A</td>
<td>G255R</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>7636-G&gt;A</td>
<td>G255R</td>
<td>2</td>
</tr>
<tr>
<td>Y</td>
<td>1058-C&gt;A</td>
<td>A353D</td>
<td>9</td>
</tr>
<tr>
<td>N</td>
<td>1341-G&gt;A</td>
<td>W447X</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 1: Recessive COQ6 mutations detected in 5 families with NS and deafness.

Exogenous COQ6 localization to mitochondria. To study the subcellular localization of COQ6, we generated GFP-labeled clones of human full-length isoforms a, b, and c (Supplemental Figure 1, A and B). We also generated anti-COQ6 antibodies directed against the synthetic peptides, whose positions in relation to exons and protein domains are shown in Figure 1E. Following affinity purification, antibody α–COQ6-TPEP2 detected a major band at the expected size of 50.8 kDa for full-length human COQ6 (Supplemental Figure 2). Because human full-length COQ6 isoform a contains a putative mitochondrial leader sequence, we predicted that exogenous expression would result in mitochondrial localization. Indeed, after transient exogenous transfection into Cos-7 or HeLa cells or into murine podocyte cell lines, exogenous COQ6 isoform a colocalized quantitatively in mitochondria with mitochondrial markers cytochrome c and cytochrome c oxidase (COXIV; Figure 3, A and B). Surprisingly, whereas α–COQ6-TPEP2 clearly detected exogenously expressed COQ isoform a, thereby confirming specificity of the antibody, it detected an additional endogenous signal that appeared to be localized in Golgi apparatus (Figure 3C). In fact, this endogenous signal detected by α–COQ6-TPEP2 was located in Golgi, as confirmed by double labeling with the Golgi marker Golgin 97 (Figure 3D). Interestingly, α–COQ6-TPEP2 did not reveal any endogenous COQ6 expression in mitochondria (Figure 3, D and E). Furthermore, exogenously

individual with COQ2 mutations (12), we administered CoQ10 in 2 children whose parents consented. Treatment was administered orally, giving 1 Softgel CoQ10 capsule (50 mg; GNC Preventive Nutrition) twice per day. Individual A234-27 presented with proteinuria without edema at 2 months of age, when the COQ6 mutation was detected in his sister (A234-26) and cousin (A234-21). Urine protein/creatinine ratio was 40 mg/mg initially (normal, <0.2 mg/mg). Treatment was commenced at 2 months of age, giving CoQ10 orally at 15 mg/kg/d divided in 3 doses over 2 months together withenalapril (1.25 mg/d orally). CoQ10 treatment was then increased to 30 mg/kg/d, and urine protein/creatinine ratio decreased to 8 mg/mg within 2 months. Proteinuria decreased further to 5.8 mg/mg and remained stable at 4.8 mg/mg during the last follow-up at 15 months of age. Renal function was normal throughout. Bilateral severe SND and severe growth retardation were noted at 10 months. After treatment with 50 mg CoQ10 orally twice per day, SND substantially improved in A234-26. Individual A1072-22 manifested with NS at age 2.5 years. CoQ10 treatment was started at 5.5 years of age, when the subject was in partial remission from CsA treatment, which was discontinued at 5.8 years. At the beginning of CoQ10 treatment, 24-hour protein excretion was 7 mg/m²/h (117 mg/d); 2 months into treatment, it decreased to 3.7 mg/m²/h (76 mg/d), and remission was maintained at the end of the study period. Hearing was not improved after CoQ10 treatment. When CoQ10 treatment was inadvertently interrupted, proteinuria reappeared at a level of 57 mg/m²/h (1,100 mg/d). Following reinstitution of CoQ10 treatment, proteinuria decreased again to 9 mg/m²/h (188 mg/d).

Exogenous COQ6 localizes to mitochondria. To study the subcellular localization of COQ6, we generated GFP-labeled clones of human full-length isoforms a, b, and c (Supplemental Figure 1, A and B). We also generated anti-COQ6 antibodies directed against the synthetic peptides, whose positions in relation to exons and protein domains are shown in Figure 1E. Following affinity purification, antibody α–COQ6-TPEP2 detected a major band at the expected size of 50.8 kDa for full-length human COQ6 (Supplemental Figure 2). Because human full-length COQ6 isoform a contains a putative mitochondrial leader sequence, we predicted that exogenous expression would result in mitochondrial localization. Indeed, after transient exogenous transfection into Cos-7 or HeLa cells or into murine podocyte cell lines, exogenous COQ6 isoform a colocalized quantitatively in mitochondria with mitochondrial markers cytochrome c and cytochrome c oxidase (COXIV; Figure 3, A and B). Surprisingly, whereas α–COQ6-TPEP2 clearly detected exogenously expressed COQ isoform a, thereby confirming specificity of the antibody, it detected an additional endogenous signal that appeared to be localized in Golgi apparatus (Figure 3C). In fact, this endogenous signal detected by α–COQ6-TPEP2 was located in Golgi, as confirmed by double labeling with the Golgi marker Golgin 97 (Figure 3D). Interestingly, α–COQ6-TPEP2 did not reveal any endogenous COQ6 expression in mitochondria (Figure 3, D and E). Furthermore, exogenously
The Journal of Clinical Investigation

research article

expressed full-length COQ6 isoform a spared Golgi expression, as demonstrated with Giantin as a Golgi marker (Figure 3F). Likewise, in podocyte cell lines, the cell type central to the disease mechanism of SRNS, α–COQ6-TPEP2 detected endogenous COQ6 in Golgi, but not in mitochondria (Figure 3G). The endogenous COQ6 expression pattern was confirmed with the antibody α–COQ6–925-1 (Supplemental Figure 3, A and B), which was derived from a different peptide (Figure 1E).

Endogenous COQ6, COQ7, and COQ9 colocalize to cell processes and Golgi in rat podocytes. Monogenic forms of SRNS are caused by dysfunction of the glomerular podocyte, a terminally differentiated cell critical for the filtering function of the kidney glomerulus. (13, 26). We therefore examined expression of the COQ6 protein in kidney. COQ6 was seen almost exclusively in glomeruli, rather than in tubules (Figure 4A). As predicted, within glomeruli, COQ6 was expressed specifically in podocytes, as marked by WT1 labeling (Figure 4A). Within podocytes, COQ6 was absent from mitochondria (labeled with COXIV; Figure 4A); conversely, it was expressed within cellular processes and within Golgi apparatus (Figure 4, B and C), which confirmed the results obtained in cell lines (Figure 3).

Because nonmitochondrial localization and function have been previously described for CoQα (27), we hypothesized that nonmitochondrial expression would also apply to COQ7 and COQ9, which are known as mitochondrial proteins but share a multienzyme complex together with COQ6 for the biosynthesis of CoQ10 and CoQ6 (21). Indeed, upon immunofluorescence, both COQ6 and COQ7 fully colocalized to cellular processes and Golgi of rat glomerular podocytes (Figure 4, B and C), as did COQ7 and COQ9 (Supplemental Figure 3C). We demonstrated specificity of this signal for α–COQ6-TPEP2 by showing the absence of the podocyte signal after preabsorption with the cognate peptide TPEP2, in contrast to its presence after preabsorption with the noncognate peptide TPEP1 (Supplemental Figure 3D). In addition, COQ6 colocalized to podocyte cellular processes with podocin (Figure 4E), another gene product that, if mutated, causes a Mendelian form of SRNS (2). These findings demonstrate that COQ6, COQ7, and COQ9 are all 3 expressed in cellular processes and Golgi apparatus of podocytes rather than in mitochondria.
We then investigated expression of COQ6 in the inner ear, because hearing loss is the other phenotype in this oto-renal syndrome. Immunofluorescence studies using α–COQ6-TPEP2 revealed COQ6 expression in the spiral ganglion as well as in cells of stria vascularis and spiral ligament (Figure 4, F and G), which are involved in maintaining the high potassium concentration in the cochlear duct necessary for sound transduction of the hair cells of Corti organ.

Coq6 knockdown in cultured podocytes induces apoptosis that is reversed by CoQ10 treatment. In order to study COQ6 function in glomerular podocytes, the cell type involved in the disease phenotype, we performed knockdown of Coq6 expression in vitro using a vector-based siRNA approach (28). Murine podocytes (29) were stably transfected with COQ6 siRNA constructs, and clones were analyzed by RT-PCR for Coq6 expression levels. We compared clones transfected using a scrambled siRNA oligonucleotide with non-transfected WT podocytes. The 3 clones that showed the highest degree of Coq6 downregulation (clones 1, 2, and 5) were selected for functional studies (Supplemental Figure 1M). First, we analyzed the growth behavior of Coq6 knockdown clones when kept in an undifferentiated and proliferative state (Figure 5A). When we seeded a defined number of cells and counted them after 24, 48, and 72 hours of cultivation, we found that the growth rate of the 3 Coq6 knockdown clones was strongly decreased, while the scrambled siRNA clone C proliferated at the same rate as WT cells (Figure 5A). This difference reached statistical significance after 24 hours for clones 2 and 5 (P < 0.05) and after 72 hours for clone 1 (P < 0.005; Figure 5A). As the scrambled siRNA clone C did not...
show any difference in growth behavior compared with WT podocytes, the scrambled clone was used as negative control for further experiments. To analyze whether the diminished overall growth rate in podocytes after Coq6 knockdown is associated with activation of the intrinsic apoptotic pathway, we next determined the inner mitochondrial membrane potential (ΔΨm) in these podocyte clones by using the fluorescent dye tetramethylrhodamine ethylester (TMRE). Compared with control cells, all 3 knockdown clones showed a substantial drop in TMRE fluorescence (data not shown), indicative of an increased percentage of podocytes with depolarized ΔΨm.

We then analyzed activity of caspase-9 (Figure 5B), the major caspase downstream of mitochondria-mediated apoptosis (30). Using fluorometric immunosorbent enzyme assay (FIENA), we detected a more than 2-fold increase of caspase-9 activity in all 3 knockdown clones compared with control podocytes (P < 0.005; Figure 5B). Moreover, caspase-3, the final downstream executioner caspase of different apoptotic signaling pathways (31), showed significant elevation of activity for all 3 siRNA clones (P < 0.05; Figure 5C), consistent with the effect seen in zebrafish (see below). These data suggest that the observed decline in podocyte growth after Coq6 knockdown is caused, at least in part, by increased apoptosis. Since mitochondria-induced apoptosis is associated with depolarization of the inner mitochondrial membrane (32) as well as caspase-9 activation (30), it is likely that lack of growth upon Coq6 knockdown is caused by activation of the intrinsic apoptotic pathway. Because some of the SRNS patients in our study that carry COQ6 mutations responded partially to CoQ10 treatment, we then analyzed whether CoQ10 has a beneficial effect on the phenotype caused by knockdown
of Coq6 expression in podocytes in vitro. When culturing podocyte clones 1, 2, and 5 in the presence of CoQ10 at a concentration of 50 μM for 48 hours, we observed a decrease in caspase-9 and caspase-3 activities (Figure 5, B and C). Compared with clones cultured in the absence of CoQ10, this decrease was statistically significant \((P < 0.05)\), whereas we did not detect any changes in caspase activities of negative control clones (Figure 5, B and C).

To examine COQ6 loss of function in a vertebrate organism rather than cell lines, we performed morpholino oligonucleotide (MO) knockdown of coq6 in zebrafish. We demonstrate that coq6-MO4 MOs directed against zebrafish coq6 intron 7 splice donor site induced apoptosis preferentially in heads and trunks of zebrafish embryos 28 hours after fertilization (Figure 5, D–F). Because COQ6 mutations cause SND, it is interesting to note that treatment with water-soluble CoQ10 decreased apoptosis and activated caspase-3 and improved hearing in a guinea pig model of noise-induced hearing loss (33). The kidney phenotype
of COQ6 mutations is remarkably similar to that of mutations in COQ2 (23) and PDSS2 in humans (34) and Pds2 in mice (24), all of which respond to CoQ10 treatment (12, 35). Patients with defects in genes required for CoQ10 biosynthesis — PDSS2, COQ2, and COQ9 — exhibit renal disease, and in some cases there is a dramatic response to CoQ10 therapy, but this is quite variable (36).

Discussion

In this study, we report what we believe to be a novel cause of SRNS that appears to respond to oral CoQ10 supplementation. CoQ10, an essential component of the mitochondrial electron transport chain and one of the most potent lipophilic antioxidants (37), is also required for pyrimidine nucleoside biosynthesis and has been implicated in the inhibition of apoptosis by its prevention of inner mitochondrial membrane collapse (38). In multiple studies, the deleterious effect of CoQ10 deficiency to mitochondria has been shown. CoQ10 deficiency can lead to the opening of the mitochondrial permeability transition pore (MPTP) directly, but an increased amount of ROS caused by CoQ10 deficiency can also induce the MPTP by opening of nonspecific high-conductance permeability transition pores in the mitochondrial inner membrane (39). Experiments in HEK293 cells recently showed that CoQ10 inhibits Bax-induced mitochondrial dysfunction and protects mitochondria from permeability transition pore opening (9). Here, we confirmed that COQ6 mutations that cause CoQ10 deficiency led to the upregulation of proapoptotic factors. Interestingly, CsA inhibits the MPTP through interaction with cyclophilin D, an essential component of the MPTP (40). We showed that incubation of COQ6 knockdown podocytes with CsA had a mild rescue effect and decreased activity of caspase-3. Patient A1072-22, who had been treated with CsA in the past, also showed partial remission of proteinuria after treatment with CsA.

Interestingly, the presentation of primary CoQ10 biosynthesis enzymes leading to CoQ10 deficiency have been recently implicated in other mono- genic mitochondrialopathies, generally characterized by central nervous system signs and myopathy (22, 34, 41–43); 1 patient with mutations in PDSS2 and 5 patients with mutations in COQ2 also presented with SRNS (22, 34, 43). So far, the exact pathogenic mechanism has remained unclear. Interestingly, 1 patient with mutations in COQ2 was successfully treated with oral CoQ10 supplementation, showing progressive recovery of renal function and a reduced level of proteinuria until 5 years after completion of treatment (22). The podocyte-specific phenotype caused by PDSS2 mutations leading to primary CoQ10 deficiency was demonstrated in the Pds2 knockout mouse (24). Conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes did not show disease manifestation. It remains unclear why the podocyte in particular is affected by PDSS2-dependent CoQ10 deficiency.

Interestingly, the presentation of primary CoQ10 deficiency caused by genetic mutations is very heterogeneous. It seems that the mutations in PDSS2 and COQ2 are partial loss-of-function mutations. Therefore, the phenotypes (ATP synthesis, ROS production) may depend on the content of Q in the cell, which is determined by the severity of the mutation. Mutations in PDSS2, for example, cause reduced ATP synthesis in cultured fibroblasts, but no increase in ROS production, whereas mutations in COQ2 cause no difference in ATP synthesis in cultured fibroblasts, but increase ROS production (36). One could speculate that different cell types and/or tissues react differently to ROS and ATP synthesis defects according to their antioxidant defense mechanisms or the level of respiratory activity, explaining the wide spectrum of clinical features. Based on the surprising Golgi localization of COQ6, COQ7, and COQ9, we speculate that the antioxidant function of Q/QH2 in certain cells, such as podocytes, may depend on targeted synthesis of CoQ in the Golgi for delivery to the plasma membrane, which in the podocyte constitutes an enormous surface area that must contain vulnerable lipid components. Whereas most other forms of monogenic childhood NS are characterized by a lack of response to therapy (10, 16, 17, 44), the identification by mutation analysis of individuals with NS caused by COQ10 biosynthesis defects, as described here, is important because those individuals may respond to treatment with CoQ10.

Methods

Subjects

We obtained blood, tissue samples, and pedigrees following informed consent from individuals with NS and/or from their parents. Human subject research was approved by the University of Michigan Institutional Review Board. The diagnosis of NS was made by a pediatric nephrologist based on either chronic or recurrent high-grade proteinuria (>40 mg/m^2/h) or persistent low-grade proteinuria (>4 mg/m^2/h) (45). Steroid-sensitive NS and SRNS were defined according to standard criteria (45, 46). Renal biopsies were evaluated by a reference renal pathologist. Age at onset of ESRF was defined as age at first renal replacement therapy, i.e., dialysis or renal transplantation. Clinical data were obtained using a standardized questionnaire (www.renalgenes.org).

Genetic mapping and exon sequencing

We performed a genome-wide search for linkage by homozygosity mapping using the 250k Affymetrix SNP microarray (47). Data were evaluated by calculating nonparametric lod scores and scoring for homozygosity (Z_hom) across the whole genome in order to identify regions of homozygosity. The GENEHUNTER-MODSCORE program (48) was used to calculate multi- point lod scores assuming recessive inheritance with complete penetrance, a disease allele frequency of 0.001, and the marker allele frequencies for most other forms of monogenic childhood NS are characterized by a lack of response to therapy (10, 16, 17, 44), the identification by mutation analysis of individuals with NS caused by COQ10 biosynthesis defects, as described here, is important because those individuals may respond to treatment with CoQ10.

COQ6 mRNA expression

The probe for human Northern blot analysis was obtained by digesting the COQ6 isoform a coding region cloned into pCRITOTOPO with EcoRI and was radiolabeled with α-[32P]dCTP (Amersham Biosciences) using the Random Primers DNA Labeling System kit (Invitrogen) and successively purified with Quick-Spin columns (Roche) according to the manufacturer’s protocol. Radiolabeled probes were hybridized to a commercial preblotted membrane (FirstChoice Human Blot 1 membrane; Ambion) containing 2 μg/lane poly(A)^+ RNA from 10 human tissues. Prehybridization and hybridization were both performed in a 50% formamide buffer at 42°C, with a working concentration of 1.5 × 10^6 cpm and 0.1 mg salmon sperm DNA per milliliter. The excess probe was removed by washing at 65°C for 15 minutes using a 0.1% SDS, 0.1× sodium chloride–sodium citrate buffer solution. Radioactivity was detected with a Storm PhosphorImager (Molecular Dynamics) after overnight exposure. Selective amplification of COQ6 isoform b was carried out using primers on exon 1b and in exon 4. Simultaneous amplification of isoform a and isoform b was carried out using primers on exon 2 and on exon 4. PCR conditions were 94°C for 3 minutes followed by 35 cycles of 94°C for 30 seconds,
55°C for 30 seconds, and 72°C for 30 seconds and a final extension step of 72°C for 7 minutes. Amplified fragments were also purified from agarose gel and sequenced. Primer sequences were as follows: exon 1b forward, 5'-TCTAGTTGGGCGTCGTTT-3'; exon 2 forward, 5'-CTCTAAAGCTT-GATATGATATCTGATCAGAAG-3'; exon 4 reverse, 5'-CTTCTG-GATCCATGATGACATCATTCTCCAC-3'.

**Generation of plasmids**

Yeast COQ6 was amplified from genomic DNA extracted from a WT BY4741 strain and cloned in pCM189 vector. Site-specific mutagenesis was performed using the QuickChange kit (Stratagene) according to the manufacturer's protocol. To generate constructs that expressed the gene under the control of the endogenous yeast cpg promoter, the different pCM189–yeast COQ6 constructs were digested with SacI and MscI (to eliminate the CYC1 promoter and control elements); religated with a fragment encompassing the yeast COQ6 promoter, the 5' end of the gene, and the MscI site; amplified from genomic DNA; and cut accordingly. Plasmid maps were described previously (49). Yeast growth and transformation were performed as described below.

**COQ6-GFP expression studies**

The complete coding region of full-length human COQ6 isoform a, lacking termination codon but including the Kozak sequence, was PCR amplified from pCRITITOPO-COQ6 and subcloned into the HindIII and BamHI sites of pEGFP-N1 (BD Biosciences – Clontech). The correctness of the construct was verified by direct sequencing. HeLa cells stably expressing mitochondrially targeted red fluorescent protein (50) were grown on coverslips in complete DMEM (Sigma-Aldrich) containing 10% fetal bovine serum until 70% confluent, then transfected with the purified plasmid using Effectene Transfection Reagent (Qiagen) according to the manufacturer’s instructions. Cells were visualized after 48 hours using a Nikon Video Confocal microscope.

**In situ hybridization analysis in mice**

Whole-mount in situ hybridization was performed following a standard procedure with digoxigenin-labeled antisense riboprobes (51). Stained specimens were washed at 4°C overnight in 10-μm paraffin sections was done as described previously (52).

**Immunofluorescence**

Rat kidneys were perfusion-fixed with paraformaldehyde/lucine/periodate and processed as previously described (3). For absorption experiments, the immunopurified α-COQ6-TPEP2, COQ7, and COQ9 antibodies were preabsorbed with an equal weight of cognate or noncognate peptide over night at 4°C. The following antibodies were used: WT1 mouse monoclonal antibody (catalog no. sc-7385; Santa Cruz Biotechnology Inc.); PLCe1 goat polyclonal antibody (catalog no. sc-28404; Santa Cruz Biotechnology Inc.); α-COQ6-TPEP2 immunopurified rabbit antipeptide antibody (against peptide sequence N-SDKNLDDMGYIVEND-C; anti-rat Gleepl mouse monoclonal antibody (1B4; ref. 53), CoQ7 goat polyclonal antibody (catalog no. sc-66353; Santa Cruz Biotechnology Inc.); CoQ9 rabbit polyclonal antibody (catalog no. 14874-1-AP; Protein Tech); TGN38 monoclonal mouse antibody (catalog no. 610898; BD Biosciences); and GM130 mouse monoclonal antibody (catalog no. 610823; BD Biosciences).

**Yeast studies**

Yeast growth. The S. cerevisiae coq6-null mutants W303ΔG63 (Mat α ade2-1 his 3-1,15 leu2-3,112 trpl-1 ura3-1 ΔCOQ6-HIS3; ref. 18) and W303ΔCOQ8 (Mat α ade2-1 his 3-1,15 leu2-3,112 trpl-1 ura3-1 ΔABC1/ΔCOQ8-HIS3; ref. 54) were used in this study. Yeast growth media were prepared as described previously (55): YPD, containing 1% yeast extract, 2% peptone, and 2% dextrose; YPGal, containing 1% yeast extract, 2% peptone, 2% galactose, and 0.1% dextrose; YPG, containing 1% yeast extract, 2% peptone, and 3% glycerol; and SD-Ura, containing 0.18% nitrogen base without amino acids, 2% dextrose, 0.14% NaH2PO4, 0.5% (NH4)2SO4, and a complete amino acid supplement (56), minus uracil. Solid plate media contained 2% agar.

**Yeast transformation.** Yeast was subjected to transformation as described previously (57), with either a low–copy number (pQM; ref. 58) or a high–copy number (pRCM; ref. 59) yeast expression plasmid. These vectors were used to prepare plasmids containing the human COQ6 open reading frame with an in-frame aminoterminal yeast mitochondrial leader sequence (pQM_hCOQ6-MLS and pRCM_hCOQ6-MLS). Each of the following mutations in human COQ6 were introduced by site-directed mutagenesis (Stratagene): R162X, W188X, G255R, A353D, W447X, and Q461fsX478. See Supplemental Table 1 for a complete list of plasmids used in yeast transformation experiments.

**Lipid extraction and analysis.** Yeast cells were grown in YPGal and harvested during log phase growth (1.0 OD600nm). Lipid extracts were prepared from yeast whole cells as described previously (60). Lipids were separated by reverse-phase high-performance liquid chromatography with a Phenyl-hexyl column (Phenomenex 5-μm, 100 x 4.6 mm). The column was equilibrated with a mobile phase consisting of 95:5 methanol/2-propanol with 2.5 mM ammonium formate as solvent A and a flow rate of 650 μl/min. Upon sample injection, the percentage of solvent B (2-propanol with 2.5 mM ammonium formate) was increased linearly from 0% to 5% over 6 minutes, and the flow rate was also increased linearly to 800 μl/min. The flow rate and mobile phase were linearly changed back to initial conditions by 8 minutes. Q was quantified with an Applied Biosystems-MDS Sciex 4000 Q Trap (hybrid triple-quad linear ion trap analyzer with autosampler and a Turbo-V source equipped with ESI and APCl sources) as described previously (35). The samples were analyzed in multiple reaction monitoring (MRM) mode; MRM transitions were as follows: m/z 591.6/197.1 for Qc; m/z 610.6/197.1 for Qh; with ammonium adduct; m/z 455.6/197.1 for Qu (Sigma-Aldrich), used as internal standard.

**Podocyte expression studies**

Preparation of CoQ6 solution for use in cell culture. Pure CoQ6 in powder form (Kaneka Corp.) was dissolved in 1 ml of molecular biology-grade isopropanol at a final stock concentration of 10 mM by heating it briefly in a 95°C water bath. Thereafter, the CoQ6 solution was diluted 1:10 in podocyte culture media to a final stock concentration of 1 mM and reheaded for an additional 5 minutes at 95°C with gentle shaking. This CoQ6 stock solution was stored at 4°C, protected from light for up to 4 weeks, and diluted immediately before use at 1:20 in cell culture medium to a final working concentration of 50 μM.

**Podocyte culture.** Immortalized murine podocytes were cultured as described previously (29). For treatment studies of undifferentiated podocytes, cells were incubated in the presence of 50 μM CoQ6, 1 μM dexamethasone (Sigma-Aldrich), or 1 μM CsA (Sigma-Aldrich) for 48 hours. For analysis of differentiated podocytes, undifferentiated podocytes were cultured under nonpermissive conditions in the presence of 1 μM dexamethasone for 14 days. Cultivation was then continued in the absence of dexamethasone for an additional 48 hours. For determination of cell number and growth curve analysis, cells were seeded in 24-well plates at 20,000 cells/well. After 24, 48, or 72 hours, cells were trypsinized and counted using a hemocytometer. Experiments were done 4 times with at least 3 internal replicates.

**COQ6 RNAi**

For the targeted downregulation of protein expression in podocytes, we used the pSuper RNAi System (OligoEngine) (28) following the manufacturer’s instructions and as done previously (61). Briefly, we cloned a 60-nt oligo including a 19-nt COQ6 target sequence and a hairpin (5’TTCAGAG-
GA-3′) into a modified pSuper vector, which also encoded for a zeocin selection marker (61). After transfection of undifferentiated podocytes using FuGene 6 (Roche) followed by zeocin selection at 500 μg/ml for 7–10 days, appearing podocyte colonies were covered by cloning chambers, trypsinized, and expanded separately from each other in culture medium containing 100 μg/ml of zeocin. In total, 5 different COQ6 targeting sequences were used (clone 1, AACAGAGTCAGCTCCATA; clone 2, AATTACGTACATCG-TAG; clone 3, CGTGGGAGATCGGATGAA; clone 4, AACTGTTGATTGTGCTGA; clone 5, AAGGTATGGCATGCTTAGA) as well as 1 scrambled control sequence (5′-CCCGAGACTCGCGGCTGCG-3′). Stable transfected clones were expanded and used for RNA isolation and functional studies.

RNA isolation and RT-PCR

RNA was isolated from 2 × 10⁶ undifferentiated podocytes using the RNeasy kit (Qiagen) following the manufacturer’s protocol. Prior to RT-PCR, total RNA samples were digested with DNase I (Roche) and RNA was transcribed into cDNA using Superscript II (Invitrogen). For RT-PCR, 100 ng cDNA, AmpliTaq Gold DNA polymerase (Applied Biosystems), and sequence-specific, intron-spanning primers were used (COQ6 forward, ATGAGTCGTGGAGTCTACTGG; GAPDH forward, TATGTCGTGGAGTCTACTGG; GAPDH reverse, AGTGTGGCAGATCGAGTGAA; clone 3, CTGTGGCAGATCGAGTGAA; clone 4, AACTGTTGATTGTGCTGA; clone 5, AAGGTATGGCATGCTTAGA) as well as 1 scrambled control sequence (5′-CCCGAGACTCGCGGCTGCG-3′). PCR reactions (30 cycles at 95°C, 30 seconds at 53°C, and 30 seconds at 72°C) were run on a GeneAmp PCR System 9700 (Applied Biosystems). PCR reactions were analyzed on a 2% agarose gel, and ethidium bromide signals were captured with a Fluorometric Assay Kits from BioVision according to the manufacturer’s protocol. In brief, podocytes were cultured in 6- or 12-well plates, 3 replicates were analyzed per treatment group.

Inner ΔΨm

To analyze changes in the ΔΨm of undifferentiated podocytes, we used TMRE (Invitrogen) as described previously (62). Briefly, 3 × 10⁵ cells were trypsinized and incubated in 25 nM TMRE for 30 minutes at 37°C. With this concentration (nonquenching mode), depolarization causes a drop in TMRE fluorescence. Cells were washed with PBS and analyzed by flow cytometry (FACSCalibur; BD), measuring TMRE fluorescence in FL-2. The relative fluorescence of TMRE was compared with that of the respective untreated control cells in each experiment. 3 replicates were analyzed per treatment group.

FIENA

To determine cleavage-3 and -9 activities in podocyte extracts, we used the Fluorometric Assay Kits from BioVision according to the manufacturer’s protocol. In brief, podocytes were cultured in 6- or 12-well plates, trypsinized, and counted using a hemocytometer. 1 × 10⁵ to 1 × 10⁶ cells were lysed on ice for 10 minutes, and the derivatized peptide DEVD–7-aminofluorescein coumarin (DEVD-AFC) caspase-3 or -9 cleavage substrate was added at a final concentration of 50 μM in 2x reaction buffer containing 10 mM dithiothreitol. The reaction was incubated at 37°C for 1–24 hours, and green fluorescence (λmax, 505 nm) of free AFC after caspase-3 or -9 cleavage was measured in relative fluorescence units (RFU) using a fluorometer (SpectraMax M5; Molecular Devices) at different time points. Values were normalized to cell lysates without substrate and to substrate in reaction buffer in the absence of cell lysate. Experiments were done 3 times with at least 3 internal replicates.

Zebrafish MO-mediated knockdown

MOs were obtained from Gene Tools. The nucleotide sequences of the translation-blocking (coq6-MO1) and splice-blocking (coq6-MO4) MOs against D. rerio coq6 were 5′-GCTTAGCTTTAGCCAGAGACAGCAT-3′ and 5′-ACACATAAAGGTGCTGAGGGAAG-3′, respectively. The 5-bp mismatch controls for the MOs were as follows: coq6-MO1mm, 5′-GGGTACCCTTATCCAGACACACCAT-3′; coq6-MO4mm, 5′-ACA-TAAGCTACCTAGGGCGACG-3′. Fertilized eggs were microinjected with the specified amount of MO dissolved in 0.1M KCl. For immunohistochemical labeling, embryos were fixed with 4% PFA in PBS (pH 7.4) and stained with antibody against activated caspase-3 (1:200; BD Biosciences) following standard protocols (63).

Statistics

To evaluate caspase-3 and -9 activity in cell lines, Pearson χ² test was used with a critical P value of 0.05 (Figure 5).

Databases

Genetic mapping was performed using http://genome.ucsc.edu (May 2004 freeze).

Accession numbers

Accession numbers of COQ6 orthologs were NP_872282 for Homo sapiens, NP_001038869 for D. rerio, and ZP_00723222 E. coli.

Acknowledgments

We thank the affected individuals and their families for participation. We thank Corina Naiacu for contribution of clinical data. This research was supported by grants from the NIH to F. Hildebrandt (DK076683 and DK086542), C.F. Clarke (GM45952), and R.C. Wiggins (DK46073 and P30 DK081943) and by a grant from the KMD Foundation and the Thresher Research Fund to F. Hildebrandt. F. Hildebrandt is an Investigator of the Howard Hughes Medical Institute, a Doris Duke Distinguished Clinical Scientist, and the Frederick G.L. Huetwell Professor. H. Prokisch was supported by the Impulse and Networking Fund of the Helmholtz Association in the framework of the Helmholtz Alliance for Mental Health in an Ageing Society (HA-215), by the German Network for Mitochondrial Disorders (mitoNET 01GM0862 and 01GM0867), and by Systems Biology of Metabolites (SynMoBo 031549A4). The work was further supported by a grant from the German Research Foundation (DFG, SFB 423, TP B19) to M. Zenker, by the German Federal Ministry of Science and Education through the National Genome Research Network to G. Nürnberg and P. Nürnberg, and by the European Community FP7 program (EUNEFRON 201590) to D. Müller, by Fondazione CARIPARO Telethon Italy (GGP09207) to L. Salviati, by a Spanish FIS grant (PI080500) to P. Navas, and by the Young Investigator Career Development Grant from the NephCure Foundation and the National Scientist Development Grant from the American Heart Association to C. Faul.

Received for publication October 6, 2010, and accepted in revised form February 9, 2011.

Address correspondence to: Friedhelm Hildebrandt, Howard Hughes Medical Institute, Departments of Pediatrics and Human Genetics, University of Michigan Health System, 8220 MSRB III, 1150 West Medical Center Drive, Ann Arbor, Michigan 48109-5646, USA. Phone: 734.615.7285; Fax: 734.615.1386; E-mail: fhilde@umich.edu.


