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Abstract
This paper proposes a trajectory model which is based on a mix-
ture density network trained with target features augmented with
dynamic features together with an algorithm for estimating max-
imum likelihood trajectories which respects constraints between
the static and derived dynamic features. This model was evaluated
on an inversion mapping task. We found the introduction of the
trajectory model successfully reduced root mean square error by
up to 7.5%, as well as increasing correlation scores.
Index Terms: acoustic-articulatory inversion, conditional trajec-
tory model, mixture density network.

1. Introduction
The acoustic-articulatory inversion mapping involves inverting the
forward process of speech production. In other words, for a given
acoustic speech signal we aim to estimate the underlying sequence
of articulatory configurations which produced it. Doing this well
could prove useful for many applications; for example low bit-rate
speech coding [1], speech analysis and synthesis [2], automatic
speech recognition [3], animating talking heads and so on.

Researchers have been investigating the inversion mapping for
several decades. Much work has focused on analysis of acoustic
signals based on mathematical models of speech production [4].
Articulatory synthesis models have also been used extensively, ei-
ther as part of a mimic, analysis-by-synthesis algorithm [5], or
to generate acoustic-articulatory databases which may be used as
part of a code-book approach [6] or to train other models [7].
More recently, the availability of larger quantities of human artic-
ulography data, for example from electromagnetic articulography
(EMA), has prompted much work on applying machine learning
models to human articulatory data, including artificial neural net-
works (ANNs) [8], codebook methods [9] and GMMs [10].

It is widely regarded that the difficulty in the acoustic-
articulatory mapping lies in its ill-posed nature. There is signif-
icant evidence to indicate that multiple articulatory configurations
can result in the same or very similar acoustic effect. In light of
this instantaneous “non-uniqueness”, how is a system intended to
perform the inversion mapping to choose been the alternatives?

In previous work [8], we have successfully used the mixture
density network (MDN) [11] to address this problem, as it gives
a full probability density function (pdf) over the target articula-
tory domain conditioned on the acoustic input. Other researchers
have used dynamic constraints to disambiguate instantaneous non-
uniqueness, for example [9, 7, 10]. Of these, the last is particularly
interesting. [10] used a GMM to perform the inversion mapping,
but formulated it as a statistical trajectory model by augmenting
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re 1: The mixture density network is the combination of a mix-
model and a neural network.

rvations with delta and deltadelta features and then using the
imum likelihood parameter estimation (MLPG) algorithm de-

bed by [12] to give the maximum likelihood estimation of ar-
latory trajectories which respects constraints between the static
derived dynamic features. This same technique has also been

lied within an HMM-based speech production model for the
rsion mapping [13].
Due to the similarity in form of these models, it is natural to
whether MLPG can be usefully applied in the case of the MDN
The purpose of this paper is to evaluate this augmentation of

MDN with a trajectory model on an inversion mapping task.

2. An MDN-based trajectory model
e it is not widely known in the speech community, we give
a very brief introduction to the MDN, before describing how

ay be extended with the MLPG algorithm to give a trajectory
el. For full details, the reader is referred to [11] and [12].

Mixture density networks

MDN can be viewed as the amalgamation of a mixture model
an ANN. In theory, any ANN with universal approximation
bilities can be used and the mixture model can contain any
number of different kernel functions. Here, we will consider
a multilayer perceptron and Gaussian mixture components

ors α, means μ and variances σ2). In the trained MDN, the
N part is responsible for mapping from the input vector x to
control parameters of the mixture model, which in turn gives
ll pdf over the target domain, conditioned on the input vector
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p(t|x). The toy-example MDN in Figure 1 takes an input vector
x of dimensionality 5 and gives the conditional probability density
of a vector t of dimensionality 1 in the target domain. This pdf
takes the form of a GMM with 3 components, so it is given as:

p(t|x) =

MX
j=1

αj(x)φj(t|x) (1)

where M is the number of mixture components (in this example,
3), φj(t|x) is the conditional probability density given by the jth
kernel, and αj(x) is the mixing coefficient for the jth kernel.

In order to constrain the mixing coefficients to lie within the
range 0 ≤ αj(x) ≤ 1 and to sum to unity, the softmax function
is used to relate the output of the corresponding units in the neural
network to the mixing coefficients

αj =
exp(zα

j )PM
l=1 exp(zα

l )
(2)

where zα
j is the output of the neural network corresponding to the

mixture coefficient for the jth mixture component. The variance
parameters are similarly related to the outputs of the ANN as

σj = exp(zσ
j ) (3)

where zσ
j is the output of the neural network corresponding to the

variance for the jth mixture component, which avoids the variance
becoming less than or equal to zero. Finally, the means are repre-
sented directly by the corresponding outputs of the ANN:

μjk = zμ
jk (4)

where zμ
jk is the value of the output unit corresponding to the kth

dimension of the mean vector for the jth mixture component.
The objective of training the MDN is to minimise the negative

log likelihood of the observed target data points

E = −
X

n

ln

(
MX

j=1

αj(x
n)φj(t

n|xn)

)
(5)

given the mixture model parameters. Since the ANN part of the
MDN provides the parameters for the mixture model, this error
function must be minimised with respect to the network weights.
Therefore, the derivatives of the error at the network output units
corresponding separately to the priors, means and variances of the
mixture model are calculated (see [11]) and then propagated back
through the network to find the derivatives of the error with respect
to the network weights. Thus, training the MDN is a problem to
which standard non-linear optimisation algorithms can be applied.

2.2. Maximum likelihood parameter generation

The first step to an MDN-based trajectory model is to train an
MDN with target feature vectors augmented with dynamic fea-
tures, standardly derived from linear combinations of a window of
static features. For the sake of simplicity, we will consider MDNs
with a single Gaussian distribution and a single target static fea-
ture ct at each time step. Next, given the output of this MDN in re-
sponse to a sequence of input vectors, in order to generate the max-
imum likelihood trajectory, we aim to maximize P (O|Q) with re-
spect to O, where O = [oT

1 ,oT
2 , ...,oT

T ]T , ot = [ct, Δct, ΔΔct]
and Q is the sequence of Gaussians output by our MDN. The re-
lationship between the static features and those augmented with
derived dynamic features can be arranged in matrix form,
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re 2: Placement of EMA receiver coils in the MOCHA
base. See Table 1 for the key to abbreviations In this paper,

used the 6 EMA channels for the tongue (x- and y-coords for
e positions).

label articulator label articulator

UL Upper lip TT Tongue tip
LL Lower lip TB Tongue body
LI Lower incisor TD Tongue Dorsum

able 1: Key for placement of coils in the MOCHA dataset.

O = WC (6)

re C is a sequence of static features and W is a transforma-
matrix composed of the coefficients of the delta and deltadelta
ulation window and 0. Under the condition expressed in Eq.
aximising P (O|Q) is equivalent to maximising P (WC|Q)
respect to C. By setting

∂ log P (WC|Q)

∂C
= 0 (7)

t of linear equations is obtained (see [12])

WT U−1WC = WT U−1MT (8)

re MT = [μq1 , μq2 , ..., μqT ] and U−1 =
g[U−1

q1 ,U−1
q2 , ...,U−1

qT
] (μqT and U−1

qt
are the 3 × 1

n vector and 3× 3 (diagonal) covariance matrix respectively).
ing Eq. 8 for C yields the maximum likelihood trajectory.

3. Inversion experiment
test whether the MLPG technique can be successfully com-
d in practice with the MDN to form a trajectory model, we
ied out an inversion mapping experiment. We shall first de-
be the data used and then the experiment itself.

MOCHA articulatory data

multichannel articulatory (MOCHA) data set [14] contains
data streams recorded concurrently: the acoustic waveform

ther with laryngograph, electropalatograph and electromag-
c articulograph (2D EMA) data. Each of the sensors shown
igure 2 provide x- and y-coordinates in the midsagittal plane
pled at 500Hz. Multiple speakers were recorded reading a set
60 short, phonetically-balanced British-TIMIT sentences.
The EMA data and speech waveforms for female British En-
h speaker fsew0 were chosen from MOCHA for the experi-
ts in this paper. This is exactly the same data set as used in



[8], and so enables comparison with those and other similar results
reported in the literature (e.g. [10]).

3.1.1. Data processing

The acoustic data in the MOCHA dataset was subjected to filter-
bank analysis, using a Hamming window of 20ms with a shift of
10ms, resulting in an acoustic vector of 20 melscale filterbank co-
efficients for each time frame. These were z-score normalised and
scaled to lie within the range [0.0,1.0]. Meanwhile, the corre-
sponding EMA trajectories were downsampled to match the 10ms
shift rate of the acoustic features, then z-score normalised and
scaled to lie within the range [0.1,0.9]. The EMA processing
steps also incorporated the normalisation technique described in
[15], which aims to reduce the effect of EMA measurement er-
ror. Care was taken to discard feature vectors corresponding to
the silence at the beginning and end of each file, using the HMM
force-alignment labelling provided with the MOCHA dataset.

The partitioning of the data set into training, validation and test
sets is also the same as that in [8]. Of the 460 utterances contained
in the dataset for speaker fsew0, 368 were included in the training
set, and the validation and testing sets contained 46 files each. A
context window of input acoustic frames was used of length 20
consecutive frames, which increased the order of the input acoustic
vector paired with each articulatory vector to 400.

3.2. Method

A straightforward way to implement and evaluate a Trajectory
MDN is to train separate MDNs for each of the static and derived
dynamic features, the output of which may then be used to perform
the MLPG algorithm to yield the maximum likelihood trajectory.
Thus, we chose to train 3 MDNs for each of the 6 channels of
EMA data for the tongue: one for the standard EMA features, one
for the delta features and one for the deltadelta features, making a
total of 18 MDNs trained. All networks contained a single hidden
layer of 60 units, which had been identified as a suitable number
in previous experiments. For these initial experiments, we decided
to use a single Gaussian for each of the MDNs as a simplification
and to provide a baseline for future experiments.

Training of the networks was canonical; the scaled conjugate
gradients non-linear optimisation algorithm was run for a maxi-
mum of 2000 epochs, and the separate validation set of 46 utter-
ances was used to identify the point at which an optimum appeared
to have been reached.

Generating output trajectories simply involves running the in-
put data for an utterance through the three MDNs for the static,
delta and deltadelta features for each articulatory channel, and then
running the MLPG algorithm on the resulting sequences of pdfs.

In order to demonstrate the effect of using the dynamic fea-
tures and the MLPG algorithm together to form the Trajectory
MDN, we can compare the resulting trajectories with those com-
prising just the mean of the MDNs trained on the static data. Tak-
ing the output corresponding to the mean of the MDN output pdf
is equivalent to using an MLP (with linear output activation func-
tion) trained with a standard least-squares error function. In this
way, therefore, we can directly observe the effect of using the aug-
mented dynamic features without regard to any confounding effect
of two systems having been trained differently.
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correlation RMSE(mm) % RMSE
annel static +Δ, ΔΔ static +Δ, ΔΔ reduction

tt x 0.82 0.84 2.30 2.22 3.6
tt y 0.87 0.89 2.31 2.22 3.9
b x 0.82 0.84 2.13 2.04 4.1
b y 0.86 0.88 1.93 1.81 6.4
d x 0.81 0.82 1.98 1.91 3.8
d y 0.78 0.81 2.07 1.92 7.5

le 2: Comparison of results for the inversion mapping esti-
ed by MLP-equivalent (only static features) and the full Tra-
ory MDN (using dynamic features and the MLPG algorithm).

correlation RMSE(mm) % RMSE
annel prev +Δ, ΔΔ prev +Δ, ΔΔ reduction

tt x 0.79 0.84 2.43 2.22 8.7
tt y 0.84 0.89 2.56 2.22 13.4
tb x 0.81 0.84 2.19 2.04 6.7
tb y 0.83 0.88 2.14 1.81 15.4
td x 0.79 0.82 2.04 1.91 6.6
td y 0.71 0.81 2.31 1.92 17.0

le 3: Comparison of results observed in this experiment with
e previously reported in [15] (“prev”).

4. Results
re 3 gives an example utterance to compare the two estimated
ctories with the true one. Meanwhile, Table 2 gives the results
paring the performance of the standard MLP equivalent (static
ures only) with the proposed Trajectory MDN (+Δ, ΔΔ).

measures have been used: correlation and root mean square
r (RMSE) expressed in millimetres. The use of dynamic fea-
s and the MLPG algorithm within the Trajectory MDN has im-
ed results in terms of a reduction of RMS error and an increase

orrelation for all channels tested.
Table 3 compares the performance of the Trajectory MDN pre-
ed here with the corresponding results previously reported for
same dataset in [8]. The improvement using the Trajectory
N proposed here over the MLP results in [8] is substantial,
ing between 6.6% and 17.0% in RMS error reduction.
It is also worth noting the results for the Trajectory MDN are
ne with those reported in [10]. The average RMSE for the ar-
lators reported here is 2.02mm, while the average RMSE of the
results reported in [10] for the same articulators is 1.98mm.

5. Discussion
experiment described has aimed simply to establish that the
nique works and to provide a baseline. Subsequent work will
ease complexity, including inversion for the full set of artic-
ors, and developing an MDN implementation with diagonal
riance, so the augmented feature vectors may be trained in a
le MDN instead of three separate ones. In addition, we intend
valuate using multiple mixtures in the MDN output pdf, which
require a decoding step for the sequence of mixture compo-

ts, as described in [12]. Results from [8] indicate that using
tiple mixtures does give a more accurate representation of the
et articulatory domain than a single Gaussian, therefore we ex-
this will improve results further. Finally, so far, we have only
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applied the MLPG algorithm for trajectory estimation. In future
work, we intend to look at whether respecting the same constraints
between static and dynamic features can be applied to MDN train-
ing too.

6. Conclusions
We have demonstrated that the MDN may successfully be ex-
tended to provide a statistical conditional trajectory model by aug-
menting the static target features with derived dynamic features
and using the maximum likelihood parameter generation algo-
rithm. This method provides a useful way to use the output of
the mixture density network where a single trajectory is required
rather than a probability density function. Using this method, we
have substantially improved upon the performance of our previ-
ous neural network inversion mapping. Finally, the success of the
method in this case shows promise that the trajectory MDN may
prove useful in modelling conditional trajectories in other prob-
lems.
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Figure 3: Comparing the MLP-equivalent (only static features) and the full Trajectory MDN (dynamic features and the MLPG algorithm)
for the utterance “The speech symposium might begin on Monday.” The trajectory MDN output is smoother and closer in nature to the real
trajectory, and more accurate (e.g. around 0.5 and 1.5s).
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